Math 188, Spring 2021
Homework 5
Due: May 7, 2021 11:59PM via Gradescope
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
(1) Prove the following identities about the number of integer partitions:
(a) For $n \geq k, p_{k}(n)=p_{\leq k}(n-k)$.
(b) For $n>0$, the number of partitions of n not using 1 as a part is $p(n)-p(n-1)$.
(2) (a) Use the following q-analogue of Pascal's identity

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \quad(\text { for } n \geq k>0)
$$

to show that if d is a non-negative integer, then

$$
\sum_{n \geq 0}\left[\begin{array}{c}
n+d \\
n
\end{array}\right]_{q} x^{n}=\prod_{i=0}^{d}\left(1-q^{i} x\right)^{-1}=\frac{1}{(1-x)(1-q x) \cdots\left(1-q^{d} x\right)}
$$

(b) Give a direct explanation for why the coefficient of x^{n} of the right side is the sum $\sum_{\lambda} q^{|\lambda|}$ over all integer partitions λ fitting in the $n \times d$ rectangle.
(3) Let T be a subset of the positive integers such that if $x \in T$, then $2 x \in T$. Define $2 T=\{2 x \mid x \in T\}$ and let $S=T \backslash 2 T$.

Let $p_{S}(n)$ be the number of partitions of n using only parts from S, and let $p_{T, \text { dist }}(n)$ be the number of partitions of n using only parts from T and not repeating any parts. Prove that $p_{S}(n)=p_{T, \text { dist }}(n)$ for all n.
(4) Use the notation from HW2 $\# 3$. Show that for $k \geq 0$, we have

$$
\sum_{n \geq 0} \frac{c(n, k)}{n!} x^{n}=\frac{(-\mathbf{L}(1-x))^{k}}{k!}
$$

(5) Let V, W be \mathbf{F}_{q}-vector spaces with $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$.
(a) How many linear maps $V \rightarrow W$ are there?
(b) Suppose $n \geq m$. How many surjective linear maps $V \rightarrow W$ are there?
(c) Pick $k \leq \min (m, n)$. How many rank k linear maps $V \rightarrow W$ are there?

1. Optional problems (DOn't turn in)

(6) Let a_{n} be the number of ways to give n dollars using bills of size $1,2,5,10,20,50$ such that at most three 20 dollar bills can be used. Give a simple formula for the generating function $A(x)=\sum_{n \geq 0} a_{n} x^{n}$.
(7) This one is challenging (I can't see a solution that is simple, but it doesn't require anything outside of this class). Prove:

$$
\sum_{n \geq 1} x^{n(n-1) / 2}=\prod_{n \geq 1} \frac{1-x^{2 n}}{1-x^{2 n-1}}
$$

(8) Let λ be an integer partition of n whose Durfee square has size $r \times r$. Call λ almost self-conjugate if $\lambda_{i}=\lambda_{i}^{T}+1$ for $i=1, \ldots, r$. Let $q(n)$ be the number of almost
self-conjugate partitions of $n(q(0)=0)$. Find a formula for

$$
\sum_{n \geq 0} q(n) x^{n}
$$

in the same spirit as Example 3.27.
(9) Consider a group of $n+1$ people of different ages and consider the following scenario:

- The youngest person becomes a zombie, and all others start as non-zombies.
- Each zombie may turn any non-zombie older than them into a zombie.
- Once a zombie, a person stays a zombie.
- Everyone eventually becomes a zombie.

At the end, we get a set of pairs $\{(i, j) \mid i$ infected $j\}$. Call this a zombie set of size $n+1$. For $n, k \geq 0$, show that $c(n, k)$ is the number of zombie sets of size $n+1$ such that the youngest person infects k people.
(10) Show that the number of complete flags in \mathbf{F}_{q}^{n} is $[n]_{q}$!.
(11) (a) Let $r \geq 0$ be a non-negative integer. Show that $c(n+r, n)$ is a polynomial function of n of degree $2 r$.
(b) Compute this polynomial for $r=1,2,3,4$.

