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Affine sln

• We will focus on ŝln(C) and combinatorial data associated to
its highest-weight representations.

• Roughly speaking, ŝln(C) is a certain extension of the loop
algebra sln(C[t, t

−1])

• It is generated by lowering and raising operators ei and fi
(i = 0, . . . , n − 1) and a degree operator d

• ŝln (and its quantum version) has a combinatorially defined
action on the space of all partitions (Fock space realization):

eiλ =
∑

µ

µ, fiλ =
∑

ν

ν, dλ = N0(λ)λ

The sum is defined so that λ/µ and ν/λ are i-nodes (boxes
whose content is i (mod n)) and N0(λ) is the number of
0-nodes.
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Crystals

• To define quantum ŝln, we work over the field C(q). The
action of ei , fi , and d is similar to before:

eiλ =
∑

µ

q−N
l

i
(λ,µ)µ, fiλ =

∑

ν

qN
r

i
(ν,λ)ν, dλ = qN0(λ)λ

where N r

i
(ν, λ) is the number of addable i-nodes minus the

number of removable i-nodes of λ to the right (English
notation) of ν/λ, and N l

i
is defined similarly, except “left”

replaces “right”.

• After passing to a suitable “q → 0” limit, and augmenting ei
and fi in a certain way, we are left with operators ẽi and f̃i
which act as partial permutations of the set of partitions

• The remaining object is a crystal, and we can define them
axiomatically. They are the subject of this talk.
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Misra–Miwa–Hayashi realization for B(Λ0)

To define ẽiλ and f̃iλ in crystal:

• Draw partition λ in Russian notation.

• For each addable i-node, write “(” and for each removable
i-node, write “)” and order them from left-to-right. Now
cancel all paired parentheses

• ẽiλ is obtained by removing the rightmost remaining
removable i-node, or 0 if not possible;
f̃iλ is obtained by adding the leftmost remaining addable
i-node, or 0 if not possible

• Under this action, the set of partitions breaks up into infinitely
many connected components, all isomorphic to one another.
The component containing the empty partition is the set of
n-regular partitions (every part appears with multiplicity < n)
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The Misra–Miwa–Hayashi realization of B(Λ0) for ŝl3

Defining the actions of f̃2 and ẽ2 on (7, 6, 6, 6, 5, 3, 3):
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So f̃2(7, 6, 6, 6, 5, 3, 3) = (7, 6, 6, 6, 5, 3, 3, 1) and
ẽ2(7, 6, 6, 6, 5, 3, 3) = (7, 6, 6, 6, 5, 3, 2).
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Fayers’ family of realizations for B(Λ0)

Fayers showed that the left-to-right ordering of the parentheses
from the previous slide can be augmented as follows:

• Let ξ be an irrational number (rational numbers are okay, but
would need to take “upper” or “lower” limits)

• Define the height of a box (i , j) as i + jξ (i is the row index
and j is the column index)

This gives a “different” crystal. In fact, only the connected
component containing the empty partition is in general a crystal
(but it is isomorphic to the Misra–Miwa–Hayashi realization).

This component consists of ξ-regular partitions: there is no box s

whose hook length is divisible by n and whose arm length is
⌊hook(s)/(ξ + 1)⌋.
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Example: Fayers’ crystals for ŝl4
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This example is for slope ξ = 1 + ε for sufficiently small ε > 0.
f̃2 adds a box at ⌢ and ẽ2 removes the box at ⌣.
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Saito’s geometric realization of crystals

Fayers’ proof is complicated and difficult to generalize to other
representations of ŝln. Another approach:

• Associated to any symmetric Kac–Moody algebra (so
including ŝln) and two weights v and w (Z≥0-labelings of
Dynkin diagram), Nakajima defined symplectic manifolds
(quiver varieties) M(v,w) and distinguished Lagrangian
subvarieties L(v,w) ⊂ M(v,w).

• Let Irr(L(v,w)) denote the set of irreducible components.
Saito constructed crystal operators on

∐
v
Irr(L(v,w)).

• To get combinatorial crystals out of this action, one can find a
combinatorial enumeration of these irreducible components
and translate Saito’s crystal operators.
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Combinatorics from torus actions

We take a “Morse theory” approach to get combinatorics.

• There is a natural torus T acting on M(v,w). Choose a
1-parameter subgroup ι : C∗ → T .

• L(v,w) is compact, so we can let points flow to infinity under
this torus action x 7→ limt→∞ ι(t) · x .

• This gives a map from irreducible components of L(v,w) to
irreducible components of the fixed point variety of ι

• Technical assumption: if ι is “positive” then this map is
injective.

• So we can reduce to understanding fixed points of a torus
action (and tangent space / eigenvalue-type calculations)

• If ι is generic, then the fixed points of ι and T will coincide
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Hilbert schemes of points in the plane

In the case of ŝln, Nakajima’s quiver varieties have alternate
descriptions.
The Dynkin diagram of ŝln is an n-cycle on [0, n − 1], and we are
interested in the weight w which is 1 at 0 and 0 everywhere else.

• Hilb
N is the Hilbert scheme of N points in the plane, i.e., the

set of ideals I ⊂ C[x , y ] such that dimC C[x , y ]/I = N.

• Let ζ be a primitive nth root of unity. The group Z/n of nth
roots acts on C[x , y ] by ζkp(x , y) := p(ζkx , ζ−ky).

• If I is fixed under this action, we get an eigenvalue
decomposition of C[x , y ]/I . The Z/n fixed points of Hilb

N is
a disjoint union of Hilb

N(v) over all such eigenvalue
decompositions, and we have Hilb

N(v) ∼= M(v,w).
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Hilbert schemes (cont)

• The torus T is 2-dimensional and acts by scaling variables

• The Lagrangian L(v,w) is the set of ideals in Hilb
N(v) that

are supported at the origin. T -fixed points are monomial
ideals, which can be identified with partitions of N

• Given irrational ξ from before, we have an “embedding”
ιξ : C

∗ → T by z 7→ (z , zξ). This doesn’t actually make
sense–to interpret its meaning, we find a rational number a/b
which closely approximates ξ and define z 7→ (zb, za). The
closeness of this approximation changes with v.

• The flow to infinity is something like “reverse initial ideal”
because it picks out lowest degree terms

• By working out which components go to which monomial
ideals and identifying Saito’s crystal operators, we recover
Fayers’ construction.
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Generalizations to quot schemes

This framework easily generalizes to other w (higher-level
representations).

• Let W be a Z/n-representation whose eigenvalue
multiplicities is given by w.

• The Hilbert scheme is replaced by a “moduli space of framed
torsion-free sheaves on P

2”
• The Lagrangian is now the set of Z/n-stable submodules of
W ⊗ C[x , y ] whose quotient is N =

∑
i
vi dimensional, has

eigenvalue multiplicities according to v, and is supported at
the origin.

• The torus T is now larger, but the fixed points will be
monomial submodules, which are naturally indexed by
multi-partitions. The irrational number ξ now becomes a
“slope datum” and Fayers’ construction generalizes.

• We could only identify the multi-partitions in the component
of the empty partition under certain hypotheses on the slope
datum.
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Other types?

• The reason ŝln was so nice is because the T -fixed points were
isolated and easy to enumerate.

• When the Dynkin diagram has vertices of valency ≥ 3, this
fails. For D4 we worked out some examples and the fixed
point varieties always seemed to be rational varieties (usually
iterated Grassmannian bundles, or blowups/blowdowns). So
we might ask if this is always the case.

• In affine type D, one has combinatorial models for crystals in
terms of “Young walls” and it would be interesting if the
above framework could recover them.
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