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Kempf collapsing

We're interested in the following situation (over a field K):

V is a vector space
X is a projective variety

Short exact sequence of locally free sheaves over X:
0-S—=V0x—T—=0

Identifying locally free sheaves with vector bundles, we have a
projection map p;: S — V. We say that Y = p;(S) is
collapsing of S.

Many interesting varieties (in linear algebra) can be realized as
Y as above. We are interested in studying the equations and
minimal free resolutions of Y.



The geometric technique

Note that Os is a regular zero section of p57 over Ox v, so we
have the Koszul resolution

i i—1
--~—>/\(p§‘7’*)—>/\(p§‘7’*)—>-~~—>OXXV—>(’)5—>O.

Taking pushforwards, we can construct a minimal complex F, with

i+j
Fi= @ \(T9)) @ O0v(-i—J)

Jj=0
whose homology (concentrated in non-positive degrees) is

H_i(F.) = R'p1,0s = EPH/(X; Sym(S™))
Jj=0



Normality and rational singularities

In particular, if Ripl*(Qg =0 for i > 0, the complex F, would
be a resolution for p;,Os (assuming we could calculate the
cohomology of A% T%).

We are interested in the cases when p; is a desingularization
for Y. Then p1,Os = Oy is the normalization of Oy.

In characteristic 0, the condition Rp;,Os = Oy is called
rational singularities. (In positive characteristic, one also
requires that Rp;,ws = 0 for i > 0, but we don't need this
condition here.)

So the best case is when Y has rational singularities because
then we get a minimal free resolution of Oy.



Examples of rational singularities

e Determinantal varieties: Let V' be the space of n x m
matrices, or n x n (skew-)symmetric matrices. The variety of
matrices with rank < r for a given r has rational singularities.

e Type A nilpotent orbits: Let V be the space of n x n
matrices. Fix a partition A of n. The set of nilpotent matrices
with Jordan normal form with Jordan blocks of sizes specified
by A is a locally closed subvariety. Its closure has rational
singularities.

For Example 1: let V = Hom(E, F) and take X be the
Grassmannian Gr(r, F). It has a tautological rank r subbundle

R C F® Ox. Take S = Hom(E,R). The minimal free resolution
was calculated by Lascoux in char. 0. (Skew-)symmetry is similar.

For Example 2: X is a partial flag variety and S is its cotangent
bundle. The equations were calculated by Weyman in char. 0.



Non-normal varieties

The next most complicated case after rational singularities
would be varieties whose normalization has rational
singularities, i.e., we have R'p;, Oy =0 for i > 0.

The naive thing to do is to consider the short exact sequence
0—>Oy—>5y—>C—>0,

so C is a module supported on the non-normal locus of Y.

If we are lucky, we can calculate a presentation or minimal
free resolution for C, and use this to get equations or minimal
free resolution for Oy .

| don’t know a general framework for doing this, but | will
explain some examples where it can be done. Assume char. 0
from now on for simplicity of statements.
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Nilpotent orbits

e Motivating example: Nilpotent orbits in other Lie types. Take
a (semi)simple Lie group G with Lie algebra g. The nullcone
of g is the vanishing locus of all G-invariant functions on g,
and it has finitely many G-orbits.

e Except some small cases, all non-type A (sl,) Lie algebras
have non-normal orbit closures.

e Not too bad: normalizations are always Gorenstein with
rational singularities



Hyperdeterminantal varieties

Let By,..., B,, A be vector spaces of dimensions di, ..., d,, e. Set
B=B®: -® B, We consider the variety

Y = {¢ € Hom(B, A) | ker contains a rank 1 tensor}

These are hyperdeterminantal varieties, which are the supports
of the tensor complexes (as defined in Berkesch's talk).
We can take X = P(By) x --- x P(B,) and

S =Hom((B® Ox)/Ox(—1,...,—-1),A® Ox).

In general they have complicated singularities, i.e., usually p;,Os
has many nonzero higher direct images. So they could be a good
set of examples to study since there are many parameters to tweak.



Hyperdeterminantal varieties (cont.)

