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These are notes for a talk given at Manjul Bhargava’s seminar on “Arithmetic invariant theory”
at Princeton University on November 21, 2011.

The purpose of this talk is to explain how one can transform knowledge about certain free
resolutions and vector bundles into descriptions for certain moduli spaces of Abelian varieties. The
main tools are the Eagon–Northcott generic perfection theorem, the Borel–Weil–Bott theorem, and
Kawamata’s birational characterization of Abelian varieties. We end the talk with a few examples.

1 Free resolutions.

A lot of the foundational results in this section can be found in [BV, Appendix].

Definition 1.1. Let R be a commutative ring and M be a finitely generated R-module. A complex
of R-modules

F• : · · · → Fi
di−→ Fi−1 → · · · → F0

is a projective resolution of M if
• Each Fi is a finitely generated projective R-module,
• Hi(F•) = 0 for i > 0 and H0(F•) = M ,

The projective dimension of M (denoted pdimM) is the minimum length of any projective
resolution of M . Free resolutions are defined by using free modules.

Example 1.2. Let K be a commutative ring and let E be a free K-module of rank n and write
A = Sym(E). We think of A as a graded ring via degree of polynomials. Then Ai is the degree
i part of A, and A(d) denotes A with a grading shift: A(d)i = Ad+i. We define a complex F• by
setting Fi =

∧iE ⊗A(−i). The differential is defined by

i∧
E ⊗A(−i) →

i−1∧
E ⊗A(−i+ 1)

e1 ∧ · · · ∧ ei ⊗ f 7→
i∑

j=1

(−1)je1 ∧ · · · êj · · · ∧ ei ⊗ ejf.

This is the Koszul complex. It is a resolution of K = A/m, and is functorial with respect to
E.

Definition 1.3. Let R be a Noetherian ring and let M be a finitely generated R-module. A
sequence (r1, . . . , rn) of elements in R is a regular sequence on M if

• r1 is not a zerodivisor or unit on M , and
• ri is not a zerodivisor or unit on M/(r1, . . . , ri−1)M for all i > 1.

For an ideal I ⊂ R, The depth of M (with respect to I) is the length of the longest regular
sequence for M which is contained in I. It is denoted by depthI M . If R is local with maximal
ideal m, we denote depthM = depthmM . For an ideal I ⊂ R, the grade of I is the length of the
longest regular sequence in I for R. M is perfect of grade g if g = pdimM = gradeAnnM . (In
general, one has pdimM ≥ gradeAnnM .)

Over a local Noetherian ring R, a finitely generated module M is Cohen–Macaulay if it is 0 or
depthM = dimM := dim(R/Ann(M)). For a general Noetherian ring R, M is Cohen–Macaulay
if the localization Mp is Cohen–Macaulay over (Rp, p) for all prime ideals p of R. A Noetherian
ring is Cohen–Macaulay if it is a Cohen–Macaulay module over itself.
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Theorem 1.4. Let R be a Noetherian Cohen–Macaulay ring.
1. For every ideal I ⊂ R, we have grade I = codim I = dimR− dim(R/I).
2. The polynomial ring R[x] is Cohen–Macaulay.
3. If an R-module M is perfect, then it is Cohen–Macaulay.

(The distinction between perfect and Cohen–Macaulay for a module over a Cohen–Macaulay
ring is the property having finite projective dimension.)

Theorem 1.5 (Auslander–Buchsbaum). Suppose R is a local Noetherian ring and that M is a
finitely generated R-module with pdimM < ∞. Then

depthM + pdimM = depthR.

Furthermore, the above is true for R = K[x1, . . . , xn] with K a field and graded modules M .

Theorem 1.6. Let R be a Noetherian local ring and M be a perfect R-module of grade g with
minimal free resolution F•. Then Hom(F•, R) is a minimal free resolution of the perfect module
M∨ = ExtgR(M,R), and (M∨)∨ ∼= M .

Definition 1.7. If M = R/I, for an ideal I, is perfect, then we write ωR/I = M∨ and call it the
canonical module of R/I. If R/I is perfect and ωR/I

∼= R/I (ignoring grading if it is present),
then we say that I is a Gorenstein ideal. This is equivalent to the last term in the minimal free
resolution of R/I having rank 1.

