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The topic of the course is representations of Lie groups, with an emphasis on classical
(general linear, symplectic, orthogonal) groups. We will explore this from several different
angles: linear algebra, invariant theory, combinatorics, algebraic geometry. The perspective
I will take is that the representation theory of general linear groups is a natural extension of
linear algebra and for symplectic and orthogonal groups, we are doing linear algebra in the
presence of a (skew-)symmetric bilinear form. I intend to take advantage of theorems from
the general theory (I will recall the necessary background as we go), but our focus will be to
explore examples and explicit constructions rather than the proofs of such theorems.

I’m not using any particular reference, but [FH] comes the closest to what I want to cover.
For simplicity, we’ll work with groups over the complex numbers. Some of what we say will

work over different fields. Another disclaimer: I don’t intend for this to be a comprehensive
reference. So results will usually be stated in special cases the first time even if a more
general case is needed later. Instead, I will try to minimize technical definitions for later
cases until they are needed, and then restate results in more general forms.
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1. General linear group

Let V be a finite-dimensional complex vector space. We let GL(V ) denote the group of
invertible linear operators V → V where the group operation is composition. If V = Cn,
then we write GLn(C) instead of GL(V ). The only difference is that Cn has a chosen basis
(the standard one e1, . . . , en) while V does not. This is a Lie group (in fact, a complex Lie
group).

1.1. Representations. Some basic notation we will use over and over again with regards to
GLn(C): we let B ⊂ GLn(C) be the subgroup of upper-triangular matrices (called a Borel
subgroup) and T ⊂ GLn(C) be the subgroup of diagonal matrices (called a maximal
torus). When talking about GL(V ), a subgroup B is a Borel subgroup if it is the group
of upper-triangular matrices with respect to some choice of basis for V . Similarly, T is a
maximal torus if it is the group of diagonal matrices with respect to some choice of basis for
V . So note that T and B are not unique, but choosing a basis will determine a choice (and
this will be convenient when we want to do calculations).

An algebraic representation (or rational representation) of GL(V ) is a group homo-
morphism ρ : GL(V )→ GL(W ) for some other finite-dimensional complex vector space W
which is algebraic: this means that for some (equivalently, any) choice of ordered bases for V
and W , then for any g ∈ GL(V ) the entries of ρ(g) are all rational functions of the entries of
g. All representations that we consider will be algebraic, so we will just say representation.
If the entries are all polynomial functions, then we call ρ a polynomial representation.

Example 1.1.1. • If V = W we can take ρ to be the identity.
• If V = W = Cn, take ρ(g) = (g−1)T where T is transpose. This is not a polynomial

representation.
• Take V = C2 and W = C3 and ρ given by

GL2(C)→ GL3(C)(
g1,1 g1,2

g2,1 g2,2

)
7→

 g2
1,1 g1,1g1,2 g2

1,2

2g1,1g2,1 g1,1g2,2 + g1,2g2,1 2g1,2g2,2

g2
2,1 g2,1g2,2 g2

2,2


• Take V = Cn and W = C and ρ(g) = det(g). More generally, for any integer d, we

can take ρ(g) = det(g)d. This is a polynomial representation if and only if d ≥ 0.
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• For a non-example, take V = W = Cn. Take ρ(g) = g where g means take the
complex conjugate of each entry. Then ρ : GLn(C)→ GLn(C) is a homomorphism,
but it is not algebraic. �

We will think of ρ as giving us an action of GL(V ) on W , i.e., if g ∈ GL(V ) and w ∈ W ,
we define g ·w = ρ(g)(w). Then this is a group action in the usual sense. Sometimes we will
call W the representation.

Here are some general facts. First, pick a maximal torus T ⊂ GL(V ). If ρ : GL(V ) →
GL(W ) is a representation, then there is a basis w1, . . . , wr for W such that each wi is an
eigenvector of ρ(t) for all t ∈ T . Pick an ordered basis for V so that T is the set of diagonal
matrices. If the entries of t are x1, . . . , xn, then with respect to the basis w1, . . . , wr, ρ(t) is
diagonal and the entries are of the form x

µi,1
1 · · ·xµi,nn for some µi,1, . . . , µi,n ∈ Z (why?). Any

vector w which is an eigenvector for all ρ(t) is called a weight vector and (µ1, . . . , µn) is
its weight if ρ(t)(w) = xµ11 · · ·xµnn w for all x1, . . . , xn. We also write µ(t) for xµ11 · · ·xµnn .

The character of ρ is defined to be the function char(ρ)(x1, . . . , xn) = Tr ρ(t) where t is the
diagonal matrix with entries x1, . . . , xn and Tr denotes trace. Alternatively, char(ρ)(x1, . . . , xn) =∑r

i=1 x
µi,1
1 · · ·xµi,nn .

Example 1.1.2. We compute the characters from Example 1.1.1.

• The basis w1, . . . , wn is already an eigenbasis, so the character is x1 + · · ·+ xn.
• Again, the standard basis is an eigenbasis, so the character is x−1

1 + · · ·+ x−1
n .

• Taking g to be diagonal with entries x1, x2, we see that ρ(g) is also diagonal and its
trace is x2

1 + x1x2 + x2
2.

• The character is (x1 · · ·xn)d. �

Basic operations transform easily on the level of characters:

• If ρi : GLn(C)→ GL(Vi) are representations for i = 1, 2, we can form the direct sum
representation ρ1 ⊕ ρ2 : GLn(C)→ GL(V1 ⊕ V2) via

(ρ1 ⊕ ρ2)(g) =

(
ρ1(g) 0

0 ρ2(g)

)
and

char(ρ1 ⊕ ρ2)(x1, . . . , xn) = char(ρ1)(x1, . . . , xn) + char(ρ2)(x1, . . . , xn).

In terms of group action, this is given by g · (v1, v2) = (g · v1, g · v2).
• If ρi : GLn(C) → GL(Vi) are representations for i = 1, 2, we can form the tensor

product representation ρ1 ⊗ ρ2 : GLn(C) → GL(V1 ⊗ V2) via (assuming ρ1(g) is
N ×N):

(ρ1 ⊗ ρ2)(g) =


ρ1(g)1,1ρ2(g) ρ1(g)1,2ρ2(g) · · · ρ1(g)1,Nρ2(g)
ρ1(g)2,1ρ2(g) ρ1(g)2,2ρ2(g) · · · ρ1(g)2,Nρ2(g)

...
ρ1(g)N,1ρ2(g) ρ1(g)N,2ρ2(g) · · · ρ1(g)N,Nρ2(g)


(here we are multiplying ρ2(g) by each entry of ρ1(g) and creating a giant block
matrix) and

char(ρ1 ⊗ ρ2)(x1, . . . , xn) = char(ρ1)(x1, . . . , xn) · char(ρ2)(x1, . . . , xn).

In terms of group action, this is given by g ·
∑

i vi ⊗ wi =
∑

i g · vi ⊗ g · wi.
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• If ρ : GLn(C) → GL(V ) is a representation, then we have an action on the dual
space V ∗ as follows. Given a linear functional f : V → C, we define g · f to be
the linear functional given by (g · f)(v) = f(g−1 · v). This gives a representation
ρ∨ : GLn(C)→ GL(V ∗). In terms of matrices, if we pick an ordered basis for V and
use the dual basis for V ∗, we have ρ∨(g) = (ρ(g)−1)T where T denotes transpose.

The character is given by char(ρ∨)(x1, . . . , xn) = char(ρ)(x−1
1 , . . . , x−1

n ).

