Math 188, Spring 2021 Homework 2 Due: April 16, 2021 11:59PM via Gradescope

Solutions must be **clearly** presented. Incoherent or unclear solutions will lose points.

- (1) (a) Let $(A_i(x))_{i\geq 0}$ be a sequence of formal power series such that $\lim_{i\to\infty} A_i(x) = A(x)$. Let σ be a permutation of the non-negative integers. Prove or find a counterexample: $\lim_{i\to\infty} A_{\sigma(i)}(x)$ converges to A(x).
 - (b) Suppose we are given a doubly-indexed sequence of formal power series $(A_{i,j}(x))_{i,j\geq 0}$ such that:
 - For each *i*, the limit $\lim_{j\to\infty} A_{i,j}(x)$ converges to $B_i(x)$ and $\lim_{i\to\infty} B_i(x)$ converges to B(x), and
 - For each j, the limit $\lim_{i\to\infty} A_{i,j}(x)$ converges to $C_j(x)$ and $\lim_{j\to\infty} C_j(x)$ converges to C(x).
 - Prove or find a counterexample: B(x) = C(x)
- (2) Let F(x) be a formal power series with F(0) = 0.
 - (a) Show that there exists a formal power series G(x) with G(0) = 0 such that F(G(x)) = x if and only if $[x^1]F(x) \neq 0$.
 - (b) Assuming $[x^1]F(x) \neq 0$, show that G(x) is unique and also satisfies G(F(x)) = x. You may use without proof that composition of formal power series is associative.
- (3) Assume now that we deal with complex-coefficient formal power series. Define the following sets of formal power series:

$$V = \{F(x) \mid F(0) = 0\},\$$

$$W = \{G(x) \mid G(0) = 1\}.$$

- (a) Given $F \in V$, show that $\mathbf{R}(F) = \sum_{n \ge 0} \frac{F(x)^n}{n!}$ is the *unique* formal power series $G \in W$ such that DG(x) = DF(x)G(x). This defines a function $\mathbf{R} \colon V \to W$. [Conventions: $F(x)^0 = 1$ even if F(x) = 0 and 0! = 1]
- (b) Given $G \in W$, show that there is a *unique* formal power series $F \in V$ such that DF(x) = DG(x)/G(x). We define the function $\mathbf{L} \colon W \to V$ by $\mathbf{L}(G) = F$. [For the rest, it is unnecessary to use explicit formulas for \mathbf{L} and \mathbf{R} and in fact it may be easier to only use the uniqueness properties above.]
- (c) Show that **R** and **L** are inverses of each other.
- (d) Show that $\mathbf{R}(F_1 + F_2) = \mathbf{R}(F_1)\mathbf{R}(F_2)$ for all $F_1, F_2 \in V$.
- (e) Show that $\mathbf{L}(G_1G_2) = \mathbf{L}(G_1) + \mathbf{L}(G_2)$ for all $G_1, G_2 \in W$.
- (f) If m is a positive integer and $G \in W$, show that $\mathbf{R}(\frac{\mathbf{L}G}{m})$ is an mth root of G. (Hence this gives an alternative proof for the existence of mth roots.)
- (4) Let $n \ge 2$ be an integer.
 - (a) Prove that

$$\sum_{i=0}^{n} i \binom{n}{i} (-1)^{i-1} = 0.$$

(b) Compute

1. Optional problems (don't turn in)

(5) Let $A_0(x), A_1(x), \ldots$ and $B_0(x), B_1(x), \ldots$ be sequences of formal power series. Assume that $\lim_{i\to\infty} A_i(x) = A(x)$ and $\lim_{i\to\infty} B_i(x) = B(x)$. Prove that

$$\lim_{i \to \infty} (A_i(x) + B_i(x)) = A(x) + B(x)$$
$$\lim_{i \to \infty} (A_i(x)B_i(x)) = A(x)B(x).$$

- (6) Which of the following infinite products of formal power series converge?
 (a) ∏_{i≥0}(1 + xⁱ⁺¹)
 (b) ∏_{i≥0}(1 + x)ⁱ⁺¹
- (7) Give proofs for the following identities for formal derivatives of formal power series (for the second identity, assume A(0) = 0 so that the compositions are defined):

$$D(A \cdot B) = (DA) \cdot B + A \cdot (DB),$$

$$D(B \circ A) = (DA) \cdot (DB \circ A).$$

- (8) Let A(x) be a formal power series. Define its **order** ord(A) to be the smallest k such that $[x^k]A(x) \neq 0$. Show that there exists a formal power series B(x) such that $B(x)^2 = A(x)$ if and only if the order k of A(x) is even, and our field of scalars contains a square root of $[x^k]A(x)$.
- (9) Use the notation from (3).
 - (a) Show that if $\sum_{i\geq 0} F_i(x)$ converges to F(x), then $\prod_{i\geq 0} \mathbf{R}(F_i)$ converges to $\mathbf{R}(F)$.
 - (b) Show that if $\prod_{i\geq 0} G_i(x)$ converges to G(x), then $\sum_{i\geq 0} \mathbf{R}(G_i)$ converges to $\mathbf{R}(G)$.
- (10) I am not sure how easy the following is to prove without knowing the right trick, but I'm curious if you can come up with a nice solution.

Suppose we pick a sequence of numbers $(a_2, a_4, a_6, ...)$. Show that there is a unique way to complete it to a sequence $(a_n)_{n\geq 2}$ such that $A(x) = -x + \sum_{n\geq 2} a_n x^n$ satisfies A(A(x)) = x.