Torus actions, multi-partitions, and crystals

Steven Sam Peter Tingley

Massachusetts Institute of Technology

January 6, 2012

- We will focus on $\hat{\mathfrak{sl}}_n(\mathbf{C})$ and combinatorial data associated to its highest-weight representations.
- Roughly speaking, ŝl_n(C) is a certain extension of the loop algebra sl_n(C[t, t⁻¹])
- It is generated by lowering and raising operators e_i and f_i (i = 0, ..., n - 1) and a degree operator d
- sîl_n (and its quantum version) has a combinatorially defined action on the space of all partitions (Fock space realization):

$$e_i\lambda = \sum_{\mu}\mu, \quad f_i\lambda = \sum_{\nu}
u, \quad d\lambda = N_0(\lambda)\lambda$$

The sum is defined so that λ/μ and ν/λ are *i*-nodes (boxes whose content is *i* (mod *n*)) and $N_0(\lambda)$ is the number of 0-nodes.

Crystals

To define quantum sl_n, we work over the field C(q). The action of e_i, f_i, and d is similar to before:

$$e_i\lambda = \sum_{\mu} q^{-N_i^l(\lambda,\mu)}\mu, \quad f_i\lambda = \sum_{
u} q^{N_i^r(
u,\lambda)}
u, \quad d\lambda = q^{N_0(\lambda)}\lambda$$

where $N_i^r(\nu, \lambda)$ is the number of addable *i*-nodes minus the number of removable *i*-nodes of λ to the right (English notation) of ν/λ , and N_i^l is defined similarly, except "left" replaces "right".

- After passing to a suitable " $q \rightarrow 0$ " limit, and augmenting e_i and f_i in a certain way, we are left with operators \tilde{e}_i and \tilde{f}_i which act as partial permutations of the set of partitions
- The remaining object is a crystal, and we can define them axiomatically. They are the subject of this talk.

Misra–Miwa–Hayashi realization for $B(\Lambda_0)$

To define $\tilde{e}_i \lambda$ and $\tilde{f}_i \lambda$ in crystal:

- Draw partition λ in Russian notation.
- For each addable *i*-node, write "(" and for each removable *i*-node, write ")" and order them from left-to-right. Now cancel all paired parentheses
- $\tilde{e}_i \lambda$ is obtained by removing the rightmost remaining removable *i*-node, or 0 if not possible; $\tilde{f}_i \lambda$ is obtained by adding the leftmost remaining addable *i*-node, or 0 if not possible
- Under this action, the set of partitions breaks up into infinitely many connected components, all isomorphic to one another. The component containing the empty partition is the set of *n*-regular partitions (every part appears with multiplicity < n)

The Misra–Miwa–Hayashi realization of $B(\Lambda_0)$ for $\hat{\mathfrak{sl}}_3$

So $\tilde{f}_2(7,6,6,6,5,3,3) = (7,6,6,6,5,3,3,1)$ and $\tilde{e}_2(7,6,6,6,5,3,3) = (7,6,6,6,5,3,2)$.

Fayers' family of realizations for $B(\Lambda_0)$

Fayers showed that the left-to-right ordering of the parentheses from the previous slide can be augmented as follows:

- Let ξ be an irrational number (rational numbers are okay, but would need to take "upper" or "lower" limits)
- Define the height of a box (i, j) as i + jξ (i is the row index and j is the column index)

This gives a "different" crystal. In fact, only the connected component containing the empty partition is in general a crystal (but it is isomorphic to the Misra–Miwa–Hayashi realization).

This component consists of ξ -regular partitions: there is no box s whose hook length is divisible by n and whose arm length is $\lfloor hook(s)/(\xi+1) \rfloor$.