Given two representations W and W ′ of GL(V ), a homomorphism between them is a
linear map f : W → W ′ such that f(g · w) = g · f(w) for all g ∈ GL(V ) and w ∈ W . We
say that W and W ′ are isomorphic if there is a homomorphism between them which is an
invertible linear map.

A subrepresentation of W is a subspace U ⊂ W such that g · u ∈ U for all u ∈
U and g ∈ GL(V ). A nonzero representation W is irreducible (or simple) if its only
subrepresentations are either 0 or W . A representation is semisimple if it is isomorphic to
a direct sum of simple representations.

Theorem 1.1.3. (1) Every finite-dimensional representation of GL(V ) is semisimple.
(2) Two representations of GL(V ) are isomorphic if and only if they have the same

character.
(3) (Schur’s lemma) There are no nonzero homomorphisms between non-isomorphic sim-

ple representations. Any homomorphism from a simple representation to itself must
be a scalar multiple of the identity.

Let B ⊂ GL(V ) be a Borel subgroup which contains our maximal torus T . A nonzero
vector w ∈ W is a highest weight vector if b ·w is a scalar multiple of w for all b ∈ B. In
particular, it is an eigenvector for all ρ(t) for t ∈ T , so it is also a weight vector. If µ is the
weight of this vector, we write µ(b) for the scalar multiple i.e., b · w = µ(b)w.

Example 1.1.4. We discuss the examples from Example 1.1.1.

• The standard basis vectors w1, . . . , wn are the weight vectors. The weight of wi is
(0, . . . , 1, . . . , 0) with a 1 in position i. The only highest weight vector is w1 with
weight (1, 0, . . . , 0).
• The standard basis vectors w1, . . . , wn are the weight vectors. The weight of wi is

(0, . . . ,−1, . . . , 0) with a −1 in position i. The only highest weight vector is wn with
weight (0, . . . , 0,−1).
• The standard basis vectors e1, e2, e3 of C3 are weight vectors with weights (2, 0),

(1, 1), and (0, 2). The only highest weight vector is e1 with weight (2, 0).
• 1 ∈ C is a weight vector with weight (d, . . . , d) and is also a highest weight vector. �

Theorem 1.1.5. • Every finite-dimensional representation contains a highest weight
vector.
• Any two highest weight vectors (for a particular choice of Borel subgroup) in an

irreducible representation are scalar multiples of each other.
• The weight (µ1, . . . , µn) of a highest weight vector satisfies µ1 ≥ · · · ≥ µn.
• For every (µ1, . . . , µn) ∈ Zn satisfying µ1 ≥ · · · ≥ µn, there is an irreducible represen-

tation whose highest weight vector has that weight. Furthermore, this representation is
unique up to isomorphism and the representation is polynomial if and only if µn ≥ 0.

In particular, we conclude that the irreducible representations are determined by their
highest weight vectors, and if we want to express an arbitrary representation as a direct
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sum of irreducible representations, it suffices to find all highest weight vectors (why?). We
use Sλ(V ) to denote an irreducible representation whose highest weight is λ. We will see
different ways to construct this representation.

Note that tensoring a representation by the dth power of the determinant representation
adds d to all components of each weight, and in particular for highest weights. So the result
above implies the following, for which we will give an independent proof:

Proposition 1.1.6. If W is a rational representation, then there exists d such that W⊗detd

is a polynomial representation.

Proof. With respect to some choice of basis, the entries of ρ : GLn(C)→ GL(W ) are rational
functions a(x)/b(x) of the matrix entries xi,j, such that b(g) 6= 0 whenever g is invertible,
so it suffices to prove that for every such rational function, b is a power of the determinant
function (up to a scalar). We prove this by induction on deg b. If deg b = 0, then it is a
constant and there is nothing to say.

Otherwise, since C is algebraically closed, the polynomial b has a zero somewhere on the
space of all matrices. By assumption, all of its zeroes are singular matrices, so that b(x) = 0
implies that det(x) = 0. The next result shows that det is an irreducible polynomial, so that
det divides b. But then b′ = b/ det is another polynomial of lower degree such that b′(g) 6= 0
whenever g is invertible, so by induction, b′ is a scalar times a power of the determinant. �

Lemma 1.1.7. As a polynomial in the n variables xi,j, det is irreducible.

Proof. Suppose we have a factorization det = αβ. Note that det has degree 1 in each variable
xi,j separately, so for each xi,j, it must be that either α has degree 1 and β has degree 0
with respect to xi,j, or the other way around. Now consider xi,j and xi′,j together. Since no
term of det involves both at the same time, if α has degree 1 in xi,j, then it must also have
degree 1 in xi′,j (if not, then we can write α = α0xi,j + α1 and β = β0xi′,j + β1 where none
of α0, α1, β0, β1 involve xi,j or xi′,j and multiplying it out gives a contradiction). The same
is true if we consider two variables xi,j and xi,j′ together. This implies that if α has degree
1 in one of the variables, then it has degree 1 in all of the variables, i.e., β is a constant.
Otherwise, the same reasoning implies that β has degree 1 in all of the variables and α is a
constant. �

1.1.1. Partitions. A partition of a nonnegative integer n is a sequence λ = (λ1, . . . , λk) such
that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and λ1 + · · ·+λk = n. We will consider two partitions the same
if their nonzero entries are the same. It will also be convenient to make the convention that
λi = 0 whenever i > `(λ). And for shorthand, we may omit the commas, so the partition
(1, 1, 1, 1) of 4 can be written as 1111. As a further shorthand, the exponential notation is
used for repetition, so for example, 14 is the partition (1, 1, 1, 1). We let Par(n) be the set
of partitions of n, and denote the size by p(n) = |Par(n)|. By convention, Par(0) consists of
exactly one partition, the empty one.
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Example 1.1.8.

Par(1) = {1},
Par(2) = {2, 12},
Par(3) = {3, 21, 13},
Par(4) = {4, 31, 22, 212, 14},
Par(5) = {5, 41, 32, 312, 221, 213, 15}. �

If λ is a partition of n, we write |λ| = n (size). Also, `(λ) is the number of nonzero entries
of λ (length). For each i, mi(λ) is the number of entries of λ that are equal to i.

It will often be convenient to represent partitions graphically. This is done via Young
diagrams Y (λ), which is a collection of left-justified boxes with λi boxes in row i. For
example, the Young diagram

corresponds to the partition (5, 3, 2). Flipping across the main diagonal gives another parti-
tion λ†, called the transpose. In our example, flipping gives

So (5, 3, 2)† = (3, 3, 2, 1, 1). In other words, the role of columns and rows has been inter-
changed. This is an important involution of Par(n) which we will use later.

We use ν ⊆ λ to mean that νi ≤ λi for all i. In that case, Y (ν) is a subset of Y (λ) and
we use λ/ν to denote the shape Y (λ) \ Y (ν).

1.1.2. GLn×GLm. We’d also like to consider representations of a product of general linear
groups GLn(C) ×GLm(C). Much of the previous discussion applies. The Borel subgroup
gets replaced with the product B × B′ where B ⊂ GLn(C) and B′ ⊂ GLm(C) are the
upper-triangular matrices in each group. Similarly, the maximal torus is replaced by the
product T × T ′. Weights are now pairs of vectors (µ1, . . . , µn), (µ′1, . . . , µ

′
m) and irreducible

representations now correspond to highest weights which satisfy µ1 ≥ · · · ≥ µn and µ′1 ≥
· · · ≥ µ′m. The corresponding irreducible is denoted Sµ(Cn)⊗ Sµ′(C

m).