We focuson n=2, di =2, d»b = d and e = d> + 2 so that there are no
higher direct images. In this case, we study maps from the space of 2 x d
matrices to a vector space of dimension d + 2 whose kernel contains a
rank 1 matrix. Alternatively: pencils of d x (d + 2) matrices containing a
matrix not of full rank.

The normalization has the presentation

det B ® S971B; | @0y (—d—1) = Oy® | det By @ S92B; | @0y (—d)
®det B, ® By ® det B>

Since everything is equivariant with respect to

G = GL(A) x GL(Bi1) x GL(B:) and the relations are irreducible, we get
the presentation matrix for C by removing Oy from the generators.

We can get the equations for Y in terms of representations of G.



Equations of hyperdeterminantal varieties

Sete —1=5%"7,(di —1).

e In the case ¢’ = e, the hyperdeterminantal variety is an
irreducible hypersurface, cut out by a hyperdeterminant.

e In general, the hyperdeterminantal variety is defined
(set-theoretically) by the hyperdeterminants of the
dy X -+ x d, x €-subtensors of B ® A. It has codimension
e— 2 ily(di = 1).

e For 2 x 2 x 4, the 2 x 2 x 3 hyperminors form a
10-dimensional space of sextics. To get the radical ideal, add
the determinant of B ® A.
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Equations of hyperdeterminantal varieties (cont.)

e For 2 x 3 x5, the 2 x 3 x 4 hyperminors form a
35-dimensional space of degree 12 equations. Flatten this
tensor to 6 x 5. Generically, such a matrix has corank 1, and
the kernel element is given by the 5 X 5 minors. The 2 x 2
minors of this kernel element give (non-minimal) degree 10
equations that must vanish. For the radical ideal, we need 10
degree 9 equations

4
(det A*) @ /\ A" @ (det By)* @ By ® (det By)?,

and their meaning is not clear to me.

e For general 2 x d x (d + 2), the hyperminors have degree
d(d 4 1). One needs additional degree 2d + 3 equations for
the radical ideal. | can identify the representation, but their
meaning is not clear to me.
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Kalman varieties

e Let L C U be vector spaces of dimensions d,n. For s < d, set
Ks.an = {¢ € End(U) | ¢ preserves an s-dim. subspace of L},

which is the Kalman variety introduced by
Ottaviani—Sturmfels.

e To desingularize, we take V = End(U), X = Gr(s, L) and
S={(p, W) | (W) c W}

is the subbundle of V ® Ox generated by £nd(R) and
Hom(U/R, U). Then ¢ is an isomorphism outside of
Kst1,d,n-

o If 9 € Koy1.4,0 has distinct eigenvalues, then p; () is s + 1
points. By Zariski's connectedness theorem, we see that
Ks41,d,n is the non-normal locus of K 4 5.
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Kalman varieties (cont.)

Theorem (Sam)

We have exact sequences
0 — Ok, = Okia, = Ok (=1) = 0.

0— O/Cl,z,n — 6}C1,3,n — 5’C2,3,n(_1) — OK3,3,n(_3) — 0.

Note that Kq.4.5 is a linear subvariety. Using the above, we get the
equations for K1 4., for d = 2,3 (and free resolution when d = 2).

Conjecture

Set Bs = 51C5,d,n(—5(5 —1)/2). There is a long exact sequence

0=+014dgn—=B—=+B—:---—=B4—=0

We can check this when n = d + 1.
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Type Gy nilpotent orbits (1 < 2)

e The normalization of any nilpotent orbit in any semisimple Lie
algebra has rational singularities.

e The Lie algebra g» has 5 nilpotent orbit closures which form a
chain O(12) > O(10) > O(8) > 0O(6) > {0}. All orbit
closures are normal except O(8).

e O(6) is the affine cone over a homogeneous space and has
coordinate ring P >g Vkw,- The cokernel (50(8)/(’)0(8) is
D >0 Vi +kw, Where Vi, 4k, is in degree k + 1, so the
module structure is by Cartan multiplication.

e We can calculate the minimal free resolutions of all orbit
closures. The ideal of O(8) is generated by 1 quadric (Killing
form), 7 cubics (V. ), and 77 quartics (Vau,).

e These equations can be obtained from the intersection
0(3,3,2) N gz via the embedding g> C so7
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