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Finite (simply-laced) Coxeter groups

Start with a finite connected graph Γ. For every node i ∈ Γ,
introduce a generator si and construct a group with relations

s2i = 1

(si sj)
2 = 1 if i and j are not adjacent

(si sj)
3 = 1 if i and j are adjacent

When is this group W (Γ) finite?
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(Simply-laced) Dynkin diagrams

An
. . .

Dn
. . .

E6

E7

E8

These groups can be realized as groups generated by reflections in some

Euclidean space.

4 / 24



Root system of E7

Take the following 63 = 7 +
(
7
2

)
+
(
7
3

)
vectors in R8:

e8 − ei (1 ≤ i ≤ 7),

ei − ej (1 ≤ i < j ≤ 7),

1

2
(e8 +

∑

i∈σ

ei −
∑

j 6∈σ

ej) σ ⊂ {1, 2, . . . , 7}, |σ| = 3

Each vector v (“positive root”) gives a reflection sv : sv negates v
and fixes the hyperplane orthogonal to it.

The group generated by all sv is isomorphic to W (E7). It’s enough
to take any collection of 7 positive roots in a “root basis” (e.g.,
{ei − ei+1 | i = 1, . . . , 6} ∪ {1

2(−1,−1,−1,−1, 1, 1, 1, 1)})

More tangible: W (E7) ∼= Z/2× Sp6(F2) (symplectic group over a
finite field with 2 elements). This is a hint that W (E7) is related
to Siegel modular forms.

5 / 24



Cayley’s bijection

A. Cayley, J. Reine Angew. Mathe. 87 (1879), 165–169.

000 100 010 110 001 101 011 111

000 236 345 137 467 156 124 257
100 237 67 136 12 157 48 256 35
010 245 127 23 68 134 357 15 47
110 126 13 78 145 356 25 46 234
001 567 146 125 247 45 17 38 26
101 147 58 246 34 16 123 27 367
011 135 347 14 57 28 36 167 456
111 346 24 56 235 37 267 457 18

For x , y ∈ F6
2, define

〈x , y〉 = x1y4 + x2y5 + x3y6 + x4y1 + x5y2 + x6y3.

The above table gives bijection between positive roots and F6
2 \ 0

(example: 247 ↔ 001110). Two roots are orthogonal if and only if
the corresponding vectors pair to 0.
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Cremona transformations

Given 7 ordered points p1, . . . , p7 in general position in P2, do a change
of coordinates so that

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1].

In these coordinates, define σ([x : y : z ]) = [x−1 : y−1 : z−1], so this
gives us a birational involution

(p1, . . . , p7) 7→ (p1, . . . , p4, σ(p5), σ(p6), σ(p7))

on the (GIT) moduli space (P2)7 of 7 ordered points in P2.

For i = 1, . . . , 6, let si be the involution that swaps pi and pi+1. Then
s1, . . . , s6, σ generates the group W (E7) and this gives a birational action
of W (E7) on (P2)7.
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Plane quartic curves

Given 7 points p1, . . . , p7 ∈ P2 in general position, the space of
cubic polynomials vanishing on them is 3-dimensional; fix a basis
q1, q2, q3. This gives a map

q : P2 \ {p1, . . . , p7} → P2

[x : y : z ] 7→ [q1(x , y , z) : q2(x , y , z) : q3(x , y , z)].

Consider the graph of q in P2 × P2. The closure is a del Pezzo
surface X and the projection π2 : X → P2 is of degree 2, i.e., for
almost all x ∈ P2, π−1

2 (x) is 2 points. The locus where this fails is
defined by a quartic polynomial.

The resulting quartic curve (up to change of coordinates) is
independent of the W (E7)-orbit of p1, . . . , p7 under the action
from the last slide. It is a smooth projective curve of genus 3.
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Jacobians and Kummer varieties

For any smooth projective curve C of genus g , the set of all
isomorphism classes of line bundles on C forms a group under
tensor product.