1.2. Multiplicity-free actions. This section is based on [Ho].
From the last part, we see that any representationW of GLn(C) is isomorphic to

⊕
λ Sλ(C

n)⊕mλ

for some mλ ≥ 0. The integer mλ is the multiplicity of Sλ(C
n) in W . We say that W is

multiplicity-free if mλ ≤ 1 for all λ. Similarly, any representation W of GLn(C)×GLm(C)
is isomorphic to

⊕
λ,λ′(Sλ(C

n)⊗Sλ′(C
m))⊕mλ,λ′ and it is multiplicity-free if mλ,λ′ ≤ 1 for all

pairs λ, λ′.
Given a vector space U , we let Symd U∗ denote the symmetric power of the dual space

U∗. This is the quotient of (U∗)⊗d by the subspace spanned by expressions u1 ⊗ · · · ⊗ ud −
uσ(1) ⊗ · · · ⊗ uσ(d) over all choices of permutations σ and u1, . . . , ud ∈ U∗. If we pick a basis

v1, . . . , vn for U , then we get a dual basis x1, . . . , xn for U∗ and then Symd U∗ is the space
of degree d homogeneous polynomials in x1, . . . , xn and has a basis given by all degree d
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monomials in the xi. If U is a representation of GL(V ), then so is Symd U∗. We define
SymU∗ =

⊕
d≥0 Symd U∗, which is the space of all polynomials in x1, . . . , xn. These are

functions on U , so that given f ∈ SymU∗ and u ∈ U , the evaluation f(u) makes sense. This
is an infinite-dimensional representation of GL(V ), but it is a direct sum of finite-dimensional
ones, so everything we have said so far still applies.

Example 1.2.1. Consider the case U = V ∗ so that U∗ = V . I claim that Symd V is
irreducible for any d ≥ 0. Pick a basis x1, . . . , xn for V and let T,B be the subgroups of
diagonal and upper-triangular matrices with respect to this basis. Then the weight vectors
are the monomials in x1, . . . , xn and xd1 is the only one which is a highest weight vector. So
Symd V is irreducible with highest weight (d, 0, . . . , 0). We see that SymV is multiplicity-
free. �

We’d like to give a general criteria for SymU∗ to be multiplicity-free for a finite-dimensional
representation U . This requires some discussion of the Zariski topology.

1.2.1. Zariski topology. Let U be a vector space. A function f : U → C is polynomial if it
can be written as a polynomial with respect to some (and hence, any) basis for U . Given a
(possibly infinite) set of polynomials I, we define Z(I) ⊂ U to be the common solution set,
i.e., Z(I) = {u ∈ U | f(u) = 0 for all f ∈ I}. Note that if f, g ∈ I and h is any polynomial,
then Z(I) = Z(I ∪{f + g}) = Z(I ∪{fh}). For that reason, we will always assume that I is
closed under addition and multiplication by arbitrary polynomials, i.e., that I is an ideal.
Given a set of polynomials {fi}, we let 〈fi〉 denote the smallest ideal containing the fi, i.e.,
〈fi〉 = {

∑
j hjfj} for all finite sums. We say that I is generated by {fi} if I = 〈fi〉.

An important fundamental fact:

Theorem 1.2.2 (Hilbert basis theorem). Every ideal can be generated by a finite set of
polynomials.

The sum of two ideals is I1 + I2 = {f + g | f ∈ I1, g ∈ I2} and the product I1I2 is the
ideal generated by {fg | f ∈ I1, g ∈ I2}. Infinite sums of ideals make sense: it is the ideal
generated by all finite sums of elements in the ideals, but infinite products generally do not
make sense.

The Zariski topology on U is the topology whose closed sets are the subsets of the form
Z(I) for an ideal I. It’s easy to check that this is a topology:

• Empty set is closed: ∅ = Z(〈1〉)
• U is closed: U = Z(0)
• The intersection of closed sets is closed:

⋂
j Z(Ij) = Z(

∑
j Ij)

• A finite union of closed sets is closed: Z(I1) ∪ · · · ∪ Z(Ir) = Z(I1 · · · Ir)
Closed subsets of U (with the subspace topology) are called affine varieties. The coor-

dinate ring of an affine variety X ⊂ U is denoted C[X] and is the quotient of SymU by the
ideal of all polynomials which are identically 0 on X. Note that C[U ] = SymU∗.

Open subsets of affine varieties (with the subspace topology) are called quasi-affine va-
rieties. Every affine variety is quasi-affine but the converse does not generally hold.

Example 1.2.3. Note that GLn(C) can be interpreted as a quasi-affine variety: it is a

subset of Cn2
in the obvious way and its complement is the set of points whose determinant

is 0. Since the determinant is a polynomial function in n2 variables, we see that GLn(C) is
an open subset.
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Actually, we can realize it as an affine variety if we add 1 more variable. Consider Cn2+1

and let t be the extra coordinate. Then

Z(〈t det−1〉) = {(g, λ) | g ∈ GLn(C), λ = 1/ det(g)}.
The extra information λ is not really extra, so the projection to the first n2 coordinates
identifies Z(〈t det−1〉) with GLn(C). This is really an isomorphism of varieties, but we will
not go into the details of what that means.

Just for reference, this means that GLn(C) is an algebraic group: an affine variety
which has a group structure (such that the group product and inverse can be expressed by
rational functions). �

A topological space X is irreducible if, whenever X = X1 ∪X2 with both X1, X2 closed
subsets, we must have X1 = X or X2 = X.

Proposition 1.2.4. A vector space U with the Zariski topology is an irreducible topological
space.

Proof. Suppose that U = Z(I1) ∪ Z(I2) = Z(I1I2) for ideals I1, I2. Then I1I2 must be the
0 ideal: if there is a nonzero polynomial f in the product, then there is some point u ∈ U
such that f(u) 6= 0. But this means that all pairwise products fg are 0 where f ∈ I1 and
g ∈ I2. Since the product of nonzero polynomials is nonzero, this means that either I1 = 0
or I2 = 0, i.e., that Z(I1) = U or Z(I2) = U . �

Proposition 1.2.5. Every non-empty open subset Y of an irreducible space X is dense, i.e.,
if X ′ ⊃ Y is a closed subset of X, then X = X ′.

Proof. With notation as in the statement, we have X = X ′∪ (X \Y ). Since X is irreducible,
either X ′ = X or X \ Y = X. The latter means that Y is empty, so it must be that
X ′ = X. �

Now we come back to multiplicity-free spaces. Given an affine variety X in a representation
U of GL(V ) and a subgroup G ⊂ GL(V ), we define the G-orbits of X to be the equivalence
classes of the equivalence relation on X given by u ∼ u′ if u′ = g · u for some g ∈ G.

Theorem 1.2.6. Let X be an affine variety in some representation of GL(V ) and let B be
a Borel subgroup. Suppose that there is a B-orbit Y on X which is dense. Then

(a) C[X] is a multiplicity-free representation.
(b) Let λ be the weight of a highest weight vector of C[X]. Pick u ∈ Y and let H be the

stabilizer of u, i.e., H = {h ∈ GL(V ) | h · u = u}. Then λ(h) = 1 for all h ∈ H ∩B.

Proof. (a) Pick two highest weight vectors f, g ∈ C[X] with the same weight λ. Pick a point
u ∈ Y . Note that f(b · u) = (b−1 · f)(u) = λ(b−1)f(u). If f(u) = 0, then f is 0 on all of
Y , which means it is the zero polynomial since Z(f) ⊃ Y . Similarly, g(u) 6= 0, so there is a
nonzero scalar α so that g(u) = αf(u). But then g−αf is a highest weight vector of weight
λ, but (g− αf)(u) = 0, so the previous reasoning shows that g− αf is the zero polynomial,
i.e., that f, g must be scalar multiples of each other.

