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Group theory: then and now

Classically, abstract groups did not exist. They arose as the
symmetries of a geometric object.

Aut(Icosahedron) =
Alternating group A5

We will examine the group W (E7) of order 2903040 = 210 · 34 · 5 · 7
The relevant geometry:

• ordered collections of 7 points in projective plane P2

• quartic curves in P2 (genus 3)

• Abelian 3-folds (and their Kummer quotients)
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A classification problem

Start with a finite connected graph Γ. For every node i ∈ Γ,
introduce a generator si and construct a group with relations

s2i = 1

(si sj)
2 = 1 if i and j are not adjacent

(si sj)
3 = 1 if i and j are adjacent

Geometrically, the si are reflections in a Euclidean space.

When is this group W (Γ) finite?
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Dynkin diagrams

An
. . .

Dn
. . .

E6

E7

E8

Theorem (Coxeter)

W (Γ) is finite if and only if Γ appears above.
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E7 in classical algebraic geometry (overview)

Input: the finite group W (E7)

Root system
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//___ Kummer varieties // Coble’s quartic
hypersurfaces
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Göpel variety //____ Göpel polytope

Output: Moduli space for the geometric objects under consideration
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Root system of E7

Each vector v in Euclidean space gives a reflection sv :
sv negates v and fixes the hyperplane orthogonal to it.

Take the following 63 =
(
8
2

)
+
(
7
3

)
vectors in R8:

ei − ej (1 ≤ i < j ≤ 8),

1

2
(e8 +

∑

i∈σ

ei −
∑

j 6∈σ

ej) σ ⊂ {1, 2, . . . , 7}, |σ| = 3

The group generated by all sv is isomorphic to W (E7).

Arthur Cayley found a remarkable bijection between these 63
vectors and the nonzero vectors in the finite vector space F6

2.
(i.e., length 6 0-1 bitstrings under XOR)
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Cayley’s bijection

A. Cayley, J. Reine Angew. Mathe. 87 (1879), 165–169.

000 100 010 110 001 101 011 111

000 236 345 137 467 156 124 257
100 237 67 136 12 157 48 256 35
010 245 127 23 68 134 357 15 47
110 126 13 78 145 356 25 46 234
001 567 146 125 247 45 17 38 26
101 147 58 246 34 16 123 27 367
011 135 347 14 57 28 36 167 456
111 346 24 56 235 37 267 457 18

〈x , y〉 = x1y4 + x2y5 + x3y6 + x4y1 + x5y2 + x6y3, (x , y ∈ F6
2)

Sp6(F2) = {g ∈ GL6(F2) | 〈gx , gy〉 = 〈x , y〉 for all x , y ∈ F6
2}.

The table gives bijection between 63 vectors and F6
2 \ 0 (example:

247 ↔ 001110) that preserves orthogonality.

Theorem (Cayley?)

W (E7) ∼= Z/2× Sp6(F2)
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Cremona transformations

Given 7 ordered points p1, . . . , p7 in general position in P2, do a change
of coordinates so that

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1].

In these coordinates, define σ([x : y : z ]) = [x−1 : y−1 : z−1], so this
gives us a birational involution

(p1, . . . , p7) 7→ (p1, . . . , p4, σ(p5), σ(p6), σ(p7))

on the (GIT) moduli space (P2)7 of 7 ordered points in P2.

For i = 1, . . . , 6, let si be the involution that swaps pi and pi+1. Then
s1, . . . , s6, σ generates the group W (E7) and this gives a birational action
of W (E7) on (P2)7.
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Plane quartic curves

Given 7 points p1, . . . , p7 ∈ P2 in general position, the space of
cubic polynomials vanishing on them is 3-dimensional; fix a basis
q1, q2, q3. This gives a map

q : P2 \ {p1, . . . , p7} → P2

[x : y : z ] 7→ [q1(x , y , z) : q2(x , y , z) : q3(x , y , z)].

Consider the graph of q in P2 × P2. The closure is a del Pezzo
surface X and the projection π2 : X → P2 is of degree 2, i.e., for
almost all x ∈ P2, π−1

2 (x) is 2 points.
The locus where this fails is defined by a quartic polynomial.

The resulting quartic curve (up to change of coordinates) is
independent of the W (E7)-orbit of p1, . . . , p7 under the action
from the last slide. It is a smooth projective curve of genus 3.
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Jacobians and Kummer varieties

For any smooth projective curve C of genus g , the set of all
isomorphism classes of line bundles on C forms a group under
tensor product.

Those of degree 0 also have the structure of a g -dimensional
smooth projective variety J (C ), the Jacobian of C .
Alternatively, using differential forms, we could define J (C ) as a
special quotient of the form Cg/(Zg + τZg )

The Kummer variety K(C ) of C is the quotient of J (C ) by the
involution L 7→ L−1 (the inverse map on line bundles). It naturally
admits an embedding in projective space P2g−1.

