Math 188, Spring 2021
Homework 7
Due: May 21, 2021 11:59PM via Gradescope (late penalty waived for this assignment)
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
Reminder: The outline for the final project is also due on May 21 via Gradescope. It must be typed, or it will receive 0 credit.
http://www.math.ucsd.edu/~ssam/188/project.html
(1) Let a_{n} be the number of functions $f:[n] \rightarrow[n]$ such that $f \circ f=f$. Find a simple formula for the EGF $A(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$. Hint at end.
(2) Let $G(x)$ be the unique formal power series such that $\left[x^{n}\right] G(x)^{n+1}=1$ for all $n \geq 0$. Find a simple formula for $G(x)$. Hint at end.
(3) Given $G(x)$ with $G(0) \neq 0$, define its logarithmic derivative to be $\mathcal{L}(G)=\frac{D G(x)}{G(x)}$. By HW2 \#3, we have $\mathcal{L}\left(e^{F(x)}\right)=D F(x)$ and $\mathcal{L}\left(G_{1}(x) G_{2}(x)\right)=\mathcal{L}\left(G_{1}(x)\right)+\mathcal{L}\left(G_{2}(x)\right)$. (a) Let a_{n} be the number of involutions of size n and let $A(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$. From Example 5.11, we have $A(x)=\exp \left(x+\frac{x^{2}}{2}\right)$. Apply \mathcal{L} to prove for all $n \geq 0$ that (interpret $a_{n}=0$ if $n<0$)

$$
a_{n+1}=a_{n}+n a_{n-1} .
$$

(b) Let a_{n} be the number of simple labeled graphs with n vertices where every vertex has degree 2. Use the same method as in (a), but using the formula in Example 5.12 , to prove for all $n \geq 0$ that (interpret $a_{n}=0$ if $n<0$):

$$
a_{n+1}=n a_{n}+\binom{n}{2} a_{n-2} .
$$

(4) Let $n \geq 1$. Given a labeled tree T with vertices $1, \ldots, n$, define $x(T)=x_{1}^{d_{1}} \cdots x_{n}^{d_{n}}$ where d_{i} is the degree of vertex i, i.e., the number of edges containing i. Define $\mathbf{C}_{n}=\sum_{T} x(T)$ where the sum is over all labeled trees T with vertices $1, \ldots, n$. Also define

$$
\mathbf{D}_{n}=x_{1} \cdots x_{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{n-2}
$$

(a) Given a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$, let $p^{(i)}$ be the result of plugging in $x_{i}=0$ into the partial derivative $\frac{\partial p}{\partial x_{i}}$, i.e., the coefficient of x_{i} if you think of the other variables as constants. If $n \geq 2$, show that

$$
\begin{aligned}
& \mathbf{C}_{n}^{(n)}=\left(x_{1}+x_{2}+\cdots+x_{n-1}\right) \mathbf{C}_{n-1} \\
& \mathbf{D}_{n}^{(n)}=\left(x_{1}+x_{2}+\cdots+x_{n-1}\right) \mathbf{D}_{n-1}
\end{aligned}
$$

(b) Assuming that $\mathbf{C}_{n-1}=\mathbf{D}_{n-1}$ show that $\mathbf{C}_{n}^{(i)}=\mathbf{D}_{n}^{(i)}$ for all $i=1, \ldots, n$.
(c) Conclude that $\mathbf{C}_{n}=\mathbf{D}_{n}$ for all $n \geq 1$.
[You may use without proof that every tree with at least 2 vertices has a vertex of degree 1.]

1. Optional problems (DOn't turn in)

(5) $F(x)=\sum_{n \geq 0} f_{n} x^{n}$ is a formal power series that satisfies the following identity:

$$
F(x)=\exp \left(\frac{x}{2}(F(x)+1)\right)
$$

Find a formula for f_{n}.
(6) Let n be a positive integer. Given a group of n people, we want to divide them into nonempty committees and choose a leader for each committee, and also choose one of the committees to be in charge of all of the others. Let h_{n} be the number of ways to do this and set $h_{0}=1$. Give a simple expression for the exponential generating function $H(x)=\sum_{n \geq 0} \frac{h_{n}}{n!} x^{n}$.
(7) Let h_{n} be the number of bijections $f:[n] \rightarrow[n]$ with the property that $f \circ f \circ f$ is the identity function. Give a simple expression for the exponential generating function $H(x)=\sum_{n \geq 0} \frac{h_{n}}{n!} x^{n}$.
(8) Let a_{n} be the number of set partitions of $[n]$ such that every block has at least 2 elements. By convention, $a_{0}=1$. Give a simple expression for the exponential generating function

$$
A(x)=\sum_{n \geq 0} \frac{a_{n}}{n!} x^{n} .
$$

2. Hints

(1): It may be helpful to think of functions $f:[n] \rightarrow[n]$ as directed graphs on $[n]$ where an edge $i \rightarrow j$ means $f(i)=j$.
(2): Consider the equation $A(x)=x G(A(x))$; from the proof of Lagrange inversion, $G(x) B(x)=x$ where B is the compositional inverse of A.

