Young tableaux and Betti tables

Steven Sam

Massachusetts Institute of Technology

October 30, 2009

Our story begins with...

- K is a field.
- V is a vector space over K of dimension n.
- $A=\operatorname{Sym}(V) \cong K\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring with the standard grading.
- All modules over A will be finitely generated and graded.

Conjecture (Boij-Söderberg).

The graded Betti table of any Cohen-Macaulay module of codimension c can be written as a positive linear combination of the graded Betti tables of modules of codimension c which have a pure resolution.

Theorem (Eisenbud-Schreyer)

 It's true, plus much more!
Definitions

- Given a free resolution $\cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ of M, it's graded if the differentials have degree 0 . It's minimal if there are no constants in the matrices.
- Every module has a graded minimal free resolution, and it is unique up to isomorphism.
- If $A(-d)$ is a free A-module generated in degree d, we can write

$$
F_{i}=\bigoplus_{j} A(-j)^{\oplus \beta_{i, j}}
$$

for some numbers $\beta_{i, j}$. These numbers are the graded Betti numbers of M, and $\beta(M)=\left(\beta_{i, j}\right)$ is its graded Betti table.

- M has a pure resolution if for each i, there is at most one value of j for which $\beta_{i, j} \neq 0$. Call these values d_{i}. Then $d=\left(d_{0}, d_{1}, \ldots\right)$ is the degree sequence of M.

Properties of free resolutions

Theorem (Hilbert syzygy theorem)

Every module has a graded free resolution of length at most n.

Theorem (Auslander-Buchsbaum formula)

For M Cohen-Macaulay, the length of its minimal free resolution is equal to the codimension of M, i.e., $n-\operatorname{dim} A / \operatorname{Ann}(M)$.

Theorem (Herzog-Kühl)

If M is Cohen-Macaulay and has a pure resolution of degree sequence $d=\left(d_{0}, d_{1}, \ldots, d_{c}\right)$, then there exists r such that

$$
\beta(M)_{i, d_{i}}=r \prod_{\substack{k \neq i \\ k \neq 0}} \frac{d_{k}-d_{0}}{d_{k}-d_{i}}
$$

Pure resolutions

Conjecture (Boij-Söderberg).

The graded Betti table of any Cohen-Macaulay module of codimension c can be written as a positive linear combination of the graded Betti tables of modules of codimension c which have a pure resolution.

- First question posed by Boij and Söderberg: Given $d=\left(d_{0}, d_{1}, \ldots, d_{c}\right)$, does there exist a module whose degree sequence is d ? Necessary restriction: need $d_{0}<d_{1}<\cdots<d_{c}$.
- In characteristic 0 , the first construction was given by Eisenbud, Fløystad, and Weyman using the representation theory of the general linear group (Schur functors).
- Eisenbud and Schreyer later showed that they exist for any characteristic.

Schur functors

Now we assume the characteristic of K is 0 .

- Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, let $\mathbf{S}_{\lambda}(V)$ denote the Schur functor corresponding to λ. It is an irreducible representation of $\mathbf{G L}(V)$ of highest weight λ.
- Our polynomial ring is a natural representation of $\mathbf{G L}(V)$:

$$
A=\operatorname{Sym}(V)=\bigoplus_{k \geq 0} \operatorname{Sym}^{k} V=\bigoplus_{k \geq 0} \mathbf{S}_{(k, 0, \ldots, 0)}(V)
$$

- Given $\mathbf{S}_{\lambda}(V)$, we can turn it into an A-module by tensoring with A. Pieri's rule:

$$
A \otimes_{K} \mathbf{S}_{\lambda}(V)=\bigoplus \mathbf{S}_{\mu}(V)
$$

where μ ranges over all partitions obtained from λ by adding a vertical (!?) strip. [Convention: I draw λ the way Englishmen would draw the transpose λ^{\prime}.]

Pieri maps

Since the Pieri decomposition of $A \otimes \mathbf{S}_{\lambda}(V)$ is multiplicity free, we get inclusions $\varphi: \mathbf{S}_{\mu}(V) \rightarrow A \otimes \mathbf{S}_{\lambda}(V)$ which are unique up to a choice of constant. So we can extend this to a degree 0 map of A-modules:

$$
\begin{aligned}
& A(-|\mu / \lambda|) \otimes \mathbf{S}_{\mu}(V) \\
& p(x) \otimes v \otimes \mathbf{S}_{\lambda}(V) \\
& \mapsto p(x) \otimes \varphi(v) .
\end{aligned}
$$

Call these Pieri maps.
Modules with pure resolutions can be constructed as the cokernels of certain Pieri maps.

