Math 188, Spring 2021 Homework 4 Due: April 30, 2021 11:59PM via Gradescope

Solutions must be **clearly** presented. Incoherent or unclear solutions will lose points.

Reminder: First part of project also due April 30. Last minute submissions run the risk of conflicting, in which case no credit is given.

http://www.math.ucsd.edu/~ssam/188/project.html

(1) Let n be a positive integer. Consider the equation

 $x_1 + x_2 + \dots + x_8 = 2n.$

For each of the following conditions, how many solutions are there? Give as simple of a formula as possible. (Each part is an independent problem, don't combine the conditions.)

- (a) The x_i are non-negative even integers.
- (b) The x_i are positive odd integers.
- (c) The x_i are non-negative integers and $x_8 \leq 10$.
- (2) Let k, n be positive integers.
 - (a) Show that

$$\sum_{a_1,\dots,a_n} a_1 a_2 \cdots a_n = \binom{n+k-1}{k-n}$$

where the sum is over all compositions of k into n parts. (Hint at end.)

(b) Show that

$$\sum_{(a_1,\dots,a_n)} 2^{a_2-1} 3^{a_3-1} \cdots n^{a_n-1} = S(k,n)$$

where the sum is over all compositions of k into n parts.

- (3) (a) Give a closed formula for the number of pairs of subsets S, T of [n] such that $S \subsetneq T$ (i.e., $S \subset T$ and $S \neq T$).
 - (b) Give a closed formula for the number of k-tuples of subsets (S_1, \ldots, S_k) of [n] such that $\bigcap_{i=1}^k S_i = \emptyset$.
- (4) (a) Let r be a fixed positive integer. Show that S(n+r,n) is a polynomial function of n of degree 2r for $n \ge 0$.
 - (b) Compute this polynomial for r = 2, 3, 4.
- (5) Let F(n) be the number of set partitions of [n] such that every block has size ≥ 2 . Prove that

$$B(n) = F(n) + F(n+1),$$

where B(n) is the *n*th Bell number.

1. Optional problems (don't turn in)

- (6) What is the total number of parts of all compositions of k? [For example, when k = 2, the only compositions are (2) and (1, 1) so there are a total of 3 parts.]
- (7) Fix an integer $k \ge 2$. Call a composition (a_1, \ldots, a_n) of k **doubly even** if the number of a_i which are even is also even (i.e., there could be no even a_i , or 2 of them, or 4, etc.). Show that the number of doubly even compositions of k is 2^{k-2} .

For example, if k = 4, then here are the 4 doubly even compositions of 4:

$$(2,2),$$
 $(3,1),$ $(1,3),$ $(1,1,1,1).$

(8) Give a closed formula for the number of k-tuples of subsets (S_1, \ldots, S_k) of [n] such that $S_i \subseteq S_{i+1}$ for $i = 1, \ldots, k-1$.

2. Hints

(2)a: Consider the product

$$\left(\sum_{a_1\geq 1}a_1x^{a_1}\right)\cdots\left(\sum_{a_n\geq 1}a_nx^{a_n}\right).$$

(7): Given a composition $\alpha = (a_1, \ldots, a_n)$, define another composition $\Phi(\alpha)$ by

$$\Phi(\alpha) = \begin{cases} (1, a_1 - 1, a_2, a_3, \dots, a_n) & \text{if } a_1 > 1\\ (a_2 + 1, a_3, \dots, a_n) & \text{if } a_1 = 1 \end{cases}$$

(in both cases, we didn't do anything to a_3, \ldots, a_n). Show that Φ defines a bijection between the set of doubly even compositions of k and the set of compositions of k which are not doubly even.