Theorem 1.8 (Eagon–Northcott generic perfection). Let R be a Noetherian ring and M a perfect
R-module of grade g, and let F• be an R-linear free resolution of M of length g. Let S be a
Noetherian R-algebra. If M ⊗R S 6= 0 and grade(M ⊗R S) ≥ g, then M ⊗R S is perfect of grade g
and F• ⊗R S is an S-linear free resolution of M ⊗R S. If M ⊗R S = 0, then F• ⊗R S is exact.

See [BV, Theorem 3.5].

Remark 1.9. In particular, if K is Cohen–Macaulay and R = A, then we can replace grade in
the above theorem with codimension. It is often much easier to calculate codimension. We will
use it as follows: Let K be a field or Z. We construct graded minimal free resolutions of Cohen–
Macaulay modules M over A = K[x1, . . . , xn]. Then we specialize the variables xi to elements of
a Cohen–Macaulay K-algebra S in such a way that the codimension of M is preserved. Then the
resulting specialized complex is still a resolution.

Example 1.10. Let K be any commutative ring, and let E be a free K-module of rank 2n + 1.
Write detE =

∧2n+1E. Set A = Sym(
∧2E), which we can interpret as the coordinate ring of the

space of all skew-symmetric matrices of size 2n+1 with entries in K if we fix a basis e1, . . . , e2n+1 of
E. Let Φ be the generic skew-symmetric matrix of size 2n+1 whose (i, j) entry is xij = ei∧ej ∈ A1.
We construct a complex

F• : 0 → (detE)⊗2 ⊗A(−2n− 1) → (detE)⊗ E ⊗A(−n− 1) →
2n∧

E ⊗A(−n) → A

For j = 1, . . . , 2n+ 1, let e′j = e1 ∧ · · · êj · · · ∧ e2n+1. We also define Pf(̂) to be the Pfaffian of the
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submatrix of Φ obtained by deleting row and column j. Then we have

2n∧
E ⊗A(−n)

d1−→ A

e′j ⊗ f 7→ Pf(̂)f

(detE)⊗ E ⊗A(−n− 1)
d2−→

2n∧
E ⊗A(−n)

(e1 ∧ · · · ∧ e2n+1)⊗ ej ⊗ f 7→

2n+1∑

i=1

(−1)ie′i ⊗ xijf

(detE)⊗2 ⊗A(−2n− 1)
d3−→ (detE)⊗ E ⊗A(−n− 1)

(e1 ∧ · · · ∧ e2n+1)
2 ⊗ f 7→ (e1 ∧ · · · ∧ e2n+1)⊗

2n+1∑

j=1

(−1)j Pf(̂)ejf

This is the Buchsbaum–Eisenbud complex. It is a resolution of A/I where I is the ideal
generated by the 2n× 2n Pfaffians of Φ, and it is functorial with respect to E. Furthermore, A/I
is a free K-module, and I is a Gorenstein ideal of codimension 3. We can identify d2 with the map
Φ. Buchsbaum and Eisenbud showed that given a codimension 3 Gorenstein ideal I, there is an n
such that its free resolution is a specialization of the above complex. See [BE] for more details.

2 Vector bundles.

2.1 Schur functors.

For the material in this section, see [Wey, Chapter 2]. What we call Sλ is denoted by Lλ′ there.

Definition 2.1. A partition λ is a decreasing sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λn.
We represent this as a Young diagram by drawing λi boxes left-justified in the ith row, starting
from top to bottom. The dual partition λ′ is obtained by letting λ′

i be the number of boxes in the
ith column of λ. Given a box b = (i, j) ∈ λ, its content is c(b) = j − i and its hook length is
h(b) = λi − i+ λ′

j − j + 1.

