Math 184, Spring 2023, Midterm 2 practice problems
Here are some practice problems for Midterm 2. They are a mixture of problems taken from Fall 2019 and Winter 2022, so this list is not balanced around how long it takes to finish since it doesn't come from a single exam.
(1) Let α, β, γ be constants and d a positive integer. Compute the coefficient of x^{3} in the following formal power series:

$$
\frac{(\alpha+\beta x)^{d}}{(1-\gamma x)^{4}}
$$

(2) For a positive integer n, let a_{n} be the number of partitions of n using only the parts 1 and 3. As usual, set $a_{0}=1$.
(a) Show that $a_{n}=a_{n-3}+1$ for all $n \geq 3$.
(b) Find a homogeneous linear recurrence relation for a_{n} (make sure to state for which n it is valid) and give enough initial values so that your answer determines the whole sequence.
(3) How many partitions of [8] are there such that every block has the same size?
(4) What is the coefficient of $x^{3} y^{2} z^{5}$ in $(x+y+z)^{10}$?
(5) Express $\sum_{n \geq 0}\left(n-4^{n}\right) x^{n}$ as a rational function.
(6) What is the coefficient of x^{16} in $\sqrt{1+5 x^{2}}$ when expanded as a formal power series?
(7) Let a_{n} be the sequence defined by the recurrence

$$
a_{n}=6 a_{n-1}-9 a_{n-2} \quad \text { for } n \geq 2, \quad a_{0}=a_{1}=1
$$

Find a closed formula for a_{n}.
(8) Let $n \geq 3$ be an integer. Evaluate $\sum_{\substack{0 \leq i \leq n \\ i \text { even }}} i(i-1)\binom{n}{i}$.

