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Cohomology classes

Let X be a smooth variety and Z ⊂ X a k-dimensional subvariety.
This gives a class [Z ] ∈ H∗(X ) in the homology of X . How can we
find formulas for [Z ]?

Naive approach: Since X is smooth, we might try to resolve OZ by
vector bundles on X . This gives a formula in K-theory, and the
Chern character

ch : K(X )⊗Q → H∗(X ;Q)

has the property that ch([OZ ]) = [Z ] + α where [Z ] ∈ Hk(X ;Q)
and α lives in lower degrees.
Probably too naive though!



Determinantal varieties

Given n,m, let ϕ = (ϕi ,j) be an n ×m matrix of indeterminants.
For r ≤ min(n,m), let Ir ⊂ Z[ϕi ,j ] be the ideal defined by the r × r

minors of ϕ.
We can specialize the values of ϕi ,j to the entries in some other
ring R , we’ll call the resulting ideal determinantal ideals.

Another interpretation: let E ,F be free Z-modules of ranks m, n.
Then ϕ : E → F is a “generic” map, and we ask when its rank is
less than r .

Global version: E and F are vector bundles over X and ϕ : E → F

is a map of bundles. Then the subvariety
Zr = {x ∈ X | rankϕ|x < r} is locally defined by the r × r minors
of ϕ.



Syzygies of determinantal ideals

We might try the naive approach with Zr .
First we consider Ir ⊂ K [ϕi ,j ] where K is a field. Does the minimal
free resolution of Ir depend on the characteristic of K? Assume
that m ≥ n without loss of generality.

• (Eagon–Northcott) If r = n, then characteristic of K is
irrelevant.

• Ditto if r = n − 1 (Akin–Buchsbaum–Weyman) or r = n − 2
(Hashimoto).

• (Hashimoto) If r ≤ n − 3 and n ≥ 5, then characteristic is
important (in particular, things differ in characteristic 3).

This suggests that the naive approach might not be such a good
idea.



Filtrations on K-theory

Since X is smooth, the K-theory of vector bundles is the same as
the K-theory of coherent sheaves. We can put a filtration on K(X )
by setting FkK(X ) to be the subgroup generated by coherent
sheaves whose support has dimension at most k . Let

grk K(X ) = FkK(X )/Fk−1K(X ).

There is a map
grk K(X ) → Hk(X )

that takes [OY ] to [Y ] for any subvariety Y of dimension k .



Filtration on K-theory (continued)

Why is this useful? If M is a coherent sheaf supported on Y , then
the image of [M] in grk K(X ) is simply (rankM)[OY ] (for Y
irreducible).

Slightly less naive approach: rather than try to resolve [OZ ] by
vector bundles (since the resolution might be horrible), we might
try to find a coherent sheaf supported Z which has an easier
(possibly even characteristic-free) resolution by vector bundles.

Does this exist for the determinantal varieties? Yes! (under
appropriate genericity conditions.)



Schur functors

Let G = GLn(Q). The irreducible polynomial representations of G
are indexed by partitions λ = (λ1 ≥ λ2 ≥ · · ·λn ≥ 0) with at most
n parts.

One way to construct these is as the image of a certain map

λ′

1
∧

⊗ · · · ⊗

λ′

r
∧

→ Symλ1 ⊗ · · · ⊗ Symλn .

where λ′ is the dual partition of λ, i.e., λ′

i = {j | λj ≥ i}.

This construction is functorial and makes sense over any base ring
(not just Q), i.e., we can plug in any R-module V into the above
map, the image is denoted SλV and is a representation of GL(V )
when V is (locally) free.



Schur complexes

In fact, the previous definition can be “superfied”. More precisely,
we have Z/2-graded versions of our favorite multilinear functors
such as

∧

and Sym, so we can construct a Z/2-graded module
SλV when V = V0 ⊕ V1 has a Z/2-grading.
The case of interest is a 2-term complex ϕ : V1 → V0. In this case,
SλV inherits a differential from ϕ, and becomes a chain complex.

Let’s specialize to the case rankV1 = m and rankV0 = n,
λ = (m− r , . . . ,m− r) (n− r times) and ϕ is “generic”. [This will
mean depth Ir+1(ϕ) ≥ (m − r)(n − r).] In this case, Sλϕ is acyclic
and its cokernel M is a rank 1 module supported on the ideal
defined by Ir+1(ϕ).

This generalizes to the situation of vector bundles V1 = E and
V0 = F , and implies a formula for [Zr ] in terms of the Chern roots
of E and F (Thom–Porteous formula).



Schur polynomials

To a partition λ, we can associate the Schur polynomial

sλ(x) = sλ(x1, . . . , xn) as follows. A semistandard Young

tableau is a way of filling in the diagram of λ with the numbers
1, . . . , n such that the numbers are weakly increasing along rows
and along columns, with no repeats in any column. Such a filling
gives a monomial in the xi , and sλ is the sum over all such SSYT.

λ = (5, 4, 2),

1 1 2 2 4
2 2 3 4
4 5 7→ x21x

4
2x3x

3
4x5

Connection to SλV : pick a basis e1, . . . , en for V . Then SλV has
a basis {v} such that diag(x1, . . . , xn) acts on v as xm1

1 · · · xmn
n for

some nonnegative integers m1, . . . ,mn. Summing these expressions
over all such v gives sλ(x1, . . . , xn).



Double Schur polynomials

We also have double Schur polynomials sλ(x/y): instead of just
filling in with the numbers 1, . . . , n, also allow −1, . . . ,−m. The
weakly increasing rule applies, along with no repeats of positive
numbers in a column, and no repeats of negative numbers in any
row. Such a filling gives a monomial in x and y , and the sum over
all such fillings gives sλ(x/y).