Example: Fayers' crystals for $\hat{\mathfrak{sl}}_4$

This example is for slope $\xi = 1 + \varepsilon$ for sufficiently small $\varepsilon > 0$. \widetilde{f}_2 adds a box at \frown and \widetilde{e}_2 removes the box at \smile . Fayers' proof is complicated and difficult to generalize to other representations of $\hat{\mathfrak{sl}}_n$. Another approach:

- Associated to any symmetric Kac–Moody algebra (so including ŝl_n) and two weights v and w (Z_{≥0}-labelings of Dynkin diagram), Nakajima defined symplectic manifolds (quiver varieties) 𝔐(v, w) and distinguished Lagrangian subvarieties 𝔅(v, w) ⊂ 𝔐(v, w).
- Let Irr(L(v, w)) denote the set of irreducible components.
 Saito constructed crystal operators on ∐_v Irr(L(v, w)).
- To get combinatorial crystals out of this action, one can find a combinatorial enumeration of these irreducible components and translate Saito's crystal operators.

We take a "Morse theory" approach to get combinatorics.

- There is a natural torus T acting on 𝔐(𝕶, 𝑐). Choose a 1-parameter subgroup ι: 𝔅^{*} → T.
- L(v, w) is compact, so we can let points flow to infinity under this torus action x → lim_{t→∞} ι(t) · x.
- This gives a map from irreducible components of L(v, w) to irreducible components of the fixed point variety of ι
- Technical assumption: if ι is "positive" then this map is injective.
- So we can reduce to understanding fixed points of a torus action (and tangent space / eigenvalue-type calculations)
- If ι is generic, then the fixed points of ι and T will coincide

In the case of $\hat{\mathfrak{sl}}_n$, Nakajima's quiver varieties have alternate descriptions.

The Dynkin diagram of $\hat{\mathfrak{sl}}_n$ is an *n*-cycle on [0, n-1], and we are interested in the weight **w** which is 1 at 0 and 0 everywhere else.

- Hilb^N is the Hilbert scheme of N points in the plane, i.e., the set of ideals I ⊂ C[x, y] such that dim_C C[x, y]/I = N.
- Let ζ be a primitive nth root of unity. The group Z/n of nth roots acts on C[x, y] by ζ^kp(x, y) := p(ζ^kx, ζ^{-k}y).
- If *I* is fixed under this action, we get an eigenvalue decomposition of C[x, y]/I. The Z/n fixed points of Hilb^N is a disjoint union of Hilb^N(v) over all such eigenvalue decompositions, and we have Hilb^N(v) ≅ M(v, w).

Hilbert schemes (cont)

- The torus T is 2-dimensional and acts by scaling variables
- The Lagrangian L(v, w) is the set of ideals in Hilb^N(v) that are supported at the origin. T-fixed points are monomial ideals, which can be identified with partitions of N
- Given irrational ξ from before, we have an "embedding"
 *ι*_ξ: C* → T by z ↦ (z, z^ξ). This doesn't actually make
 sense-to interpret its meaning, we find a rational number a/b
 which closely approximates ξ and define z ↦ (z^b, z^a). The
 closeness of this approximation changes with v.
- The flow to infinity is something like "reverse initial ideal" because it picks out lowest degree terms
- By working out which components go to which monomial ideals and identifying Saito's crystal operators, we recover Fayers' construction.

Generalizations to quot schemes

This framework easily generalizes to other \mathbf{w} (higher-level representations).

- Let *W* be a **Z**/*n*-representation whose eigenvalue multiplicities is given by **w**.
- The Hilbert scheme is replaced by a "moduli space of framed torsion-free sheaves on **P**²"
- The Lagrangian is now the set of Z/n-stable submodules of W ⊗ C[x, y] whose quotient is N = ∑_i v_i dimensional, has eigenvalue multiplicities according to v, and is supported at the origin.
- The torus T is now larger, but the fixed points will be monomial submodules, which are naturally indexed by multi-partitions. The irrational number ξ now becomes a "slope datum" and Fayers' construction generalizes.
- We could only identify the multi-partitions in the component of the empty partition under certain hypotheses on the slope datum.

- The reason $\hat{\mathfrak{sl}}_n$ was so nice is because the *T*-fixed points were isolated and easy to enumerate.
- When the Dynkin diagram has vertices of valency \geq 3, this fails. For D_4 we worked out some examples and the fixed point varieties always seemed to be rational varieties (usually iterated Grassmannian bundles, or blowups/blowdowns). So we might ask if this is always the case.
- In affine type D, one has combinatorial models for crystals in terms of "Young walls" and it would be interesting if the above framework could recover them.