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1 Motivating problem.

1.1 Boij–Söderberg theory.

Our original motivation comes from trying to construct pure free resolutions over the homogeneous
coordinate ring of a quadric hypersurface. First we review some definitions for polynomial rings.

Let A = K[x1, . . . , xn] be a polynomial ring with the standard grading. Given a finitely
generated graded A-module M , its tor modules are naturally graded, and we set βi,j(M) =
dimTorAi (M,K)j . A module M has a pure free resolution if TorAi (M,K), when nonzero,
is concentrated in a single degree di(M) for all i (sometimes one imposes Cohen–Macaulayness
of M). In this case, d(M) = (d0(M), d1(M), . . . ) is the degree sequence of M . Note that
d0(M) < d1(M) < · · · .

Theorem 1.1 (Eisenbud–Fløystad–Weyman [EFW], Eisenbud–Schreyer [ES]). Given d0 < d1 <
· · · < dr (with r ≤ n), there is a module M with pure free resolution such that di(M) = di.

One can make the same definition for quadric hypersurfaces B = K[x1, . . . , xn]/q(x) where
q(x) is a homogeneous quadric. Note that minimal free resolutions over B are generally infinite in
length, but become periodic of period 2 after n steps.

Our proposed approach is to transform the resolutions of Eisenbud–Fløystad–Weyman. The
basic idea is the following. Write A = Sym(V ), which naturally has an action of G = GL(V ).
The polynomial representations Sλ(V ) of G are parametrized by partitions λ with at most n parts.
We pictorially represent the free module Sλ(V ) ⊗ A as a Young diagram with λi boxes in the ith
column. An example of an EFW complex for n = 4 is
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×

×

←
×

×

×

←

×

×
←

×

×

← 0

The degree sequence is (0, 2, 5, 7, 9). The general pattern: start with any partition λ, add arbitrarily
many boxes to the first column for the next partition. At each additional step, add just enough
boxes to the next column to get an overlap with the boxes you previously added. The differences
in degrees is the number of boxes added each time.

1.2 Koike–Terada’s universal character ring.

The character of Sλ(V ) is the Schur polynomial sλ(x1, . . . , xn), and there is a well-defined way to
take n→∞ and get Schur functions sλ(x1, x2, . . . ). They have the property that sλ(x1, . . . , xn, 0, 0, . . . )
are the Schur polynomials. This n → ∞ case has an involution (as a ring) that doesn’t exist for
n <∞: ω(sλ) = sλ′ where λ′ is the transpose partition.
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Trying to generalize this setting to the character theory of the orthogonal and symplectic groups
is more difficult. Koike–Terada [KT] found a way to do this, but there are some subtleties. We
work with the orthogonal group so that we don’t have to keep repeating both cases in what follows.
Let V be an orthogonal space of dimension 2n or 2n+1. First, polynomial representations S[λ](V )
of O(V ) are parametrized by partitions λ with at most n parts. The n → ∞ character ring of
the orthogonal group is defined as a subring of the ring of symmetric functions, and there is a
restriction map πn to the character ring of O(V ) for all n < ∞. This has the property that
πn(s[λ]) = char(S[λ](V )) if λ has at most n parts. Otherwise, it either gets sent to 0 (like for
GL), or a different irreducible character (with a sign). This universal character ring also has an
involution as a ring: KT(s[λ]) = s[λ′].

Something amazing happens at the n→∞ level. The character for Sym(V ) is
∑

d≥0 sd where d
is a partition with 1 part equal to d. Formally, we can do this: apply ω to this character to get the
character

∑
d≥0 s1d of the exterior algebra. Exterior powers remain irreducible for the orthogonal

group, so upon restriction, the character becomes
∑

d≥0 s[1d]. Now apply KT to get
∑

d≥0 s[d],
which is the character of the coordinate ring of the quadric hypersurface.

So if we carry out these formal manipulations to the EFW complexes (note that their definition
for n→∞ makes sense by our description), we should get a pure free resolution over B. The main
issue lies in making this precise, and moreso, in applying the restriction map πn (which is not so
easy to make sense of on the level of modules!)

1.3 Littlewood varieties.

We’ll give a geometric / homological reinterpretation of what Koike–Terada’s restriction maps
mean.