(b) Continuing the same notation, if h ∈ H ∩B, then f(u) = f(h ·u) = λ(h−1)f(u). Since
f(u) 6= 0, this means λ(h−1) = 1. Since H ∩ B is a group and h was arbitrary, this implies
λ(h) = 1 for all h ∈ H ∩B. �

Finally, here’s a useful observation.
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Proposition 1.2.7. Let X be an irreducible affine variety in some representation of GL(V ).
If λ and µ are highest weights for irreducible representations appearing in C[X], then so is
λ+ µ.

Proof. Let f and g be highest weight vectors of weights λ and µ in C[X]. We claim that
fg 6= 0. If so, then Z(f) ∪ Z(g) = X which means that X = Z(f) or X = Z(g) since X
is irreducible. But both f and g are nonzero so this is impossible. Next, for any b ∈ B, we
have b · (fg) = (b · f)(b · g) = λ(b)µ(b)fg = (λ+ µ)(b)fg. �

These results apply just as well if we have a product of general linear groups with the
product of Borel subgroups replacing B.

1.2.2. Example: generic matrices. Pick integers m ≥ n. We consider the product GLn(C)×
GLm(C) with the representation U = (Cn ⊗Cm)∗ being the space of n×m matrices. The
action is given by

(g, h) · u = (g−1)Tuh−1.

Let J be the n × m matrix with Ji,i = 1 for i = 1, . . . , n and 0’s elsewhere. Let B ⊂
GLn(C) be the subgroup of upper-triangular matrices, and similarly, let B′ ⊂ GLm(C) be
the subgroup of upper-triangular matrices.

Let Ai be the upper-left i×i submatrix of the generic matrix ϕ = (ϕij) and let fi = detAi.

Proposition 1.2.8. fi is a highest weight vector with weight (1, . . . , 1, 0, . . . , 0), (1, . . . , 1, 0, . . . , 0)
(the number of 1’s in each vector is i).

Proof. Pick upper-triangular matrices g ∈ GLn(C) and h ∈ GLm(C) and write g =

[
x1 y1

0 z1

]
and h =

[
x2 y2

0 z2

]
where x1, x2 are i× i. Then (g, h) · fi is the determinant of the upper-left

i × i submatrix of gTϕh, which is det(xT1Aix2) = det(x1) det(x2)fi. In particular, it is a
highest weight vector. If g, h are diagonal, then det(x1) det(x2) is just the product of the
first i entries of each of g and h, so we get the weight also. �

Lemma 1.2.9. The B ×B′ orbit containing J is open and dense.

Proof. We claim that the orbit is precisely the set of matrices A such that fi(A) 6= 0 for
i = 1, . . . , n. It is easy to see that being in the orbit implies the condition on submatrices,
so we just prove the reverse direction. Before proving the claim, note that this shows that
the orbit is

⋂n
i=1(U \ Z(fi)), which is open (denseness follows from Propositions 1.2.4 and

1.2.5).
We first handle the case n = m. Then J is just the identity matrix, so the B×B′ orbit of

J is the set of matrices A with an LU factorization, i.e., A = LU where L is lower-triangular
and invertible with 1’s on the diagonal, and U is upper-triangular and invertible.

We proceed by induction on n. The case n = 1 is immediate, so for the general case, write

A =

[
A′ b
c d

]
where A′ is (n− 1)× (n− 1). Then all of the upper left submatrices of A′ are

invertible and so we have a factorization A′ = L′U ′. Then we have[
A′ b
c d

]
=

[
L′ 0
x 1

] [
U ′ y
0 z

]
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where y = (L′)−1b, x = c(U ′)−1, and z = d−xy. We let L and U be these last two matrices.
Then L is lower-triangular and invertible with 1’s on the diagonal and U is upper-triangular
and invertible (since U = L−1A).

For the general case m ≥ n, write A =
[
A′ A′′

]
where A′ is n × n and its upper left

submatrices are invertible. Then we can factor it as A′ = LU as above. Then we have

A = LJ

[
U L−1A′′

0 idm−n

]
. �

Lemma 1.2.10. If (λ, λ′) is the weight of a highest weight vector in SymU∗, then λi = λ′i
for 1 ≤ i ≤ n and λ′j = 0 for j > n. Also, λn ≥ 0.

Proof. The stabilizer of J contains pairs of diagonal matrices (g, h) where the entries of
h are x1, . . . , xm and the entries of g are x−1

1 , . . . , x−1
n . By Theorem 1.2.6, we see that

x
λ′1−λ1
1 · · ·xλ

′
n−λn
n x

λ′n+1

n+1 · · ·x
λ′m
m = 1 for all x1, . . . , xm. This forces all of the exponents to be 0.

Finally, all weights attached to weight vectors in SymU∗ are non-negative. This follows
from the formula for the action on U . �

Finally, each pair (λ, λ′) as above is the highest weight for some irreducible representation
in SymU∗ by Proposition 1.2.7 since every partition λ is a sum of vectors of the form
(1, 1, . . . , 1, 0, . . . , 0).

Corollary 1.2.11 (Cauchy identity). We have an isomorphism of GLn(C)×GLm(C) rep-
resentations

Sym(Cn ⊗Cm) ∼=
⊕
λ

Sλ(C
n)⊗ Sλ(C

m)

where the sum is over all integer partitions λ1 ≥ · · ·λn ≥ 0 and the second λ is understood
to have m− n 0’s added at the end.

1.2.3. Example: symmetric matrices. The space U of n×n symmetric matrices has an action
of GLn(C) via

g ·X = (g−1)TXg−1.

Let f1 be the function which takes the (1, 1)-entry of a symmetric matrix. If g is upper-
triangular, then (g · f1)(X) = f1(g−1 · X) = g2

1,1f1(X), so f1 is a highest weight vector

of U∗ with highest weight (2, 0, . . . , 0). So U∗ contains a copy of Sym2 Cn as a GLn(C)-
representation. Since they have the same dimension, U∗ ∼= Sym2 Cn.

We want to repeat our analysis from the previous section to this new example.
Let fi be the determinant of the upper-left i× i submatrix of a symmetric matrix.

Proposition 1.2.12. fi is a highest weight vector with weight (2, . . . , 2, 0, . . . , 0) (the number
of 2’s is i).

Proof. Let g ∈ GLn(C) be an upper triangular matrix and write it as g =

[
g1 g2

0 g3

]
where

g1 is i × i. Let X be a symmetric matrix and write it as X =

[
A B
BT C

]
where A is i × i.

Then (g · fi)(X) = fi(g
−1 ·X) = fi(g

TXg). Then the upper left i× i submatrix of gTXg is
gT1 Ag1, and its determinant is det(g1)2fi(X), which shows that fi is a highest weight vector
of weight (2, . . . , 2, 0, . . . , 0). �

Lemma 1.2.13. The B-orbit of the identity matrix I is open and dense.
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Proof. The B-orbit of I is the set of symmetric matrices which can be factored as gTg for
some invertible upper triangular matrix g. We claim that this is the set of symmetric matrices
X such that fi(X) 6= 0 for i = 1, . . . , n, and prove it by induction on n.

If n = 1, this is clear. Otherwise, write X =

[
X ′ y
yT z

]
where X ′ has size (n− 1)× (n− 1).