Pieri resolutions

Abbreviate $A \otimes \mathbf{S}_{\lambda}(V)$ by the Young diagram of λ. For $n=4$:

Degree sequence: $(0,2,5,7,9)$

Theorem (Eisenbud-Fløystad-Weyman)

If μ is obtained from λ by adding boxes in the first column, then the cokernel of $A(-|\mu / \lambda|) \otimes \mathbf{S}_{\mu}(V) \rightarrow A \otimes \mathbf{S}_{\lambda}(V)$ has a pure resolution.

We can guess what the resolution looks like as in the example above. Since the differentials are equivariant, the fact that it is a complex is immediate. The exactness is more delicate.

Pieri resolutions

- Proof of Eisenbud, Fløystad, and Weyman uses the Borel-Weil-Bott theorem.
- Simpler proof given by S.-Weyman using explicit matrix presentations of Pieri maps due to Olver.
- Given the theorem of Eisenbud, Fløystad, and Weyman, the next natural thing to consider is the cokernel of $A(-|\mu / \lambda|) \otimes \mathbf{S}_{\mu}(V) \rightarrow A \otimes \mathbf{S}_{\lambda}(V)$ without requiring that μ is obtained from λ by adding boxes in the first column.

Pieri resolutions

The terms are described by "critical boxes" (marked by \times):

The admissible subsets are unions of intervals of critical boxes whose leftmost point is next to a framed box. The ith term in the resolution is a direct sum of ways to add admissible subsets of size $i-1$.

Pieri resolutions

- Proof by S.-Weyman uses the "horseshoe lemma" for building a resolution of an extension of two modules.
- Now what about cokernels of

$$
\bigoplus_{j} A\left(-\left|\mu^{j} / \lambda\right|\right) \otimes \mathbf{S}_{\mu^{j}}(V) \rightarrow A \otimes \mathbf{S}_{\lambda}(V) ?
$$

Can also construct resolutions using mapping cones, but they are not necessarily minimal. This construction gives minimal resolutions in the case that each of the column indices of the μ^{j} / λ are pairwise disjoint. It would be interesting to describe the terms of the minimal resolution explicitly.

Equivariant Betti diagrams

Does an equivariant version of the Boij-Söderberg decompositions hold?

- Betti tables would contain characters instead of ranks of modules.

- Instead of rational numbers, we would use ratios of characters.
- What is the right analogue of a positive rational number? One guess: ratios of Schur positive symmetric functions.

Subtraction-free Schur positivity

- Set $S \mathbf{Q}$ to be the field of fractions of the symmetric functions $\mathbf{Q}\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{G}_{n}}$.
- $S \mathbf{Q}_{\geq 0}$ are those elements which can be written as ratios of Schur positive symmetric functions.
These are all subtraction-free expressions starting from the Schur polynomials.
- They're not well-behaved:

$$
s_{4}-s_{3,1}=\frac{s_{3}\left(s_{4}-s_{3,1}\right)}{s_{3}}=\frac{s_{7}}{s_{3}} \quad(n=2)
$$

Subtraction-free Schur positivity

Proposition

If A is any monomial positive symmetric function, then there exists a Schur polynomial s_{λ} such that $A s_{\lambda}$ is Schur positive.

Proof.

Follows from determinantal expression for Schur polynomials.
This is far from a necessary condition:

$$
\begin{aligned}
\frac{s_{5}^{3}\left(s_{4}-s_{3,1}-s_{2,2}\right)}{s_{5}^{3}} & =\frac{1}{s_{5}^{3}}\left(s_{19}+2 s_{18,1}+2 s_{17,2}+2 s_{16,3}+3 s_{15,4}\right. \\
& \left.+4 s_{14,5}+2 s_{13,6}+s_{11,8}+2 s_{10,9}\right) \quad(n=2)
\end{aligned}
$$

Can we characterize subtraction-free Schur positive symmetric functions? Describe it as a cone?

Conjectures

Let M be a finite length equivariant A-module with equivariant minimal free resolution $\mathbf{F}_{\text {. }}$.