Example 2.2. Let λ = (4, 3, 1). Then λ′ = (3, 2, 2, 1). The contents and hook lengths are given
as follows:

c :
0 1 2 3
−1 0 1
−2

h :
6 4 3 1
4 2 1
1

Definition 2.3. Let R be a commutative ring and E a free R-module. Let λ be a partition with
n parts and write m = λ1. We use SnE to denote the nth symmetric power of E. The Schur

functor Sλ(E) is the image of the map

λ′

1∧
E ⊗ · · · ⊗

λ′

m∧
E

∆
−→ E⊗λ′

1 ⊗ · · · ⊗ E⊗λ′

m = E⊗λ1 ⊗ · · · ⊗ E⊗λn
µ
−→ Sλ1E ⊗ · · · ⊗ SλnE,

where the maps are defined as follows. First, ∆ is the product of the comultiplication maps∧iE → E⊗i given by e1∧ · · · ∧ ei 7→
∑

w∈Si
sgn(w)ew(1)⊗· · ·⊗ ew(i). The equals sign is interpreted

as follows: pure tensors in E⊗λ′

1 ⊗ · · · ⊗E⊗λ′

m can be interpreted as filling the Young diagram of λ
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with vectors along the columns, which can be thought of as pure tensors in E⊗λ1 ⊗ · · · ⊗ E⊗λn by
reading via rows. Finally, µ is the multiplication map E⊗i → SiE given by e1⊗ · · ·⊗ ei 7→ e1 · · · ei.

In particular, note that SλE = 0 if the number of parts of λ exceeds rankE.

Example 2.4. Take λ = (3, 2). Then the map is given by

(e1 ∧ e2)⊗ (e3 ∧ e4)⊗ e5 7→
e1 e3 e5
e2 e4

−
e2 e3 e5
e1 e4

−
e1 e4 e5
e2 e3

+
e2 e4 e5
e1 e3

7→ (e1e3e5 ⊗ e2e4)− (e2e3e5 ⊗ e1e4)− (e1e4e5 ⊗ e2e3) + (e2e4e5 ⊗ e1e3)

Theorem 2.5. The Schur functor SλE is a free R-module. If rankE = n, then

rankSλE =
∏

b∈λ

n+ c(b)

h(b)
.

The construction of SλE is functorial with respect to E. This has two consequences: SλE is
naturally a representation of GL(E), and we can also construct SλE when E is a vector bundle.

2.2 Borel–Weil theorem.

For the material in this section, see [Wey, Chapter 4.1].
(For simplicity, we work over a field, though everything in this section works over an arbitrary

base scheme.)
Let V be an n-dimensional vector space and let Gr(k, V ) denote the Grassmannian of k-

dimensional subspaces of V . There is a tautological exact sequence of vector bundles

0 → R → V ×Gr(k, V ) → Q → 0

where R = {(v,W ) | v ∈ W} has rank k and Q has rank n− k.

Remark 2.6. When k = 1, then Gr(k, V ) ∼= Pn−1 and R = O(−1).

These bundles carry an action of GL(V ) compatible with the action on Gr(k, V ).

Theorem 2.7 (Borel–Weil). Let λ be a partition with at most n parts. There is a GL(V )-
equivariant isomorphism

H0(Gr(k, V );S(λ1,...,λk)(R
∗)⊗ S(λk+1,...,λn)(Q

∗)) = Sλ(V
∗).

2.3 Degeneracy loci.

First, we point out that the notions of Cohen–Macaulay generalize to varieties and coherent sheaves.
Also, the generic perfection theorem still makes sense.

We’ll be interested in the following situation. Let X be a variety (usually a Grassmannian)
with a vector bundle E over X. We’ll construct certain subvarieties Y in the total space of E for
which we can construct (locally) free resolutions that fit the hypotheses of the generic perfection
theorem (i.e., length of the resolution is the grade of the ideal sheaf of Y ).

Given a section v ∈ H0(X; E), we are interested in the subvarieties v(X)∩Y , and in particular,
when the grade of the ideal sheaf does not change. Then this gives a locally free resolution of
v(X) ∩ Y ⊂ X, and this will allow us to read off properties of this variety.