By induction, fi(X
′) 6= 0 for i = 1, . . . , n − 1 and so we have X ′ = hTh for an invertible

upper triangular (n− 1)× (n− 1) matrix h. Then we have[
X ′ y
yT z

]
=

[
hT 0

yTh−1 α

] [
h (hT )−1y
0 α

]
where α2 = z − yTh−1(hT )−1y. The new matrices we produced are automatically invertible
since their product is invertible (by the assumption fn(X) 6= 0).

This implies that the orbit is Zariski open (and hence dense). �

Lemma 1.2.14. If λ is a weight of a highest weight vector in SymU∗, then λi is even for
all i and λn ≥ 0.

Proof. We use Theorem 1.2.6. Let h be the diagonal matrix with 1’s on the diagonal except
for a −1 in position i. Then hTh = I, and λ(h) = (−1)λi , so λi is even. Since all weights of
Sym(U∗) are non-negative, we also get that λn ≥ 0. �

Corollary 1.2.15. We have an isomorphism of GLn(C) representations

Sym(Sym2 Cn) ∼=
⊕
λ

S2λ(C
n)

where the sum is over all integer partitions λ1 ≥ · · · ≥ λn ≥ 0.

Proof. We have shown that Sym(Sym2 Cn) is multiplicity-free and all highest weights are of
the form 2λ for an integer partition λ. It remains to show they all appear in the decom-
position, but we can get all of them by multiplying the functions f1, . . . , fn with various
multiplicities. �

1.2.4. Example: skew-symmetric matrices. Given a vector space V and a positive integer d,
the dth exterior power

∧d V is the quotient of V ⊗d by the subspace spanned by elements
of the form v1 ⊗ · · · ⊗ vd where vi = vj for some i 6= j. Note that the implies that swapping

two elements introduces a sign in
∧d V , for example when d = 2 we have:

0 = (v1 + v2)⊗ (v1 + v2) = v1 ⊗ v1 + v1 ⊗ v2 + v2 ⊗ v1 + v2 ⊗ v2 = v1 ⊗ v2 + v2 ⊗ v1

and the general case is similar (but with more cumbersome notation). The coset of v1⊗· · ·⊗vd
is denoted v1 ∧ · · · ∧ vd; from what we said it satisfies v1 ∧ · · · ∧ vd = (sgnσ)vσ(1) ∧ · · · ∧ vσ(d)

for any permutation σ. If e1, . . . , er is a basis for V , then a basis for
∧d V is given by

{ei1 ∧ · · · ∧ eid | 1 ≤ i1 < · · · < id ≤ r} so that it has dimension
(
r
d

)
.

The space U of n× n skew-symmetric matrices has an action of GLn(C) via

g ·X = (g−1)TXg−1.

Let f1 be the function which takes the (1, 2)-entry of a skew-symmetric matrix. If g is upper-
triangular, then (g · f1)(X) = f1(g−1 · X) = g1,1g2,2f1(X), so f1 is a highest weight vector

of U∗ with highest weight (1, 1, 0, . . . , 0). So U∗ contains a copy of
∧2 Cn as a GLn(C)-

representation. Since they have the same dimension, U∗ ∼=
∧2 Cn.
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We want to repeat our analysis from the previous section to this new example. Before
doing this, we need a short digression on Pfaffians.

First, given a skew-symmetric n× n matrix X, we have det(X) = det(XT ) = det(−X) =
(−1)n det(X), so detX = 0 if n is odd. In particular, the rank of a skew-symmetric matrix
is always even. Let X have size 2i× 2i. Let Π be the set of permutations σ of 2i that satisfy
σ(1) < σ(3) < · · · < σ(2i − 1) and σ(1) < σ(2), σ(3) < σ(4), ..., σ(2i − 1) < σ(2i). The
Pfaffian of X is defined by

Pf(X) =
∑
σ∈Π

(sgnσ)Xσ(1),σ(2)Xσ(3),σ(4) · · ·Xσ(2i−1),σ(2i).

The formula is not so important, but here are two important properties (whose proofs we
will omit):

• (Pf X)2 = detX
• Pf(gXgT ) = (det g)(Pf X) for any g ∈ GL2i(C).

Let fi be the Pfaffian of the upper-left 2i× 2i submatrix of a skew-symmetric matrix. It
is a polynomial function of degree i.

Proposition 1.2.16. fi is a highest weight vector with weight (1, . . . , 1, 0, . . . , 0) (the number
of 1’s is 2i).

Proof. Let g ∈ GLn(C) be an upper triangular matrix and write it as g =

[
g1 g2

0 g3

]
where

g1 is i × i. Let X be a skew-symmetric matrix and write it as X =

[
A B
−BT C

]
where A is

2i×2i. Then (g ·fi)(X) = fi(g
−1 ·X) = fi(g

TXg). The upper left 2i×2i submatrix of gTXg
is gT1 Ag1, and its Pfaffian is det(g1)fi(X), which shows that fi is a highest weight vector of
weight (1, . . . , 1, 0, . . . , 0). �

Consider the 2 × 2 matrix

[
0 1
−1 0

]
. If n is even, let Jn be the block diagonal matrix

consisting of n/2 copies of this matrix. If n is odd, then let Jn be the block diagonal matrix
consisting of (n− 1)/2 copies of this matrix and one extra 0 at the end.

Lemma 1.2.17. The B-orbit of the identity matrix Jn is open and dense.

Proof. The B-orbit of Jn is the set of skew-symmetric matrices which can be factored as
gTJng for some invertible upper triangular matrix g. We claim that this is the set of skew-
symmetric matrices X such that fi(X) 6= 0 for i = 1, . . . , bn/2c, and prove it by induction
on n.

We first handle the case when n is even. If n = 2, this is clear. Otherwise, write X =[
X ′ y
−yT z

]
where X ′ has size (n−2)×(n−2). By induction, fi(X

′) 6= 0 for i = 1, . . . , (n−2)/2

and so we have X ′ = hTJn−2h for an invertible upper triangular (n− 2)× (n− 2) matrix h.
Then we have [

X ′ y
−yT z

]
=

[
hT 0
αT βT

] [
Jn−2 0

0 J2

] [
h α
0 β

]
where α = (hTJn−2)−1y and β =

[
z1,2 0
0 1

]
. The new matrices we produced are automatically

invertible since their product is invertible (by the assumption fn/2(X) 6= 0).
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Now we do the case when n is odd. Write X =

[
X ′ y
−yT 0

]
where X ′ has size (n−1)×(n−1).

Since n − 1 is even, we can factor X ′ = hTJn−1h for an upper triangular invertible matrix
h. Then we have [

X ′ y
−yT 0

]
=

[
hT 0
αT 1

] [
Jn−1 0

0 0

] [
h α
0 1

]
where α = (hTJn−1)−1y and clearly

[
h α
0 1

]
is invertible and upper-triangular.

This implies that the orbit is Zariski open (and hence dense). �

Lemma 1.2.18. If λ is a weight of a highest weight vector in SymU∗, then λ†i is even for
all i and λn ≥ 0.

Proof. We use Theorem 1.2.6. If n = 2m is even, let h be the diagonal matrix with entries
x1, x

−1
1 , . . . , xm, x

−1
m . Then hTJnh = Jn and λ(h) = xλ1−λ21 xλ3−λ42 · · ·xλn−1−λn

m . If this is 1 for
all choices of x1, . . . , xm, then we must have λ1 = λ2, λ3 = λ4, etc. This is the same as saying
that λ†i is even for all i.