Those of degree 0 also have the structure of a g -dimensional
smooth projective variety J (C ), the Jacobian of C .

The Kummer variety K(C ) of C is the quotient of J (C ) by the
involution L 7→ L−1 (the inverse map on line bundles). It naturally
admits an embedding in projective space P2g−1.

For our plane quartic, we have g = 3, and we will consider the
Kummer variety as a subvariety of P7.
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Heisenberg groups

There is a natural subgroup of automorphisms in GL8 acting on
K(C ) ⊂ P7. Let (xijk)i ,j ,k∈Z/2 be the coordinates on P7.

The (finite) Heisenberg group H is generated by the 6 operators

xijk 7→ (−1)ixijk xijk 7→ xi+1,j ,k

xijk 7→ (−1)jxijk xijk 7→ xi ,j+1,k

xijk 7→ (−1)kxijk xijk 7→ xi ,j ,k+1

The Heisenberg group H̃ is obtained by adding all scalar matrices.
The action of H̃ preserves K(C ).

Connecting to W (E7): Let N(H̃) = {g ∈ GL8 | gH̃g−1 = H̃} be
the normalizer. Then N(H̃)/H̃ ∼= Sp6(F2).
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Coble’s quartic hypersurface

Arthur Coble (1878–1966) showed that K(C ) is the singular locus
of a quartic hypersurface Q(C ) in P7, and that this is the unique
such quartic hypersurface with this property.

(It was later shown that Q(C ) is the moduli space of semistable
principal SL2 bundles on C )

By uniqueness, the equation of Q(C ) will be an invariant of the
finite Heisenberg group H. The space of invariant quartic
polynomials is 15-dimensional. So this equation has the following
form:
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Coble’s quartic hypersurface

FC = r · (x4000 + x4001 + x4010 + x4011 + x4100 + x4101 + x4110 + x4111)
+ s001 · (x

2
000x

2
001 + x2010x

2
011 + x2100x

2
101 + x2110x

2
111)

+ s010 · (x
2
000x

2
010 + x2001x

2
011 + x2100x

2
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2
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+ s011 · (x
2
000x

2
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2
110)

+ s100 · (x
2
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2
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111)
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2
000x
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111 + x2011x

2
110)

+ s110 · (x
2
000x
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110 + x2001x
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2
101)

+ s111 · (x
2
000x

2
111 + x2001x

2
110 + x2010x

2
101 + x2011x
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+ t001 · (x000x010x100x110 + x001x011x101x111)
+ t010 · (x000x001x100x101 + x010x011x110x111)
+ t011 · (x000x011x100x111 + x001x010x101x110)
+ t100 · (x000x001x010x011 + x100x101x110x111)
+ t101 · (x000x010x101x111 + x001x011x100x110)
+ t110 · (x000x001x110x111 + x010x011x100x101)
+ t111 · (x000x011x101x110 + x001x010x100x111)

Question: what conditions are imposed on the coefficients r , s, t?
Let G be the (closure) of all possible r , s100, . . . , t111 (Göpel variety).
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Göpel variety

Theorem (Ren–S.–Schrader–Sturmfels)

The 6-dimensional Göpel variety G has degree 175 in P14. The

homogeneous coordinate ring of G is Gorenstein, it has the Hilbert

series
1 + 8z + 36z2 + 85z3 + 36z4 + 8z5 + z6

(1− z)7
,

and its defining prime ideal is minimally generated by 35 cubics
and 35 quartics. The graded Betti table of this ideal in the
polynomial ring Q[r , s001, . . . , t111] in 15 variables equals

0 1 2 3 4 5 6 7 8

total: 1 70 609 1715 2350 1715 609 70 1

0: 1 . . . . . . . .

1: . . . . . . . . .

2: . 35 21 . . . . . .

3: . 35 588 1715 2350 1715 588 35 .

4: . . . . . . 21 35 .