This polynomial plays the same role for the Schur complex Sλ(ϕ)
as sλ(x) does for the Schur functor. [We should really talk about
the general linear super(group/algebra) though.]

The Thom–Porteous formula says that the dual class of [Zr ] in
cohomology is obtained by substituting the Chern roots of E and
F for y and x , respectively, into sλ(x/y).

Whew!



From Schur to Schubert

Go back to a map of bundles ϕ : E → F . Now assume that E has
a filtration E1 ⊂ · · · ⊂ En = E and F has a quotient filtration
F = Fm ։ Fm−1 ։ · · · ։ F1 where Ei ,Fj are vector bundles of
ranks i , j , and each Ei+1/Ei is a line bundle.

Given a permutation w ∈ ΣN , define
rw (p, q) = #{i ≤ p | w(i) ≤ q} and define

Dw (ϕ) = {x ∈ X | rank(ϕ|x : Ep|x → Fq|x) ≤ rw (p, q)}.

Fulton gave a formula for [Dw (ϕ)] in terms of the Chern roots of
E and F . Instead of double Schur polynomials, one gets double
Schubert polynomials.



Double Schubert polynomials

Given w ∈ ΣN , its Rothe diagram is

D(w) = {(i ,w(j)) | i < j ,w(i) > w(j)}

(using matrix indexing notation). A balanced labeling is a filling
of D(w) with nonzero integers such that:

• No entries in the ith row are bigger than i , and no entries in
the jth column are smaller than −j .

• No repeats of positive integers in any column, and no repeats
of negative numbers in any row.

• Balanced condition: given (i , j), its hook is

H(i , j) = {(i ′, j) ∈ D(w) | i ′ ≥ i} ∪ {(i , j ′) ∈ D(w) | j ′ ≥ j}.

For any (i , j), if the entries in H(i , j) are rearranged in
increasing order starting from top right going to bottom left,
then the (i , j) entry must stay the same.



Double Schubert polynomials (continued)

1 1′ 3′

2 1
3 7→ x21x2x3y1y3

Each balanced labeling gives a monomial in x and y , and the sum
over all such is the double Schubert polynomial Sw (x , y).
Schubert polynomials obtained by setting yi = 0.

Is there an analogue of Schubert functors and Schubert complexes?
Schubert functors introduced by Kraśkiewicz and Pragacz,
definition is functorial and similar to Schur functors. So can be
made into a Z/2-graded version.

The Schubert functors have an action of the group of invertible
upper triangular matrices, and the Schubert polynomials give the
character of this representation. Similar story for Schubert
complexes.



Matrix Schubert varieties

Back to the situation of ϕ : E → F where both E and F have
filtrations, but now assume they are free Z-modules, and ϕ consists
of indeterminants. This induces ordered bases on E and F .
w ∈ ΣN is a permutation as before. Let Iw (ϕ) be the ideal
generated by the minors of size rw (p, q) + 1 inside of the upper left
p × q submatrix of ϕ for all (p, q). Let Xw be the variety defined
by Iw (ϕ).

Theorem (S.)

The Schubert complex is acyclic and resolves a rank 1 module

supported on Xw .

If we specialize the variables of ϕ, then acyclicity of the Schubert
complex is controlled by the depth of Iw (ϕ) in general.



Remarks

Note that we introduced Schur complexes for an arbitrary partition
λ, but we only used the case when λ is a rectangular shape.

It is known that Schur polynomials sλ(x1, . . . , xn) coincide with
Schubert polynomials for a certain choice of w , which depends on
both λ and n. However, the double Schur polynomial is a special
case of a double Schubert polynomial exactly when λ is a
rectangular shape.

So the appearance of Schur complexes may just be a coincidence.



Symmetric determinantal varieties

Now suppose that F ∼= E ∗ and our matrix ϕ : E → E ∗ is
symmetric, i.e., ϕ∗ = ϕ, but other than the symmetry condition,
the entries of ϕ are indeterminants. If we let
λ = ρn−r = (n − r + 1, n − r , . . . , 2, 1) (staircase partition) then
Sρn−r

(ϕ) is acyclic and its cokernel is a module (whose rank is a
power of 2) supported in the variety defined by the r × r minors of
ϕ.

This situation recovers a cohomology class formula due to Harris
and Tu, and there is a similar situation for skew-symmetric
matrices.



Lie superalgebras

Sρn−r
is not an instance of a Schubert complex. However, sρn−r

does coincide with the Schur Q-functions (at least up to a power
of 2).

The Schur complexes have an action of the general linear
superalgebra. In analogy, the Schubert complexes have an action of
a Lie superalgebra consisting of certain upper triangular matrices.

The Schur Q-functions (again up to powers of 2) are the
characters of certain polynomial representations of the queer
superalgebra. This is the Lie superalgebra of matrices of the form
[

A B

B A

]

. This suggests that one should really have a multilinear

construction for these complexes that take into account the
symmetries of the queer superalgebra.

I don’t know how to do this though...



Pushforward constructions

The Schur complex has a “geometric” origin. Recall, we have
ϕ : E → F with dimE = n and dimF = m. Then the variety

S = {(ϕ,R) ∈ Hom(E ,F )× Grass(n − r ,E ) | ϕ(R) = 0}

desingularizes Zr via the first projection π1 : S → Hom(E ,F ).
Let M = π∗

2O(m − r) where O(1) is the line bundle giving the
Plücker embedding of Grass(n − r ,E ).

(π1)∗M is the module supported on Zr that the Schur complex
resolves. The Schur complex itself can be constructed from a
Koszul complex on Hom(E ,F )× Grass(n − r ,E ) that resolves M.

This picture should generalize to the Schubert complexes, but I
haven’t figured out how to do it.


