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Throughout we work over the field of complex numbers C.
The polynomial representation theory of the general linear groupGLn has a well-behaved limit for n → ∞.

On the level of character rings, this is the passage from the ring of symmetric polynomials in n variables
to the ring of symmetric functions in infinitely many variables. One possible model for the n → ∞ limit is
the category Pol of polynomial functors from the category of vector spaces to itself. The category Pol is a
semisimple Abelian category, it has a tensor product, and its simple objects are the Schur functors Sλ, where
λ ranges over all integer partitions. See [5, Chapter 1] for an exposition. Pol is characterized by a universal
property: for any Abelian symmetric monoidal C-linear category A, a symmetric monoidal tensor functor
Pol → A is equivalent to the choice of an object A ∈ A. This universal property gives a specialization
functor Pol → Rep(GLn) which simply evaluates a polynomial functor on the vector representation Cn

of GLn. This specialization functor is exact, and is fundamental for many stabilization properties of the
polynomial representation theory of GLn.

We remark that the category Pol has a natural grading via deg(Sλ) = |λ| and many examples of algebra
objects (twisted commutative algebras) in the category of graded-finite polynomial functors arise in classical
algebraic geometry. This perspective is pursued in [9, 10].

In some cases, considering only polynomial representations is too restrictive (for example, when studying
the adjoint representation of GLn), and also it is natural to ask about analogues of the category Pol for the
orthogonal and symplectic groups. Such a category was introduced and studied by several authors [1, 6, 7, 8]
and can be described as follows. Let V =

⋃
n Vn be the union of the defining representations of either the

series GLn, On, or Sp2n, and also let V∗ =
⋃

n V
∗
n be the union of the dual of the defining representations.

Then Rep(O) and Rep(Sp) are defined as the category of representations of either O∞ =
⋃

n On or Sp∞ =⋃
n Sp2n which are subquotients of finite direct sums of the tensor spaces V⊗N . To define Rep(GL) we use

the mixed tensor spaces V⊗N ⊗V⊗M
∗ .

These categories are no longer semisimple. For example, the map V ⊗ V∗ → C in Rep(GL) does not
split. However, they still have a tensor structure. The simple objects Vλ are indexed by partitions in the
orthogonal and symplectic case, and by pairs of partitions in the general linear case. The injective envelope
of Vλ in the first two cases is Sλ(V) and the injective envelope of Vλ,µ is Sλ(V)⊗ Sµ(V∗) in the third case.

In [11], we showed that Rep(G) is equivalent to the category of finite length modules over certain twisted

commutative algebras. For G = O and G = Sp, the algebras are Sym(Sym2) and Sym(
∧2

), which can
be thought of as the coordinate rings of the space of infinite size symmetric and skew-symmetric matrices,
respectively. For G = GL, there is a similar description in terms of a bivariate twisted commutative algebra
which can be thought of as the coordinate ring of the space of infinite size generic matrices. The utility of
this perspective is that one can now use techniques from commutative algebra to study these categories.

Also in [11], we characterized these categories in terms of universal properties. LetG be one of {O,Sp,GL}
and let A be an Abelian symmetric monoidal C-linear category. Then a left-exact symmetric monoidal tensor
functor Rep(G) → A is equivalent to the choice of:

• (G = O): a pair (A,ω) with A ∈ A and ω : Sym2A → C.

• (G = Sp): a pair (A,ω) with A ∈ A and ω :
∧2

A → C.
• (G = GL): a triple (A,A′, ω) with A,A′ ∈ A and ω : A⊗A′ → C.

Using these universal properties, we can define specialization functors

Γn : Rep(O) → Rep(On),

Γ2n : Rep(Sp) → Rep(Sp2n),

Γn : Rep(GL) → Rep(GLn).

They are guaranteed to be left-exact, but will not be right-exact. For example, in Rep(Sp), we have the
injective resolution

0 → V1,1,1,1,1,1 →
6∧
V →

4∧
V → 0,

and applying Γ4, we get a complex concentrated in cohomological degree 1, so R1Γ4(V1,1,1,1,1,1) = C.
1



In fact, in [12], we showed that the derived specialization functors of a simple object are nonzero in at
most 1 cohomological degree. The rule to calculate the derived functors can be obtained from a Weyl group
action and is analogous to the Borel–Weil–Bott theorem. We explain this now for Rep(Sp). Let W be the
Weyl group of type BC∞ which acts on integer sequences (a1, a2, . . . ) with generators si(. . . , ai, ai+1, . . . ) =
(. . . , ai+1, ai, . . . ) (i ≥ 1) and s0(a1, a2, . . . ) = (−a1, a2, . . . ). For w ∈ W , set ℓ(w) to be the minimal
number of si needed to generate w. Given a partition λ, let λ† be its transposed partition. Finally, set
ρ2n = (−(n+ 1),−(n+ 2), . . . ). Then one of two possibilities occurs:

• There exists a non-identity w ∈ W such that w(λ† + ρ2n) − ρ2n = λ†. In this case, RiΓ2n(Vλ) = 0
for all i ≥ 0.

• There exists a unique w ∈ W such that w(λ†+ρ2n)−ρ2n = µ† where µ is a partition with at most n
parts. In this case, Rℓ(w)Γ2n(Vλ) = Vµ (where µ is interpreted as a dominant weight for Sp2n) and
RiΓ2n(Vλ) = 0 for i 6= ℓ(w).

There are similar rules for the orthogonal case and general linear case, in which case one uses the Weyl
groups of type D∞ and A∞, respectively. We refer the reader to [12] for more details.

We close by mentioning that the character rings of the categories Rep(G) and the ring homomorphisms
induced from the specialization functors were studied in [2, 3, 4].
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