Torus actions, multi-partitions, and crystals

Steven Sam Peter Tingley
Massachusetts Institute of Technology

January 6, 2012

Affine $\mathfrak{s l}_{n}$

- We will focus on $\hat{\mathfrak{s l}}_{n}(\mathbf{C})$ and combinatorial data associated to its highest-weight representations.
- Roughly speaking, $\hat{\mathfrak{s l}}_{n}(\mathbf{C})$ is a certain extension of the loop algebra $\mathfrak{s l}_{n}\left(\mathbf{C}\left[t, t^{-1}\right]\right)$
- It is generated by lowering and raising operators e_{i} and f_{i} $(i=0, \ldots, n-1)$ and a degree operator d
- $\hat{\mathfrak{s l}}_{n}$ (and its quantum version) has a combinatorially defined action on the space of all partitions (Fock space realization):

$$
e_{i} \lambda=\sum_{\mu} \mu, \quad f_{i} \lambda=\sum_{\nu} \nu, \quad d \lambda=N_{0}(\lambda) \lambda
$$

The sum is defined so that λ / μ and ν / λ are i-nodes (boxes whose content is $i(\bmod n))$ and $N_{0}(\lambda)$ is the number of 0 -nodes.

Crystals

- To define quantum $\hat{\mathfrak{s}}_{n}$, we work over the field $\mathbf{C}(q)$. The action of e_{i}, f_{i}, and d is similar to before:

$$
e_{i} \lambda=\sum_{\mu} q^{-N_{i}^{\prime}(\lambda, \mu)} \mu, \quad f_{i} \lambda=\sum_{\nu} q^{N_{i}^{r}(\nu, \lambda)} \nu, \quad d \lambda=q^{N_{0}(\lambda)} \lambda
$$

where $N_{i}^{r}(\nu, \lambda)$ is the number of addable i-nodes minus the number of removable i-nodes of λ to the right (English notation) of ν / λ, and N_{i}^{l} is defined similarly, except "left" replaces "right".

- After passing to a suitable " $q \rightarrow 0$ " limit, and augmenting e_{i} and f_{i} in a certain way, we are left with operators \widetilde{e}_{i} and f_{i} which act as partial permutations of the set of partitions
- The remaining object is a crystal, and we can define them axiomatically. They are the subject of this talk.

Misra-Miwa-Hayashi realization for $B\left(\Lambda_{0}\right)$

To define $\widetilde{e}_{i} \lambda$ and $\widetilde{f}_{i} \lambda$ in crystal:

- Draw partition λ in Russian notation.
- For each addable i-node, write "(" and for each removable i-node, write ")" and order them from left-to-right. Now cancel all paired parentheses
- $\widetilde{e}_{i} \lambda$ is obtained by removing the rightmost remaining removable i-node, or 0 if not possible; $\widetilde{f}_{i} \lambda$ is obtained by adding the leftmost remaining addable i-node, or 0 if not possible
- Under this action, the set of partitions breaks up into infinitely many connected components, all isomorphic to one another. The component containing the empty partition is the set of n-regular partitions (every part appears with multiplicity $<n$)

The Misra-Miwa-Hayashi realization of $B\left(\Lambda_{0}\right)$ for $\hat{\mathfrak{s l}}_{3}$

Defining the actions of \widetilde{f}_{2} and \widetilde{e}_{2} on $(7,6,6,6,5,3,3)$:

So $\widetilde{f}_{2}(7,6,6,6,5,3,3)=(7,6,6,6,5,3,3,1)$ and $\widetilde{e}_{2}(7,6,6,6,5,3,3)=(7,6,6,6,5,3,2)$.

Fayers' family of realizations for $B\left(\Lambda_{0}\right)$

Fayers showed that the left-to-right ordering of the parentheses from the previous slide can be augmented as follows:

- Let ξ be an irrational number (rational numbers are okay, but would need to take "upper" or "lower" limits)
- Define the height of a box (i, j) as $i+j \xi$ (i is the row index and j is the column index)

This gives a "different" crystal. In fact, only the connected component containing the empty partition is in general a crystal (but it is isomorphic to the Misra-Miwa-Hayashi realization).

This component consists of ξ-regular partitions: there is no box s whose hook length is divisible by n and whose arm length is $\lfloor\operatorname{hook}(s) /(\xi+1)\rfloor$.

Example: Fayers' crystals for $\hat{\mathfrak{s}}_{4}$

This example is for slope $\xi=1+\varepsilon$ for sufficiently small $\varepsilon>0$. \widetilde{f}_{2} adds a box at \frown and \widetilde{e}_{2} removes the box at \smile.

Saito's geometric realization of crystals

Fayers' proof is complicated and difficult to generalize to other representations of $\hat{\mathfrak{s l}}_{n}$. Another approach:

- Associated to any symmetric Kac-Moody algebra (so including $\hat{\mathfrak{s}}_{n}$) and two weights \mathbf{v} and $\mathbf{w}\left(\mathbf{Z}_{\geq 0}\right.$-labelings of Dynkin diagram), Nakajima defined symplectic manifolds (quiver varieties) $\mathfrak{M}(\mathbf{v}, \mathbf{w})$ and distinguished Lagrangian subvarieties $\mathfrak{L}(\mathbf{v}, \mathbf{w}) \subset \mathfrak{M}(\mathbf{v}, \mathbf{w})$.
- Let $\operatorname{Irr}(\mathfrak{L}(\mathbf{v}, \mathbf{w}))$ denote the set of irreducible components. Saito constructed crystal operators on $\coprod_{\mathbf{v}} \operatorname{Irr}(\mathfrak{L}(\mathbf{v}, \mathbf{w}))$.
- To get combinatorial crystals out of this action, one can find a combinatorial enumeration of these irreducible components and translate Saito's crystal operators.

