Young tableaux and Betti tables

Steven Sam

Massachusetts Institute of Technology

October 30, 2009



Our story begins with...

K is a field.

e V is a vector space over K of dimension n.

A =Sym(V) = K[xi,...,xp] is the polynomial ring with the
standard grading.

All modules over A will be finitely generated and graded.

Conjecture (Boij—Soderberg).

The graded Betti table of any Cohen—Macaulay module of
codimension ¢ can be written as a positive linear combination of
the graded Betti tables of modules of codimension ¢ which have a
pure resolution.

Theorem (Eisenbud-Schreyer)

It's true, plus much more!



Definitions

Given a free resolution --- — F; = Fp - M — 0 of M, it’s
graded if the differentials have degree 0. It's minimal if there
are no constants in the matrices.

Every module has a graded minimal free resolution, and it is
unique up to isomorphism.

If A(—d) is a free A-module generated in degree d, we can
write
Fi = P A(=j)*%
J

for some numbers f3; ;. These numbers are the graded Betti
numbers of M, and 3(M) = (8;;) is its graded Betti table.

M has a pure resolution if for each /, there is at most one
value of j for which 3;; # 0. Call these values d;. Then
d = (do, d1,...) is the degree sequence of M.



Properties of free resolutions

Theorem (Hilbert syzygy theorem)

Every module has a graded free resolution of length at most n.

Theorem (Auslander—Buchsbaum formula)

For M Cohen—Macaulay, the length of its minimal free resolution is
equal to the codimension of M, i.e., n —dim A/ Ann(M).

Theorem (Herzog—Kiihl)

If M is Cohen—Macaulay and has a pure resolution of degree

sequence d = (do, d1, ..., dc), then there exists r such that
H dy — do
ki dk -

kA0



Pure resolutions

Conjecture (Boij—Séderberg).

The graded Betti table of any Cohen—Macaulay module of
codimension ¢ can be written as a positive linear combination of
the graded Betti tables of modules of codimension ¢ which have a
pure resolution.

e First question posed by Boij and Soderberg: Given
d = (do, d1,...,dc), does there exist a module whose degree
sequence is d? Necessary restriction: need
dy<di <---<de.

e In characteristic 0, the first construction was given by
Eisenbud, Flgystad, and Weyman using the representation
theory of the general linear group (Schur functors).

e Eisenbud and Schreyer later showed that they exist for any
characteristic.



Schur functors

Now we assume the characteristic of K is 0.

e Given a partition A = (A1,...,Ap), let Sx(V) denote the
Schur functor corresponding to A. It is an irreducible
representation of GL(V') of highest weight .

e Our polynomial ring is a natural representation of GL(V):

A= Sym(V) = @ Sym*V = P Sx,...0) (V).
k>0 k>0

e Given S)(V), we can turn it into an A-module by tensoring
with A. Pieri’s rule:

Ak SA(V @s

where 1 ranges over all partitions obtained from A by adding
a vertical (1?) strip. [Convention: | draw \ the way
Englishmen would draw the transpose \'.]



Pieri maps

Since the Pieri decomposition of A® Sy(V) is multiplicity free, we
get inclusions ¢: S,(V) = A® Sx(V) which are unique up to a
choice of constant. So we can extend this to a degree 0 map of
A-modules:

A(—|u/A) @ Su(V) = AR SA(V)
p(x) @ v = p(x) @ p(v).
Call these Pieri maps.

Modules with pure resolutions can be constructed as the cokernels
of certain Pieri maps.



Pieri resolutions

Abbreviate A ® S,(V) by the Young diagram of A. For n = 4:

[ | x|
[] ] X x|
D — — HE «~0

I [x]x]

Theorem (Eisenbud—Flgystad—Weyman)

If u is obtained from \ by adding boxes in the first column, then
the cokernel of A(—|u/A|) ® S,(V) = A® S\(V) has a pure
resolution.

We can guess what the resolution looks like as in the example
above. Since the differentials are equivariant, the fact that it is a
complex is immediate. The exactness is more delicate.



Pieri resolutions

e Proof of Eisenbud, Flgystad, and Weyman uses the
Borel-Weil-Bott theorem.

e Simpler proof given by S.-\Weyman using explicit matrix
presentations of Pieri maps due to Olver.

e Given the theorem of Eisenbud, Flgystad, and Weyman, the
next natural thing to consider is the cokernel of
A(—|p/A) ® Su(V) = A® S\(V) without requiring that p is
obtained from A by adding boxes in the first column.



Pieri resolutions

‘ | | x] x]
L Ll X X x| x| x| x|
T X X X X
T o e P S P ¢ e ~0
™ X X X
- [e] [ex] [e] [e1x] L] [eIx]

The terms are described by “critical boxes” (marked by x):

[ o] =
[o]x

x

[o]% x

The admissible subsets are unions of intervals of critical boxes
whose leftmost point is next to a framed box. The ith term in the
resolution is a direct sum of ways to add admissible subsets of size
i—1.