If n = 2m+ 1 is odd, let h be the diagonal matrix with entries x1, x
−1
1 , . . . , xm, x

−1
m , xm+1.

Then hTJnh = Jn and λ(h) = xλ1−λ21 xλ3−λ42 · · · xλn−2−λn−1
m xλnm+1. If this is 1 for all choices of

x1, . . . , xm+1, then we must have λ1 = λ2, λ3 = λ4, etc. and λn = 0. This is the same as
saying that λ†i is even for all i.

In either case, all weights of Sym(U∗) are non-negative, so we also get that λn ≥ 0. �

Corollary 1.2.19. We have an isomorphism of GLn(C) representations

Sym(
2∧

Cn) ∼=
⊕
λ

S(2λ)†(C
n)

where the sum is over all integer partitions such that 2λ1 ≤ n.

Proof. We have shown that Sym(
∧2 Cn) is multiplicity-free and all highest weights are of

the form (2λ)† for an integer partition λ. It remains to show they all appear in the decom-
position, but we can get all of them by multiplying the functions f1, . . . , fbn/2c with various
multiplicities. �

1.3. Schur functors. This section will mostly give facts without proofs.
Let λ = (λ1, . . . , λr) be a partition of d and set µ = λ† = (µ1, . . . , µs). The Schur functor

SλV is defined to be the image of the following composition:
µ1∧
V ⊗ · · · ⊗

µs∧
V → V ⊗µ1 ⊗ · · · ⊗ V ⊗µs

→ V ⊗λ1 ⊗ · · · ⊗ V ⊗λr

→ Symλ1 V ⊗ · · · ⊗ Symλr V,

where the first map is given by comultiplication:

d∧
V → V ⊗d

v1 ∧ · · · ∧ vd 7→
∑
σ∈Sd

(sgnσ)vσ(1) ⊗ · · · ⊗ vσ(d)
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(Sd denotes the symmetric group on d letters), the second map is a certain reordering
that we will explain shortly, and the third map is multiplication, i.e., the quotient map
V ⊗d → Symd V .

The reordering is best understood in terms of Young diagrams, which we will illustrate
with an example.

Example 1.3.1. Consider λ = (3, 2) so that µ = (2, 2, 1). Then
∧2 V ⊗

∧2 V ⊗ V is
spanned by elements of the form (v1 ∧ v2) ⊗ (v3 ∧ v4) ⊗ v5. We can record element of V ⊗5

by putting vectors into the boxes of Y (λ). The order we do this in depends: if we write
V ⊗5 = V ⊗µ1 ⊗ · · · ⊗ V ⊗µs , then we will think of these as the columns of Y (λ). On the other
hand, writing V ⊗5 = V ⊗λ1 ⊗ · · · ⊗ V ⊗λr , we will instead think of these as the rows of the
Y (λ). The map then looks as follows:

(v1 ∧ v2)⊗ (v3 ∧ v4)⊗ v5 7→ v1 v3 v5

v2 v4

− v2 v3 v5

v1 v4

− v1 v4 v5

v2 v3

+ v2 v4 v5

v1 v3

7→ v1v3v5 ⊗ v2v4 − v2v3v5 ⊗ v1v4 − v1v4v5 ⊗ v2v3 + v2v4v5 ⊗ v1v3.�

Since all of the maps are GL(V )-equivariant, we see that Sλ(V ) is a GL(V )-representation.
It follows immediately from the definition that Sλ(V ) = 0 if `(λ) > dimV since the corre-
sponding exterior power

∧µ1 V is 0.

Example 1.3.2. There are two extreme cases that we already know. If λ = (d), then the
map becomes the quotient map V ⊗d → Symd V so that S(d)V = Symd V . On the other

hand, if λ = (1d), then the map becomes the comultiplication map
∧d V → V ⊗d, which is

injective, so S(1d)V =
∧d V . �

Fix a basis e1, . . . , en for V . We would like to find a basis for SλV . Given a tableau T
on Y (λ), i.e., a filling of the boxes of Y (λ) with the numbers 1, . . . , n, we get a vector in∧µ1 V ⊗ · · · ⊗

∧µs V by taking

(eT1,1 ∧ eT2,1 ∧ · · · ∧ eTµ1,1)⊗ · · · ⊗ (eT1,s ∧ · · · ∧ eTµs,s);

let eT be its image in SλV .
We say that T is semistandard if Ti,j ≤ Ti,j+1 and Ti,j < Ti+1,j for all i, j where that

makes sense.

Theorem 1.3.3. {eT | T is semistandard} is a basis for SλV .

The proof is elementary, but complicated, so we will omit it.
The eT are all weight vectors of weight µ(T ) where µ(T )i is the number of times that i

appears in the tableau T . Note that different tableau can have the same weight. Consider
the tableau T where the boxes in row i are filled with i. Then this is a highest weight
vector of weight λ since it is the image of a tensor product of highest weight vectors in the
exterior powers. In fact, there are no other highest weight vectors (we omit the proof), so
we conclude the following theorem:

Theorem 1.3.4. SλV is an irreducible polynomial representation of GL(V ) of highest weight
λ.

We see that the dimension of SλV is the number of semistandard Young tableau (SSYT)
of shape λ. We give two formulas for this quantity:
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Theorem 1.3.5.

dim Sλ(C
n) =

∏
1≤i<j≤n

λi − λj + j − i
j − i

.

Given a box (i, j) in the Young diagram of λ, its hook is the set of boxes to the right
and below it (including itself). Its hook length h(i, j) is the number of boxes in the hook.
Below, we list the hook lengths for the partition (6, 3, 1):

8 6 5 3 2 1
4 2 1
1

Given a box (i, j) ∈ Y (λ), define its content to be c(i, j) = j − i.

Theorem 1.3.6 (Hook-content formula).

dim Sλ(C
n) =

∏
(i,j)∈Y (λ)

n+ c(i, j)

h(i, j)
.

Example 1.3.7. Consider λ = (3, 2). The first formula gives us (we only have to consider
the terms with i = 1, 2 since otherwise the term is 1):

dim S(3,2)(C
n) = (

3− 2 + 1

2− 1

3 + 2

2

3 + 3

3
· · · 3 + (n− 1)

n− 1
)(

2 + 1

1

2 + 2

2
· · · 2 + (n− 2)

n− 2
)

= 2
(n+ 2)!

4!(n− 1)!

n!

2(n− 2)!

=
1

4!
(n+ 2)(n+ 1)n2(n− 1).

The second formula gives the last expression directly. �

1.4. Symmetric polynomials and functions.

Lemma 1.4.1. char(ρ)(x1, . . . , xn) is symmetric, i.e., for any permutation σ, we have
char(ρ)(x1, . . . , xn) = char(ρ)(xσ(1), . . . , xσ(n)).

Proof. Each permutation σ corresponds to a permutation matrix M(σ): this is the matrix
with a 1 in row σ(i) and column i for i = 1, . . . , n and 0’s everywhere else. Then

M(σ)−1diag(x1, . . . , xn)M(σ) = diag(xσ(1), . . . , xσ(n)).