5: . . . . . . . . .

6: . . . . . . . . 1
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Macdonald representations

Recall that Sp6(F2) = N(H̃)/H̃. So the space of coefficients r , s, t
in the equation of the Coble quartic is a linear representation of
Sp6(F2), and hence of W (E7) ∼= Z/2× Sp6(F2).

Back to the root system:

• There are 135 collections of 7 roots which are pairwise
orthogonal, and W (E7) acts transitively on them.

• Each collection gives a degree 7 polynomial (take the product
of the corresponding linear functionals), and the linear span of
these 135 polynomials is 15-dimensional.

• This gives a linear representation of W (E7), which is a special
instance of a Macdonald representation.

Ignoring the Z/2 factor, this is the same representation as above.
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Macdonald representations

Let c1, . . . , c7 be a fixed set of pairwise orthogonal roots and do a
change of coordinates to them. Then the matching of the two
representations is as follows:

r = 4c1c2c3c4c5c6c7

s001 = c1c2c7(c
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So we can think of the r , s, t as functions on R7. Complexify this
to C7, and we get a map on P6 (only defined on an open dense set)

P6
99K P14

[c1 : · · · : c7] 7→ [r(c) : s100(c) : · · · : t111(c)]

The closure of the image is the Göpel variety G.
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Toric variety

The Macdonald perspective offers something new. Rather than
take a basis of the 135 degree 7 polynomials, use all of them to get
a map P6

99K P134.

Also, instead of treating each root as a vector in R7, pretend that
they are all linearly independent. Then the map can be lifted to a
monomial map

P62
99K P134.

The closure of the image T is automatically a toric variety, that
is, it has an action of a torus with a dense orbit. As such, its ideal
of definition is generated by binomials, i.e., differences of
monomials.

In fact, G = T ∩ P14, so the ideal of definition of G (in P134 is
generated by binomials and linear equations (which turn out to be
trinomials).
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Göpel polytope

Associated to a monomial map, we naturally get a polytope by
thinking of each monomial as a 0-1 vector and taking the convex
hull.

In our case, the Göpel polytope P ⊂ R63 can be described as
follows: identify each coordinate of R63 with positive roots
(equivalently, F6

2 \ 0). Each vertex has 7 1’s and 56 0’s; the 1’s
correspond to 7 pairwise orthogonal roots (equivalently, a
Lagrangian subspace).

Question: Is P a normal polytope? i.e., is every lattice point of dP
(dth dilate of P) a sum of d lattice points in P?
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Tropicalization

The Göpel variety G is a compactification of the moduli space of
non-hyperelliptic genus 3 curves (i.e., plane quartic curves) with
level structure.

From our presentation of G as defined by linear trinomials and
cubic and quartic binomials in P134, we expect that its
tropicalization behaves well, especially since G has a
parametrization in terms of a linear map ℓ and a monomial map m:

P6 ℓ
−→ P62 m

99K P134.

This approach requires calculating the “Bergman fan” of the
(matroid of) the root system E7, which is currently out of our
reach.

However, this would give a hint on how to define tropical moduli
spaces with level structure.
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Vinberg representations

Let g be a simple Lie algebra (over C) with an order d
automorphism θ. Then θ gives an eigenspace decomposition

g =
⊕

i∈Z/d

gi .

Vinberg studied the invariant theory of such decompositions.
Namely, the action of Group(g0) (the associated simply-connected
complex Lie group) on g1 behaves like the action of Group(g) on g.

It makes sense to say that an element of g is semisimple
(diagonalizable) or nilpotent, so the same notions carry over to g1.
A Cartan subspace of g1 is a maximal subspace consisting of
pairwise commuting semisimple elements. Vinberg showed that all
of them form one orbit under Group(g0).
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A model for e7

Let g be the simple Lie algebra of type E7. It has an order 2
automorphism θ such that the decomposition is

g = sl8 ⊕

4∧
C8

Cartan subspaces h ⊂
∧4 C8 have dimension 7.