In particular, we can try to use this resolution to calculate the canonical sheaf of v(X)∩Y and
the cohomology of its structure sheaf. Here is why we want to be able to do this:
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Theorem 2.8. Let X be a g-dimensional geometrically connected projective nonsingular variety
over a field of characteristic 0. If ωX

∼= OX and dimH1(X;OX) = g, then X is a torsor over an
Abelian variety (namely, its Albanese variety).

This can be deduced from [Kaw, Corollary 2].

Remark 2.9. This theorem already fails for g = 2. In particular, it is valid if the characteristic
is different from 2 or 3, but in these small characteristics, there are new exotic examples, known
as quasi-hyperelliptic surfaces which come from the Bombieri–Mumford classification of surfaces
(the quasi-hyperelliptic surfaces have the property that their Picard varieties are non-reduced), see
[BM, p.25, Table].

3 Examples.

For now, we work over the complex numbers C. A number of things can be extended to mostly
arbitrary fields, but we omit this for simplicity.

We will start with a representation U of a group G (which will be a product of general linear
groups in this talk) and want to find an interpretation for the orbits of G on U (or at least the
well-behaved ones). The plan is to use Borel–Weil to identify U with sections of a vector bundle U
over a Grassmannian (more generally, we should consider partial flag varieties, but most of what
we understand happens over Grassmannians). Then we try to find interesting subvarieties in the
fibers of U and glue them together to get a subvariety in the total space of U and apply the previous
sections to get interesting varieties in the Grassmannian, which we might hope classify our orbits.
In all cases, the fibers can be interpreted as a smaller representation U ′ for a smaller group G′ such
that G′ acts on U ′ with finitely many orbits, and the subvarieties are the closures of these orbits.

3.1 C5 ⊗
∧2

C5

(This case is in fact easy to handle more directly, but we want to illustrate our approach.)
Let U = A⊗

∧2B with dimA = dimB = 5 and G = GL(A)×GL(B). For our Grassmannian,
we take P(A∗) = Gr(1, A∗), and for our bundle, we take U = R∗ ⊗

∧2B ∼= O(−1) ⊗
∧2B. This

almost fits into the setting of the Buchsbaum–Eisenbud complex if we take E = B∗, but there is a
twist by the line bundle O(1) here. We can think of this line bundle as fulfilling the role of grading
shift. We get the following locally free resolution over OU = Sym(

∧2B∗ ⊗OU (1)):

0 → (detB∗)⊗2 ⊗OU (−5) → (detB∗)⊗B∗ ⊗OU (−3) →

4∧
B∗ ⊗OU (−2) → OU → OC → 0

where C has codimension 3 in the total space of U . Its singular locus is the zero section of U , and
has codimension 10 in U .

Since U is Cohen–Macaulay (since it is smooth), we can identify the notions of grade and
codimension for ideals. Now pick v ∈ U . This gives a section of U , and if it is generic, then
C = C ∩ v(P(A∗)) will have codimension 3 in v(P(A∗)) ∼= P(A∗). If v is very generic, then C will
also be smooth.

By generic perfection, we get a locally free resolution for OC :

0 → (detB∗)⊗2 ⊗OP(A∗)(−5) → (detB∗)⊗B∗ ⊗OP(A∗)(−3)

→
4∧
B∗ ⊗OP(A∗)(−2) → OP(A∗) → OC → 0.
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This gives enough information to see that ωC = OC , dimH0(C;OC) = 1, and that dimH1(C;OC) =
1. In particular, C is a curve of genus 1. We can also deduce that C is projectively normal and
embedded by a complete linear series.

Conversely, given a curve C of genus 1 embedded in P(A∗) by a complete linear series, its
homogeneous ideal I is generated by 5 quadrics and is a codimension 3 Gorenstein ideal. The
Buchsbaum–Eisenbud classification of such ideals says that we can recover a section v ∈ U which
gives rise to C. Hence we have an isomorphism

Ugen//G
∼=
−→ {degree 5 smooth curves of genus 1 in P4}/ ∼=

where the superscript gen just refers to the open subset of U giving rise to smooth curves, and on
the right we quotient by some appropriate notion of isomorphism.

