Math 188, Spring 2021
Homework 1
Due: April 9, 2021 11:59PM via Gradescope
Solutions must be clearly presented. Incoherent or unclear solutions will lose points.
(1) Find a closed formula for the following recurrence relation:

$$
\begin{aligned}
& a_{0}=1, a_{1}=1, a_{2}=2 \\
& a_{n}=5 a_{n-1}-8 a_{n-2}+4 a_{n-3} \quad(n \geq 3)
\end{aligned}
$$

(2) Find a closed formula for the following recurrence relation:

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=3 a_{n-1}+2^{n} \quad(n \geq 1) .
\end{aligned}
$$

(3) Let $r_{1}, \ldots, r_{d}$ be distinct numbers. Prove that the sequences $\left(r_{1}^{n}\right), \ldots,\left(r_{d}^{n}\right)$ are linearly independent by showing that the determinant of $\left(r_{i}^{j-1}\right)_{i, j=1, \ldots, d}$ is nonzero (interpret $0^{0}=1$ ).
(4) Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence satisfying a linear recurrence relation whose characteristic polynomial is $\left(t^{2}-1\right)^{d}$.
(a) Show that there exist polynomials $p(n)$ and $q(n)$ of degree $\leq d-1$ such that

$$
a_{n}= \begin{cases}p(n) & \text { if } n \text { is even } \\ q(n) & \text { if } n \text { is odd }\end{cases}
$$

(b) How does this generalize if the characteristic polynomial is $\left(t^{k}-1\right)^{d}$ ?
(5) (a) Suppose that $\left(a_{n}\right)_{n \geq 0}$ and $\left(a_{n}^{\prime}\right)_{n \geq 0}$ both satisfy the same linear recurrence relation of order $d$ and that they agree in $d$ consecutive places, i.e., there exists $k$ such that $a_{k}=a_{k}^{\prime}, a_{k+1}=a_{k+1}^{\prime}, \ldots, a_{k+d-1}=a_{k+d-1}^{\prime}$. Show that these sequences are the same.
(b) Suppose that $\left(a_{n}\right)_{n \geq 0}$ satisfies the linear recurrence relation of order $d$

$$
a_{n}=c_{1} a_{n-1}+\cdots+c_{d} a_{n-d} \quad \text { for all } n \geq d
$$

Show that there is a unique sequence $\left(b_{n}\right)_{n \in \mathbf{Z}}$ (indexed by all integers) such that $b_{n}=a_{n}$ for $n \geq 0$ and such that

$$
b_{n}=c_{1} b_{n-1}+\cdots+c_{d} b_{n-d} \quad \text { for all } n \in \mathbf{Z}
$$

Explain how to get a closed form formula for $b_{n}$.
(c) Consider the Fibonacci sequence $f_{0}=0, f_{1}=1$, and $f_{n+2}=f_{n+1}+f_{n}$. How does the negatively indexed Fibonacci sequence relate to the usual one?

## 1. Optional problems (don't turn in)

(1) Let $p$ be a prime number and let $\left(a_{n}\right)_{n \geq 0}$ be a sequence such that $a_{n} \in \mathbf{Z} / p$ and which satisfies a homogeneous linear recurrence relation. Show that the sequence is in fact periodic.
(2) Let $r_{1}, \ldots, r_{d-1}$ be distinct numbers. Prove that the sequences $\alpha_{1}=\left(r_{1}^{n}\right), \ldots, \alpha_{d-1}=$ $\left(r_{d-1}^{n}\right), \alpha_{d}=\left(n r_{d-1}^{n-1}\right)$ are linearly independent by showing that the determinant of $\left(\alpha_{i, j-1}\right)_{i, j=1, \ldots, d}$ is nonzero (interpret $0^{0}=1$ and if $r_{d-1}=0$, interpret $\alpha_{d, 0}=0$ ).