Strong version: Does there exist degree sequences d^{1}, \ldots, d^{r} and representations W, W_{1}, \ldots, W_{r} such that $W \otimes \mathbf{F}_{\mathbf{\bullet}}$ has a filtration of subcomplexes whose quotients are isomorphic to $W_{i} \otimes \mathbf{F}\left(d^{i}\right)_{\bullet}$, where the $\mathbf{F}\left(d^{i}\right)$. is a pure resolution of degree d^{i} and the isomorphism is of equivariant complexes?

Weak version: Is it true that $\beta(M)$ can be written as a subtraction-free Schur positive linear combination of equivariant pure Betti tables?

Partial results

Theorem (S.-Weyman)

If $\beta(M)$ is an equivariant Betti table of a finite length module M which is pure in all degrees except possibly one, then $\beta(M)$ is a Schur positive linear combination of pure Betti tables.

Corollary

Every pure equivariant Betti table of a finite length module is a Schur positive scalar multiple of a Betti table arising from the EFW construction.

Eisenbud-Schreyer proof of Boij-Söderberg conjectures

Since the Betti diagrams form a cone, it's enough to find equations for their facets.
For a cochain complex of free A-modules
$E: 0 \rightarrow E^{1} \rightarrow E^{2} \rightarrow \cdots \rightarrow E^{n} \rightarrow 0$, set

$$
\begin{aligned}
\gamma_{i, d}(E) & =\operatorname{dim}_{K} \mathrm{H}^{i}(E)_{d}, \\
\langle\beta, \gamma\rangle_{c, \tau}= & \sum_{\substack{i, j, k \\
j \leq i \\
j<\tau \\
\text { or } j \leq i-2}}(-1)^{i-j} \beta_{i, k} \gamma_{j,-k}+\sum_{\substack{k, \varepsilon \\
0 \leq \varepsilon \leq 1 \\
k \leq c+\varepsilon}}(-1)^{\varepsilon} \beta_{\tau+\varepsilon, k} \gamma_{\tau,-k}
\end{aligned}
$$

When β is the Betti table of a minimal free resolution, this number is nonnegative (!)
The facet-defining equations come from complexes which are linear monads for supernatural vector bundles on projective space.

Supernatural vector bundles

A vector bundle \mathcal{E} on projective space is natural [Hartshorne-Hirschowitz] if $\mathcal{E}(d)$ has at most one nonzero cohomology group for all $d \in \mathbf{Z}$.
A natural vector bundle is supernatural [Eisenbud-Schreyer] if the roots of the Hilbert polynomial $P_{\mathcal{E}}(d)=\chi(\mathcal{E}(d))$ are distinct integers.

We can do all of the above setup in the equivariant case too! One problem: finding facet-defining equations isn't enough because we don't have "Schur positive convex geometry."

Boij-Söderberg algorithm

Eisenbud and Schreyer also proved that the cone of Betti tables has a natural triangulation.
Boij and Söderberg guessed its existence, and gave a simple algorithm for writing down the decomposition of a Betti table:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & \cdot \\
\cdot & 1 & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & 1
\end{array}\right]-\frac{1}{6}\left[\begin{array}{ccc}
5 & 6 & \cdot \\
\cdot & \cdot & 1
\end{array}\right]=\left[\begin{array}{ccc}
7 / 6 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & 5 / 6
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
7 / 6 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & 5 / 6
\end{array}\right]-\frac{1}{3}\left[\begin{array}{ccc}
2 & \cdot & \cdot \\
\cdot & 3 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & 1 / 2
\end{array}\right]}
\end{aligned}
$$

Equivariant Boij-Söderberg algorithm

The obvious analogue of this algorithm fails in the equivariant setting:

Using the second table, we cannot pick a multiple to clear an entry of the first table and leave something subtraction-free Schur positive.

Equivariant Boij-Söderberg algorithm

Some cases do work:

Does it work for Pieri resolutions in general?

What else?

- Multilinear constructions of pure resolutions in positive characteristic?
- Multigraded resolutions?
- Cone of cohomology tables for other varieties? Two natural generalizations of projective space: toric varieties and homogeneous spaces.

References

- David Eisenbud, Gunnar Fløystad, and Jerzy Weyman, The existence of pure free resolutions
- David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of vector bundles
- Steven V Sam and Jerzy Weyman, Pieri resolutions for classical groups

Pieri maps can be calculated using the package PieriMaps in Macaulay 2.

