Math 188, Spring 2021
Homework 4
Due: April 30, 2021 11:59PM via Gradescope
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
Reminder: First part of project also due April 30. Last minute submissions run the risk of conflicting, in which case no credit is given.
http://www.math.ucsd.edu/~ssam/188/project.html
(1) Let n be a positive integer. Consider the equation

$$
x_{1}+x_{2}+\cdots+x_{8}=2 n .
$$

For each of the following conditions, how many solutions are there? Give as simple of a formula as possible. (Each part is an independent problem, don't combine the conditions.)
(a) The x_{i} are non-negative even integers.
(b) The x_{i} are positive odd integers.
(c) The x_{i} are non-negative integers and $x_{8} \leq 10$.
(2) Let k, n be positive integers.
(a) Show that

$$
\sum_{\left(a_{1}, \ldots, a_{n}\right)} a_{1} a_{2} \cdots a_{n}=\binom{n+k-1}{k-n}
$$

where the sum is over all compositions of k into n parts. (Hint at end.)
(b) Show that

$$
\sum_{\left(a_{1}, \ldots, a_{n}\right)} 2^{a_{2}-1} 3^{a_{3}-1} \cdots n^{a_{n}-1}=S(k, n)
$$

where the sum is over all compositions of k into n parts.
(3) (a) Give a closed formula for the number of pairs of subsets S, T of $[n]$ such that $S \varsubsetneqq T$ (i.e., $S \subset T$ and $S \neq T$).
(b) Give a closed formula for the number of k-tuples of subsets $\left(S_{1}, \ldots, S_{k}\right)$ of $[n]$ such that $\bigcap_{i=1}^{k} S_{i}=\emptyset$.
(4) (a) Let r be a fixed positive integer. Show that $S(n+r, n)$ is a polynomial function of n of degree $2 r$ for $n \geq 0$.
(b) Compute this polynomial for $r=2,3,4$.
(5) Let $F(n)$ be the number of set partitions of $[n]$ such that every block has size ≥ 2. Prove that

$$
B(n)=F(n)+F(n+1)
$$

where $B(n)$ is the nth Bell number.

1. Optional problems (DOn't turn in)

(6) What is the total number of parts of all compositions of k ?
[For example, when $k=2$, the only compositions are (2) and $(1,1)$ so there are a total of 3 parts.]
(7) Fix an integer $k \geq 2$. Call a composition $\left(a_{1}, \ldots, a_{n}\right)$ of k doubly even if the number of a_{i} which are even is also even (i.e., there could be no even a_{i}, or 2 of them, or 4, etc.). Show that the number of doubly even compositions of k is 2^{k-2}.

For example, if $k=4$, then here are the 4 doubly even compositions of 4 :

$$
(2,2), \quad(3,1), \quad(1,3), \quad(1,1,1,1)
$$

(8) Give a closed formula for the number of k-tuples of subsets $\left(S_{1}, \ldots, S_{k}\right)$ of $[n]$ such that $S_{i} \subseteq S_{i+1}$ for $i=1, \ldots, k-1$.

2. Hints

(2)a: Consider the product

$$
\left(\sum_{a_{1} \geq 1} a_{1} x^{a_{1}}\right) \cdots\left(\sum_{a_{n} \geq 1} a_{n} x^{a_{n}}\right) .
$$

(7): Given a composition $\alpha=\left(a_{1}, \ldots, a_{n}\right)$, define another composition $\Phi(\alpha)$ by

$$
\Phi(\alpha)=\left\{\begin{array}{ll}
\left(1, a_{1}-1, a_{2}, a_{3}, \ldots, a_{n}\right) & \text { if } a_{1}>1 \\
\left(a_{2}+1, a_{3}, \ldots, a_{n}\right) & \text { if } a_{1}=1
\end{array} .\right.
$$

(in both cases, we didn't do anything to a_{3}, \ldots, a_{n}). Show that Φ defines a bijection between the set of doubly even compositions of k and the set of compositions of k which are not doubly even.