For our plane quartic, we have g = 3, and we will consider the
Kummer variety as a subvariety of P7.
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Heisenberg groups

There is a natural subgroup of automorphisms in GL8 acting on
K(C ) ⊂ P7. Let (xijk)i ,j ,k∈Z/2 be the coordinates on P7. This
comes from translation by 2-torsion points in J (C ).

The (finite) Heisenberg group H is generated by the 6 operators

xijk 7→ (−1)ixijk xijk 7→ xi+1,j ,k

xijk 7→ (−1)jxijk xijk 7→ xi ,j+1,k

xijk 7→ (−1)kxijk xijk 7→ xi ,j ,k+1

The Heisenberg group H̃ is obtained by adding all scalar matrices.
The action of H̃ preserves K(C ).

Connecting to W (E7): Let N(H̃) = {g ∈ GL8 | gH̃g−1 = H̃} be
the normalizer. Then N(H̃)/H̃ ∼= Sp6(F2).
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Coble’s quartic hypersurface

Arthur Coble (1878–1966) showed that K(C ) is the singular locus
of a quartic hypersurface Q(C ) in P7, and that this is the unique
such quartic hypersurface with this property.

Explicitly, given C , this means that there is a unique homogeneous
quartic polynomial FC so that K(C ) is the solution set of the
partial derivatives of FC .

By uniqueness, the equation of Q(C ) will be an invariant of the
finite Heisenberg group H. The space of invariant quartic
polynomials is 15-dimensional. So this equation has the following
form:
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Coble’s quartic hypersurface

FC = r · (x4
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+ t001 · (x000x010x100x110 + x001x011x101x111)
+ t010 · (x000x001x100x101 + x010x011x110x111)
+ t011 · (x000x011x100x111 + x001x010x101x110)
+ t100 · (x000x001x010x011 + x100x101x110x111)
+ t101 · (x000x010x101x111 + x001x011x100x110)
+ t110 · (x000x001x110x111 + x010x011x100x101)
+ t111 · (x000x011x101x110 + x001x010x100x111)

Question: what conditions are imposed on the coefficients r , s, t?
Let G be (the closure of) the set of all [r : s100 : · · · : t111] (Göpel variety) such
that the solution set of the partial derivatives of the above polynomial is the
Kummer variety K(C) of some plane quartic curve C .
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Göpel variety

Theorem (Ren–S.–Schrader–Sturmfels)

The 6-dimensional Göpel variety G has degree 175 in P14. The

homogeneous coordinate ring of G is Gorenstein, it has the Hilbert

series
1 + 8z + 36z2 + 85z3 + 36z4 + 8z5 + z6

(1− z)7
,

and its defining prime ideal is minimally generated by 35 cubics
and 35 quartics. The graded Betti table of this ideal in the
polynomial ring Q[r , s001, . . . , t111] in 15 variables equals

0 1 2 3 4 5 6 7 8

total: 1 70 609 1715 2350 1715 609 70 1

0: 1 . . . . . . . .

1: . . . . . . . . .

2: . 35 21 . . . . . .

3: . 35 588 1715 2350 1715 588 35 .

4: . . . . . . 21 35 .

5: . . . . . . . . .

6: . . . . . . . . 1
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Macdonald representations

Recall that Sp6(F2) = N(H̃)/H̃. So the space of coefficients r , s, t
in the equation of the Coble quartic is a linear representation of
Sp6(F2).

Back to the root system:

• There are 135 collections of 7 roots which are pairwise
orthogonal, and W (E7) acts transitively on them.

• Each collection gives a degree 7 polynomial (take the product
of the corresponding linear functionals), and the linear span of
these 135 polynomials is 15-dimensional.

• This gives a linear representation of W (E7), which is a special
instance of a Macdonald representation.

Ignoring the Z/2 factor, this is the same representation as above.
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Macdonald representations

Let c1, . . . , c7 be a fixed set of pairwise orthogonal roots and do a
change of coordinates to them. Then the matching of the two
representations is as follows:
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So we can think of the r , s, t as functions on R7. Complexify this
to C7, and we get a map on P6 (only defined on an open dense set)

P6
99K P14

[c1 : · · · : c7] 7→ [r(c) : s100(c) : · · · : t111(c)]

The closure of the image is the Göpel variety G.
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Vista

What is the “core” or “essence” of an algebraic variety? Here are
two possible answers:

• Tropicalization: The Macdonald parametrization of the Göpel
variety can be modified to construct a 35-dimensional toric
variety. This leads to a “tropical” degeneration and a possible
definition of a tropical moduli space of genus 3 curves with
level structure.

• Arithmetic invariant theory: The Coble and Kummer can be
constructed using degeneracy loci and are related to Vinberg’s

θ-representations. This is interesting to study over number
fields or fields of positive characteristic.
The θ-representation is

∧4
V of GL(V ) where dimV = 8

In both cases, it really helps to have explicit equations!
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