Let E be a vector space and consider the subvariety of Hom(E, V ) consisting of maps whose
image is a totally isotropic subspace. We call this the Littlewood variety. This is set-theoretically
defined by the quadratic equations S2E ⊗C ⊂ S2E ⊗ S2V ∗ ⊂ S2(E ⊗ V ∗). The coordinate ring of
this scheme is ⊕

λ

SλE ⊗ S[λ]V

where λ ranges over all partitions with at most min(dimE, n) parts. If dimE ≤ n, then in fact,
this scheme is reduced and a complete intersection. The Koszul complex on S2E is then acyclic
and looking at the parts that contain SλE for fixed λ will give a complex Fλ

• of finite-dimensional
vector spaces which only has homology in degree 0. Taking the character of this complex will
express S[λ]V as an alternating sum of SµV for various µ (no square brackets). This gives Koike–
Terada’s expression of the universal character ring of O(V ) as a subring of symmetric functions (at
least for the partitions with at most n parts, and then consider larger n to get all of them).

Now if dimE > n, the Koszul complex will have homology in general. But again considering
the parts that contain SλE for fixed λ, we get a complex Fλ

• of finite-dimensional vector spaces.
The alternating sum will give the expression for πn(s[λ]) (after dividing by the character of SλE).
Koike–Terada’s description of this as being either 0 or ±s[µ] for some µ suggests the following
conjecture.

Conjecture 1.2. Fλ
• has homology in at most 1 degree.

This is really a conjecture about the representation-theoretic structure of the Koszul homology
of the scheme defined by S2E above.

Similar remarks apply to the symplectic group, with S2E replaced by
∧2E.
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2 Koszul homology.

The ideals we considered before are complicated for various reasons, so we started with easier
examples from determinantal ideals to develop techniques for calculation and learn how much of
the calculations can be done explicitly.

2.1 Strongly Cohen–Macaulay ideals.

An ideal I is strongly Cohen–Macaulay if the Koszul homology of a minimal generating set
of I consists of Cohen–Macaulay modules. For determinantal ideals this only happens (except for
trivial cases) for the n × n minors of a generic n × (n + 1) matrix (Hilbert–Burch case) and the
2n × 2n Pfaffians of a generic (2n + 1) × (2n + 1) skew-symmetric matrix (Buchsbaum–Eisenbud
case).

Avramov–Herzog [AH] gave explicit minimal free resolutions for the Koszul homology of the
Hilbert–Burch case. In fact, they have pure resolutions. They are also of geometric origin: they
can be realized as pushforwards of vector bundles over a desingularization of the variety cut out
by the minors, but we don’t know an a priori reason for this other than knowing the minimal free
resolutions first and finding a matching vector bundle.

Jerzy and I constructed minimal free resolutions for the Koszul homology of the Buchsbaum–
Eisenbud case. These modules have pure filtrations (these are studied in [EES]): they have a
filtration such that the quotient modules have pure resolutions. They don’t seem to have a nice
geometric origin.

2.2 Maximal minors.

For order n minors of an n× (n+ k) matrix, we can completely describe the first Koszul homology
group H1 = H1(I). The basic idea is to study the exact sequence

H1 → TorA1 (A/I)⊗A/I → I/I2 → 0.

The kernel δ(I) fits into a short exact sequence

0→ δ(I)→ S2(I)→ I2 → 0,

and ends up being the torsion submodule Htors
1 . Overall, H1 has the following structure: Htors

1 is
supported on the order n − 1 minors and the quotient H1/H

tors
1 has a filtration whose quotients

are of geometric origin. If we iterate the process of taking torsion submodules, we get submodules
supported on the order n− 3, n− 5, n− 7, . . . minors and the quotients are all of geometric origin.

Similar behavior seems to happen for H1 of the Littlewood ideals.
For the case n = 2, we can identify the torsion-free Koszul homology modules (they appear

towards the end). They end up being modules of geometric origin. Note that the top Koszul
homology is the canonical module of A/I.

In all cases above, the representation structure of the Koszul homology can be described explic-
itly.

2.3 Techniques.

For the modules of geometric origin, the desingularization is a vector bundle over a projective
variety (product of Grassmannians). The “geometric technique” of Kempf–Lascoux–Weyman [Wey,
Chapter 5] allows us to calculate the minimal free resolution of these modules.
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To identify the torsion-free Koszul homology, we combine these resolutions with the Buchsbaum–
Eisenbud acyclicity criterion.

To understand more of the intermediate Koszul homology, the theory of cotangent functors may
be useful to produce more short exact sequences analogous to the one above for H1.
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