Math 188, Spring 2021 Homework 5 Due: May 7, 2021 11:59PM via Gradescope

Solutions must be **clearly** presented. Incoherent or unclear solutions will lose points.

- (1) Prove the following identities about the number of integer partitions:
 - (a) For $n \ge k$, $p_k(n) = p_{\le k}(n-k)$.
- (b) For n > 0, the number of partitions of n not using 1 as a part is p(n) p(n-1).
- (2) (a) Use the following q-analogue of Pascal's identity

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = q^k \begin{bmatrix} n-1 \\ k \end{bmatrix}_q + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_q \qquad (\text{for } n \ge k > 0)$$

to show that if d is a non-negative integer, then

$$\sum_{n \ge 0} {n+d \brack n}_q x^n = \prod_{i=0}^d (1-q^i x)^{-1} = \frac{1}{(1-x)(1-qx)\cdots(1-q^d x)}.$$

- (b) Give a direct explanation for why the coefficient of x^n of the right side is the sum $\sum_{\lambda} q^{|\lambda|}$ over all integer partitions λ fitting in the $n \times d$ rectangle.
- (3) Let T be a subset of the positive integers such that if $x \in T$, then $2x \in T$. Define $2T = \{2x \mid x \in T\}$ and let $S = T \setminus 2T$.

Let $p_S(n)$ be the number of partitions of n using only parts from S, and let $p_{T,\text{dist}}(n)$ be the number of partitions of n using only parts from T and not repeating any parts. Prove that $p_S(n) = p_{T,\text{dist}}(n)$ for all n.

(4) Use the notation from HW2 #3. Show that for $k \ge 0$, we have

$$\sum_{n \ge 0} \frac{c(n,k)}{n!} x^n = \frac{(-\mathbf{L}(1-x))^k}{k!}.$$

- (5) Let V, W be \mathbf{F}_q -vector spaces with dim V = n and dim W = m.
 - (a) How many linear maps $V \to W$ are there?
 - (b) Suppose $n \ge m$. How many surjective linear maps $V \to W$ are there?
 - (c) Pick $k \leq \min(m, n)$. How many rank k linear maps $V \to W$ are there?

1. Optional problems (don't turn in)

- (6) Let a_n be the number of ways to give n dollars using bills of size 1, 2, 5, 10, 20, 50 such that at most three 20 dollar bills can be used. Give a simple formula for the generating function $A(x) = \sum_{n>0} a_n x^n$.
- (7) This one is challenging (I can't see a solution that is simple, but it doesn't require anything outside of this class). Prove:

$$\sum_{n \ge 1} x^{n(n-1)/2} = \prod_{n \ge 1} \frac{1 - x^{2n}}{1 - x^{2n-1}}.$$

(8) Let λ be an integer partition of n whose Durfee square has size $r \times r$. Call λ almost self-conjugate if $\lambda_i = \lambda_i^T + 1$ for i = 1, ..., r. Let q(n) be the number of almost

self-conjugate partitions of n (q(0) = 0). Find a formula for

$$\sum_{n \ge 0} q(n) x^n$$

in the same spirit as Example 3.27.

- (9) Consider a group of n+1 people of different ages and consider the following scenario:
 - The youngest person becomes a zombie, and all others start as non-zombies.
 - Each zombie may turn any non-zombie older than them into a zombie.
 - Once a zombie, a person stays a zombie.
 - Everyone eventually becomes a zombie.

At the end, we get a set of pairs $\{(i, j) \mid i \text{ infected } j\}$. Call this a **zombie set** of size n + 1. For $n, k \ge 0$, show that c(n, k) is the number of zombie sets of size n + 1 such that the youngest person infects k people.

- (10) Show that the number of complete flags in \mathbf{F}_q^n is $[n]_q!$.
- (11) (a) Let $r \ge 0$ be a non-negative integer. Show that c(n + r, n) is a polynomial function of n of degree 2r.
 - (b) Compute this polynomial for r = 1, 2, 3, 4.