Pieri resolutions

e Proof by S.-Weyman uses the “horseshoe lemma" for building
a resolution of an extension of two modules.

e Now what about cokernels of

@A(—W/)\D ®S,(V) = A®S)\(V)?

J

Can also construct resolutions using mapping cones, but they
are not necessarily minimal. This construction gives minimal

resolutions in the case that each of the column indices of the
1 /X are pairwise disjoint. It would be interesting to describe
the terms of the minimal resolution explicitly.



Equivariant Betti diagrams

Does an equivariant version of the Boij—Soéderberg decompositions
hold?

e Betti tables would contain characters instead of ranks of

modules.
FE-(e] |
| [l

e [nstead of rational numbers, we would use ratios of characters.

e What is the right analogue of a positive rational number?
One guess: ratios of Schur positive symmetric functions.



Subtraction-free Schur positivity

e Set SQ to be the field of fractions of the symmetric functions
Q[X17 R ,Xn]G".

e 5Q> are those elements which can be written as ratios of
Schur positive symmetric functions.
These are all subtraction-free expressions starting from the
Schur polynomials.

e They're not well-behaved:

s3(sa —s3,1) _ s (

=2
S3 S3 n )

S4 — 831 =



Subtraction-free Schur positivity

Proposition

If A is any monomial positive symmetric function, then there exists
a Schur polynomial sy such that As) is Schur positive.

Proof.

Follows from determinantal expression for Schur polynomials. [

This is far from a necessary condition:

3
5(54—531—522) 1
5 k 9
3 = ;(519 + 25181 + 25172 + 25163 + 35154
5 5

+4s145 + 25136 + S11,8 + 25100) (N =12)

Can we characterize subtraction-free Schur positive symmetric
functions? Describe it as a cone?



Conjectures

Let M be a finite length equivariant A-module with equivariant
minimal free resolution F,.

Strong version: Does there exist degree sequences d*,...,d" and
representations W, W4y, ..., W, such that W ® F, has a filtration
of subcomplexes whose quotients are isomorphic to W; ® F(d'),,
where the F(d'), is a pure resolution of degree d’ and the
isomorphism is of equivariant complexes?

Weak version: Is it true that 3(M) can be written as a
subtraction-free Schur positive linear combination of equivariant
pure Betti tables?



Partial results

Theorem (S.-~Weyman)

If B(M) is an equivariant Betti table of a finite length module M
which is pure in all degrees except possibly one, then (M) is a
Schur positive linear combination of pure Betti tables.

Corollary

Every pure equivariant Betti table of a finite length module is a
Schur positive scalar multiple of a Betti table arising from the
EFW construction.



Eisenbud—Schreyer proof of Boij—Soderberg conjectures

Since the Betti diagrams form a cone, it's enough to find equations
for their facets.

For a cochain complex of free A-modules
E:0—E' - E?— ... 5 E" =0, set

Yi.d(E) = dimg H'(E)q,
<57’Y>C,T = Z ( ) JBI kY, —k + Z /BT—"-E kV1,—k

ij,k k,e
j<i 0§8§1
j<torj<i—2 k<c+e

When 5 is the Betti table of a minimal free resolution, this number
is nonnegative (!)

The facet-defining equations come from complexes which are linear
monads for supernatural vector bundles on projective space.



Supernatural vector bundles

A vector bundle £ on projective space is natural
[Hartshorne—Hirschowitz] if £(d) has at most one nonzero
cohomology group for all d € Z.

A natural vector bundle is supernatural [Eisenbud—Schreyer| if the
roots of the Hilbert polynomial Pg(d) = x(€(d)) are distinct
integers.

We can do all of the above setup in the equivariant case too!
One problem: finding facet-defining equations isn't enough
because we don't have “Schur positive convex geometry.”



Boij—Soderberg algorithm

Eisenbud and Schreyer also proved that the cone of Betti tables
has a natural triangulation.

Boij and Soderberg guessed its existence, and gave a simple
algorithm for writing down the decomposition of a Betti table:

2 1 . 5 6 . 7/6
1. S o1
I _ 1
6
1 1 5/6

7/6 2 . 1/2

1 .3

1 —% = 1



Equivariant Boij—Soderberg algorithm

The obvious analogue of this algorithm fails in the equivariant
setting:

g H
FHe R | H o E e

HF

Using the second table, we cannot pick a multiple to clear an entry
of the first table and leave something subtraction-free Schur
positive.



Equivariant Boij—Soderberg algorithm

Some cases do work:

| el BT || BlE
H® = ® B®
@@ﬂﬁj AN
Bﬂ@BHHJ@EH - e 5 s A e
|8 o) e[S

Does it work for Pieri resolutions in general?



What else?

e Multilinear constructions of pure resolutions in positive
characteristic?

e Multigraded resolutions?

e Cone of cohomology tables for other varieties? Two natural
generalizations of projective space: toric varieties and
homogeneous spaces.
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