Now use that the trace of a matrix is invariant under conjugation:

char(ρ)(x1, . . . , xn) = Tr(ρ(diag(x1, . . . , xn)))

= Tr(ρ(M(σ))−1ρ(diag(x1, . . . , xn))ρ(M(σ)))

= Tr(ρ(M(σ)−1diag(x1, . . . , xn)M(σ)))

= Tr(ρ(diag(xσ(1), . . . , xσ(n))))

= char(ρ)(xσ(1), . . . , xσ(n)). �

By Proposition 1.1.6, we know that every representation becomes polynomial after ten-
soring with a large enough power of the determinant. This means that every character is of
the form f(x1, . . . , xn)/(x1 · · ·xn)d where f is a symmetric polynomial (i.e., invariant under
permutations of the variables).
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We denote Λ(n) to be the set of symmetric polynomials in n variables x1, . . . , xn with
integer coefficients. This is a ring under usual addition and multiplication and contains the
characters of polynomial representations of GLn(C).

We can do something analogous for representations of GLn(C)×GLm(C): let Λ(n,m) be
the set of polynomials in two sets of variables x1, . . . , xn, y1, . . . , ym with integer coefficients
which are symmetric in each set separately.

1.4.1. Schur polynomials. The Schur polynomial sλ(x1, . . . , xn) is the character of Sλ(C
n).

These form a basis for Λ(n) (can be proven combinatorially, see Math 202B, or using general
results about representation theory, see Math 251AB). We can write it as a sum of xµ(T )

over SSYT T of shape λ where µ(T ) is the weight of T . The Weyl character formula can be
translated to give a more compact formula which we explain now.

Let α = (α1, . . . , αn) be a non-negative integer sequence. Define

aα = det(x
αj
i )ni,j=1 = det


xα1

1 xα2
1 · · · xαn1

xα1
2 xα2

2 · · · xαn2
...

...
xα1
n xα2

n · · · xαnn

 =
∑
σ∈Sn

sgn(σ)σ(xα).

Note that aα is skew-symmetric: if we permute aα by a permutation σ ∈ Sn, then it changes
by sgn(σ). Let ρ = (n− 1, n− 2, . . . , 1, 0).

Lemma 1.4.2. (a)
∏

1≤i<j≤n(xi−xj) divides every skew-symmetric polynomial in x1, . . . , xn.

(b) aρ =
∏

1≤i<j≤n(xi − xj).

Proof. (a) Let f(x1, . . . , xn) be skew-symmetric and let σ be the transposition (i, j). Then
σf = −f . However, σf and f are the same if we replace xj by xi, so this says that specializing
xj to xi gives 0, i.e., f is divisible by (xi − xj). This is true for any i, j, so this proves (a).

(b) aρ is divisible by
∏

1≤i<j≤n(xi − xj) since it is skew-symmetric. But also note that

both are polynomials of degree 1 + 2 + · · · + (n − 1) =
(
n
2

)
, so they are equal up to some

integer multiple. The coefficient of xn−1
1 xn−2

2 · · ·xn−1 for both is 1, so they are actually the
same. �

Define α + β = (α1 + β1, . . . , αn + βn).

Theorem 1.4.3 (Weyl character formula for GLn(C)). Given a partition λ,

sλ(x1, . . . , xn) =
aλ+ρ

aρ
=

det(x
λj+n−j
i )ni,j=1∏

1≤i<j≤n(xi − xj)
.

Remark 1.4.4. The Weyl character formula usually takes this form:

sλ(x1, . . . , xn) =

∑
σ∈Sn sgn(σ)σ(xλ+ρ)∑
σ∈Sn sgn(σ)σ(xρ)

. �

1.4.2. Cauchy identity and some plethysm. From the way we defined it, it makes sense to
apply a Schur functor to any representation W of GLn(C): Sλ(W ). If we think of this as
a representation of GLn(C) (rather than GL(W )), then we can get an expression for its
character as follows. Let w1, . . . , wN be the weights (repeated as necessary) of W . Then

char(Sλ(W ))(x1, . . . , xn) = sλ(x
w1 , . . . , xwN ).
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We denote this by sλ ◦ char(W ). It is then possible to write this as a linear combination of
Schur polynomials in the xi which tells us how the representation decomposes into irreducible
representations. Explicitly doing this is hard in general, though in specific examples it can
be done with basic linear algebra. More generally, any symmetric polynomial f is a linear
combination of Schur polynomials

∑
cλsλ(x), so we can f ◦ char(W ) =

∑
λ cλsλ ◦ char(W )

for any symmetric polynomial f . Actually, it is possible to extend the definition further
and allow char(W ) to be any symmetric polynomial as well, though we won’t do that. This
operation is called plethysm.

Now we’ll translate the multiplicity-free actions studied earlier into symmetric polynomial
identities. To do that, we will work with power series in a new variable t whose coefficients
lie in Λ(n). First we need a simple identity. Let hd(x) = char(Symd Cn).

Lemma 1.4.5. ∑
d≥0

hd(x)td =
1∏n

i=1(1− xit)
.

Proof. The left side is the sum of xd11 · · ·xdnn td1+···+dn over all choices of non-negative integers
d1, . . . , dn. Using the geometric series, the right side is the product

n∏
i=1

(
∑
di≥0

xdii t
di),

which is the same when expanded out. �

Theorem 1.4.6 (Cauchy identity).
n∏
i=1

m∏
j=1

(1− xiyjt)−1 =
∑
λ

sλ(x1, . . . , xn)sλ(y1, . . . , ym)t|λ|

where the sum is over all integer partitions with λ1 ≥ · · · ≥ λmin(n,m) ≥ 0.

Proof. By Corollary 1.2.11, we have∑
d≥0

hd(x1y1, . . . , xnym)td =
∑
λ

sλ(x1, . . . , xn)sλ(y1, . . . , ym)t|λ|.

Use the previous lemma to replace the left side. �

Similarly, we get the following two identities using Corollary 1.2.15 and Corollary 1.2.19:

Theorem 1.4.7. ∏
1≤i≤j≤n

(1− xixjt)−1 =
∑
λ

s2λ(x1, . . . , xn)t|λ|,

∏
1≤i<j≤n

(1− xixjt)−1 =
∑
λ

s(2λ)†(x1, . . . , xn)t|λ|.

1.4.3. Symmetric functions. We have maps πn : Λ(n+1)→ Λ(n) obtained by f(x1, . . . , xn, xn+1) 7→
f(x1, . . . , xn, 0). This gives us a way to compare representations of GLn+1(C) with GLn(C).
It follows from our interpretation in terms of SSYT that πn(sλ(x1, . . . , xn+1)) = sλ(x1, . . . , xn).

We define Λ to be the graded inverse limit of the system {πn : Λ(n+1)→ Λ(n)}. Explicitly,
a degree d element f ∈ Λ is a sequence of degree d elements fn ∈ Λ(n) such that πn(fn+1) = fn
for all n. A general element of Λ is a finite sum of degree d elements. Concretely, we can
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think of elements f ∈ Λ as bounded-degree power series in x1, x2, . . . which are invariant
under all permutations of the variables. The connection is that fn = f(x1, . . . , xn, 0, 0, . . . ).
Elements of Λ are called symmetric functions.

An example is given by the sequence of Schur polynomials sλ(x1, . . . , xn) (if `(λ) > n,
then this is defined to be 0), and the limit symmetric function is the Schur function sλ.
They form a basis for Λ.

Note that Λ is also a ring under the usual addition and multiplication operations and
that the specialization maps Λ → Λ(n) obtained by xn+1 = xn+2 = · · · = 0 are ring
homomorphisms. Explicitly, this means that if we do computations, such as multiplication
or plethysm, we can do it in the ring Λ and then we automatically get answers in Λ(n) for
all n. Heuristically: “the representation theory of polynomial representations of GLn(C)
exhibits stability with respect to n”. This will not hold for the symplectic and orthogonal
groups in general, though will hold if we require n� 0.