Combinatorics from torus actions

We take a "Morse theory" approach to get combinatorics.

- There is a natural torus T acting on $\mathfrak{M}(\mathbf{v}, \mathbf{w})$. Choose a 1-parameter subgroup $\iota: \mathbf{C}^{*} \rightarrow T$.
- $\mathfrak{L}(\mathbf{v}, \mathbf{w})$ is compact, so we can let points flow to infinity under this torus action $x \mapsto \lim _{t \rightarrow \infty} \iota(t) \cdot x$.
- This gives a map from irreducible components of $\mathfrak{L}(\mathbf{v}, \mathbf{w})$ to irreducible components of the fixed point variety of ι
- Technical assumption: if ι is "positive" then this map is injective.
- So we can reduce to understanding fixed points of a torus action (and tangent space / eigenvalue-type calculations)
- If ι is generic, then the fixed points of ι and T will coincide

Hilbert schemes of points in the plane

In the case of $\hat{\mathfrak{s l}}_{n}$, Nakajima's quiver varieties have alternate descriptions.
The Dynkin diagram of $\hat{\mathfrak{s l}}_{n}$ is an n-cycle on $[0, n-1]$, and we are interested in the weight \mathbf{w} which is 1 at 0 and 0 everywhere else.

- Hilb N is the Hilbert scheme of N points in the plane, i.e., the set of ideals $I \subset \mathbf{C}[x, y]$ such that $\operatorname{dim}_{\mathbf{C}} \mathbf{C}[x, y] / I=N$.
- Let ζ be a primitive nth root of unity. The group \mathbf{Z} / n of nth roots acts on $\mathbf{C}[x, y]$ by $\zeta^{k} p(x, y):=p\left(\zeta^{k} x, \zeta^{-k} y\right)$.
- If I is fixed under this action, we get an eigenvalue decomposition of $\mathbf{C}[x, y] / I$. The \mathbf{Z} / n fixed points of $\mathbf{H i l b}^{N}$ is a disjoint union of $\operatorname{Hilb}^{N}(\mathbf{v})$ over all such eigenvalue decompositions, and we have $\operatorname{Hilb}^{N}(\mathbf{v}) \cong \mathfrak{M}(\mathbf{v}, \mathbf{w})$.

Hilbert schemes (cont)

- The torus T is 2-dimensional and acts by scaling variables
- The Lagrangian $\mathfrak{L}(\mathbf{v}, \mathbf{w})$ is the set of ideals in $\operatorname{Hilb}^{N}(\mathbf{v})$ that are supported at the origin. T-fixed points are monomial ideals, which can be identified with partitions of N
- Given irrational ξ from before, we have an "embedding" $\iota_{\xi}: \mathbf{C}^{*} \rightarrow T$ by $z \mapsto\left(z, z^{\xi}\right)$. This doesn't actually make sense-to interpret its meaning, we find a rational number a / b which closely approximates ξ and define $z \mapsto\left(z^{b}, z^{a}\right)$. The closeness of this approximation changes with \mathbf{v}.
- The flow to infinity is something like "reverse initial ideal" because it picks out lowest degree terms
- By working out which components go to which monomial ideals and identifying Saito's crystal operators, we recover Fayers' construction.

Generalizations to quot schemes

This framework easily generalizes to other w (higher-level representations).

- Let W be a \mathbf{Z} / n-representation whose eigenvalue multiplicities is given by \mathbf{w}.
- The Hilbert scheme is replaced by a "moduli space of framed torsion-free sheaves on $\mathbf{P}^{2 \prime}$
- The Lagrangian is now the set of \mathbf{Z} / n-stable submodules of $W \otimes \mathbf{C}[x, y]$ whose quotient is $N=\sum_{i} \mathbf{v}_{i}$ dimensional, has eigenvalue multiplicities according to \mathbf{v}, and is supported at the origin.
- The torus T is now larger, but the fixed points will be monomial submodules, which are naturally indexed by multi-partitions. The irrational number ξ now becomes a "slope datum" and Fayers' construction generalizes.
- We could only identify the multi-partitions in the component of the empty partition under certain hypotheses on the slope datum.

Other types?

- The reason $\hat{\mathfrak{s}}_{n}$ was so nice is because the T-fixed points were isolated and easy to enumerate.
- When the Dynkin diagram has vertices of valency ≥ 3, this fails. For D_{4} we worked out some examples and the fixed point varieties always seemed to be rational varieties (usually iterated Grassmannian bundles, or blowups/blowdowns). So we might ask if this is always the case.
- In affine type D, one has combinatorial models for crystals in terms of "Young walls" and it would be interesting if the above framework could recover them.