What if we change our choice of Grassmannian? One possibility is to choose Gr(3, A∗) and
take U = R∗ ⊗

∧2B. The fibers of this bundle are of the form C3 ⊗
∧2

C5. Under the action
of GL(3)×GL(5), it has an invariant degree 15 hypersurface. The method above would produce
a degree 5 hypersurface in Gr(3, A∗). One can check that this is the Chow form of the curve C
above.

Another possibility is to take Gr(4, A∗) = P(A) and U = Q⊗
∧2B =

∧3Q∗ ⊗R∗ ⊗ (detA)⊗∧2B. The fibers look like C4 ⊗
∧2

C5. Under the action of GL(4) ×GL(5), it has an invariant
degree 40 hypersurface. The method above produces a degree 10 hypersurface in P(A). One can
check that this is the projective dual of the curve C.

3.2
∧3

C9

Let U =
∧3 V with dimV = 9 and G = GL(V ). For our Grassmannian, we take P(V ∗) =

Gr(1, V ∗). For our bundle, we take U =
∧2Q∗ ⊗R∗. Since rankQ∗ = 8 is even, the Buchsbaum–

Eisenbud complex doesn’t apply.
The fibers of U are 8 × 8 skew-symmetric matrices, so the Pfaffian loci give candidates for

interesting subvarieties. The 8 × 8 Pfaffian itself has an easy resolution over OU = Sym(
∧2Q ⊗

O(−1)):
0 → (detQ)⊗OU (−4) → OU → OY → 0.

We can simplify this by noting that detQ = O(1). Its singular locus is locally cut out by the ideal
of 6× 6 Pfaffians. This also has a known resolution given by the Józefiak–Pragacz complex (for an
arbitrary commutative ring the functors need to be defined differently, see [Pra] for details). If we
apply it here, we get

0 → OU (−9) →
2∧
Q⊗OU (−7) → S2,16Q⊗OU (−7)

→ (S2Q⊗OU (−4))⊕ ((S2Q)∗ ⊗OU (−5))

→ S2,16Q⊗OU (−4) →

6∧
Q⊗OU (−3) → OU → OX → 0.

The variety X has codimension 6 and fits into the hypothesis of the generic perfection theorem. Its
singular locus is cut out by the 4× 4 Pfaffians and has codimension 21.

If we choose a sufficiently generic vector v ∈ U , then Y = Y ∩ v(P(V ∗)) and X = X ∩ v(P(V ∗))
will have codimension 1 and 6 in P(V ∗), respectively, the singular locus of Y is X, and X is smooth.
We note that Y is a cubic hypersurface.
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To figure out X, we first note that the resolution shows that ωX = OX . We can use Bott’s
theorem (which assumes characteristic 0) to show that dimH0(X;OX) = 1 and dimH1(X;OX) =
2, and hence we see that X is an Abelian surface (modulo choosing a point to be its origin).
Furthermore, we can show that the induced polarization on X is indecomposable and of type (3, 3).

This situation is classical and was studied by Coble (Y is known as the Coble cubic, see [Bea]).
We would like to say that all Abelian surfaces embedded in P8 via a (3, 3) polarization come from
this construction. We have not written down a complete proof for this yet.

3.3
∧4

C8

It’s not always Pfaffians.
We take U =

∧4 V with dimV = 8 and G = GL(V ). We take our Grassmannian to be P(V ∗)
and U =

∧3Q∗ ⊗R∗. Note that the fibers of U are
∧3

C7. This is not a familiar situation, but it
is true that GL(7) acts on it with finitely many orbits. So we first figure out how to construct the
free resolutions for these orbit closures (subject of a different talk).

Then for a sufficiently generic v ∈ U , our construction will yield the Kummer quotient X (with
(2, 2, 2)-polarization) of a non-hyperelliptic Abelian 3-fold inside of a quartic hypersurface Y , all
embedded in P(V ∗). This situation was also studied by Coble, and Y is the Coble quartic.

There are many other representations and interesting examples (including orthogonal and sym-
plectic groups) that we have studied (mostly coming from [Vin]), but I hope this gives a taste of
the kinds of information that a systematic use of free resolutions can provide.
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