Vinberg’s theory tells us that N(h)/Z (h) ∼= W (E7) where

N(h) = {g ∈ Group(g0) | g · h = h}

Z (h) = {g ∈ Group(g0) | g · x = x for all x ∈ h}.

(Note: if we use Group(g) instead of Group(g0), this is well
known Lie theory, but in general Cartan subspaces in g1 could be
strictly smaller than those in g)
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Cartan subspace of
∧4C8

Let A be an 8-dimensional complex vector space with basis

a1 = x000, a2 = x100, a3 = x010, a4 = x110,

a5 = x001, a6 = x101, a7 = x011, a8 = x111.

The Heisenberg group H acts on
∧4

A and the space of invariants
has the following basis:

h1 = a1 ∧ a2 ∧ a3 ∧ a4 + a5 ∧ a6 ∧ a7 ∧ a8,

h2 = a1 ∧ a2 ∧ a5 ∧ a6 + a3 ∧ a4 ∧ a7 ∧ a8,

h3 = a1 ∧ a3 ∧ a5 ∧ a7 + a2 ∧ a4 ∧ a6 ∧ a8,

h4 = a1 ∧ a4 ∧ a6 ∧ a7 + a2 ∧ a3 ∧ a5 ∧ a8,

h5 = a1 ∧ a3 ∧ a6 ∧ a8 + a2 ∧ a4 ∧ a5 ∧ a7,

h6 = a1 ∧ a4 ∧ a5 ∧ a8 + a2 ∧ a3 ∧ a6 ∧ a7,

h7 = a1 ∧ a2 ∧ a7 ∧ a8 + a3 ∧ a4 ∧ a5 ∧ a6.
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Orbit structure of
∧3C7

Consider G = GL7(C) acting on V =
∧3 C7. There are finitely

many orbits of this action, but we’ll be interested in 3 of them:

• There is an invariant hypersurface of degree 7. It is the
projective dual of (the affine cone over) Gr(3, 7).

• Singular locus of the above hypersurface has codimension 4.

• Singular locus of the above orbit closure has codimension 7.

These can also be defined in a “relative” setting: if E is a rank 7
vector bundle on a space and L is a line bundle, then the total
space of

∧3 E ⊗ L has subvarieties like the above
(we can define them locally where the bundle is trivial, and they
don’t depend on a choice of basis, so they agree on overlaps and
patch together)
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Degeneracy loci

Consider the space P7 with rank 7 vector bundle E = Ω1
P7

(cotangent bundle) and L = OP7(4). Let X1,X4,X7 be the
subvarieties of

∧3 E ⊗ L from the last slide.

The space of sections of
∧3 E ⊗L is naturally isomorphic to

∧4 C8

Given a section s : P7 →
∧3 E ⊗ L, we define 3 “degeneracy” loci

Zi = {x ∈ P7 | s(x) ∈ Xi}.

For a generic s ∈
∧4 C8,

• Z4 = K(C ), Kummer variety for a plane quartic curve C ,

• Z1 = Q(C ) is its Coble quartic hypersurface, and

• Z7 = Sing(K(C )) = 64 points
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Arithmetic considerations

If we take a section of the form s = c1h1 + · · ·+ c7h7, then the
degeneracy locus construction for the Coble quartic agrees with the
parametrization given by the Macdonald representation.

This is mostly satisfactory, but elements like above are semisimple,
so from the point of view of degenerations of Kummer varieties, or
plane quartics, we are missing a lot of stuff (like nilpotent vectors).
The GIT quotients of

∧4 C8 and h are the same, but the stack
quotients are very different!

Also, the fact that every semisimple element has the above form
only works over an algebraically closed field (e.g., a rational matrix
need not be diagonalizable over Q, but could be over C). For
arithmetic questions, it is better to work over Q or even Z, and
then we would prefer

∧4 Z8 over the Cartan subspace.
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