1.4.4. Littlewood–Richardson coefficients. Since the Schur functions sλ form a basis for Λ,
there exist integers cλµ,ν such that sµsν =

∑
λ c

λ
µ,νsλ. These are the Littlewood–Richardson

coefficients. There are various combinatorial ways to compute them, but we will not go
into the general case. But here are two properties:

• If cλµ,ν 6= 0, then µ ⊆ λ and ν ⊆ λ.

• cλµ,ν = cλ
†

µ†,ν†

By specializing to n variables, we see that

sµ(x1, . . . , xn)sν(x1, . . . , xn) =
∑
λ

cλµ,νsλ(x1, . . . , xn)

with the understanding that sλ(x1, . . . , xn) = 0 if `(λ) > n. The left side is the character of
the tensor product Sµ(Cn)⊗Sν(C

n), and since the Schur polynomials form a basis for Λ(n),
the right side describes the unique way to decompose this tensor product into irreducible
representations, so in particular, cλµ,ν ≥ 0. This decomposition is basically insensitive to the
value of n, and this is one instance of stabilization mentioned above.

There are two important special cases of the Littlewood–Richardson coefficients which are
worth mentioning. The first is when ν = (k), i.e., sν is the character of the kth symmetric
power and the second is when ν = (1k), i.e., when sν is the character of the kth exterior
power. Then we have the following rules:

Theorem 1.4.8 (Pieri rule).

sµsk =
∑
λ s.t.

|λ|=|µ|+k,
λ1≥µ1≥λ2≥µ2≥···

sλ, sµs(1k) =
∑
λ s.t.

|λ|=|µ|+k,
λ†1≥µ

†
1≥λ

†
2≥µ

†
2≥···

sλ.

We can give another interpretation as follows. Say that λ/µ is a horizontal strip if no
column in the skew Young diagram of λ/ν contains 2 or more boxes. Similarly, say that λ/µ
is a vertical strip if no row in the skew Young diagram of λ/µ contains 2 or more boxes.

Theorem 1.4.9 (Pieri rule). • If ν = (k), then

cλµ,(k) =

{
1 if |λ| = |µ|+ k and λ/µ is a horizontal strip

0 otherwise
.
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In other words,

sµsk =
∑
λ

sλ

where the sum is over all λ such that λ/µ is a horizontal strip of size k.
• If ν = (1k), then

cλµ,(1k) =

{
1 if |λ| = |µ|+ k and λ/µ is a vertical strip

0 otherwise
.

In other words,

sµs1k =
∑
λ

sλ

where the sum is over all λ such that λ/µ is a vertical strip of size k.

2. Symplectic groups

2.1. Definitions and basic properties. Recall that we defined an action of GLm(C) on∧2 Cm, the space of m×m skew-symmetric matrices, by

g · u = (g−1)Tug−1.

We will assume that m = 2n is even. The symplectic group Sp2n(C) is the stabilizer of
a full rank matrix. Note that any two full rank matrices are in the same orbit, so any two
choices lead to conjugate subgroups of GL2n(C), and in particular are isomorphic.

For concreteness, let I ′ be the n× n matrix which is 1 on the antidiagonal, i.e., I ′i,j = 1 if
j = n+ 1− i and 0 otherwise, and we take the following skew-symmetric matrix:

Ω =

[
0 I ′

−I ′ 0

]
.

In symbols,

Sp2n(C) = {g | gTΩg = Ω} = {g ∈ GL2n(C) | Ω−1(gT )−1Ω = g}.
We take m even so that this is a semisimple group (otherwise it is not). Note that either
description shows that Sp2n(C) is the zero set of polynomial functions on the space of 2n×2n
matrices, and hence is an affine variety (since we can realize GL as an affine variety).

There is a definition of (Krull) dimension for algebraic varieties which is too complicated
to get into now, but we will note a few properties:

(1) dim GLn(C) = n2

(2) If X is a vector space, then dimX is the usual dimension of X as a vector space.
(3) If U is a nonempty open subset of an irreducible variety, then dimU = dimX.
(4) If U is an orbit of G and H is the stabilizer of a point in U , then dimG− dimH =

dimU .
(5) dim(X × Y ) = dimX + dimY

Combining these properties, we see that

dim Sp2n(C) = dim GL2n(C)− dim
2∧

C2n = (2n)2 −
(

2n

2

)
= n(2n+ 1).

The matrix Ω defines a bilinear form on C2n as follows: given v, w ∈ C2n, we define

ω(v, w) = vTΩw.
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Since ΩT = −Ω, we see that ω(v, w) = −ω(w, v), so it is skew-symmetric. Furthermore,
since rank Ω = 2n, ω is non-degenerate: for all v, there exists w such that ω(v, w) 6= 0. A
symplectic form is, by definition, a skew-symmetric non-degenerate bilinear form. With
respect to the standard basis e1, . . . , e2n, we have

ω(ei, e2n+1−j) = δi,j for 1 ≤ i ≤ n.

We will call any basis with this property a symplectic basis.
A representation is a homomorphism ρ : Sp2n(C) → GL(W ) for some vector space W

whose entries are rational functions after picking a basis for W . Much of the theory from
GL2n(C) carries over. We repeat it here with the updated terms.

Given a symplectic basis, we let the Borel subgroup B be the group of upper triangular
matrices in Sp2n(C) and the maximal torus T be the group of diagonal matrices. The latter
are diagonal matrices with entries x1, x2, . . . , xn, x

−1
n , . . . , x−1

1 .
If ρ : Sp2n(C)→ GL(W ) is a representation, then there is a basis w1, . . . , wr for W such

that each wi is an eigenvector of ρ(t) for all t ∈ T ; if the entries of t are x1, . . . , xn, x
−1
n , . . . , x−1

1 ,
then the eigenvalues are of the form x

µi,1
1 · · ·xµi,nn for some µi,1, . . . , µi,n ∈ Z. Any vector w

which is an eigenvector for all ρ(t) is called a weight vector and (µ1, . . . , µn) is its weight
if ρ(t)(w) = xµ11 · · ·xµnn w for all x1, . . . , xn. We also write µ(t) for xµ11 · · ·xµnn .

The character of ρ is defined to be the function char(ρ)(x1, . . . , xn) = Tr ρ(t) where t is
the diagonal matrix with entries x1, . . . , xn, x

−1
n , . . . , x−1

1 and Tr denotes trace. Alternatively,
char(ρ)(x1, . . . , xn) =

∑r
i=1 x

µi,1
1 · · ·xµi,nn .

A nonzero vector w ∈ W is a highest weight vector if b ·w is a scalar multiple of w for
all b ∈ B. In particular, it is an eigenvector for all ρ(t) for t ∈ T , so it is also a weight vector.
If µ is the weight of this vector, we write µ(b) for the scalar multiple i.e., b · w = µ(b)w.

We can define direct sums, tensor products, and duals in the same way and they transform
characters in the same way.

Theorem 2.1.1. (1) Every finite-dimensional representation of Sp2n(C) is semisimple.
(2) Two representations of Sp2n(C) are isomorphic if and only if they have the same

character.
(3) (Schur’s lemma) There are no nonzero homomorphisms between non-isomorphic sim-

ple representations. Any homomorphism from a simple representation to itself must
be a scalar multiple of the identity.

(4) Every finite-dimensional representation contains a highest weight vector.
(5) Any two highest weight vectors (for a particular choice of Borel subgroup) in an

irreducible representation are scalar multiples of each other.
(6) The weight (µ1, . . . , µn) of a highest weight vector satisfies µ1 ≥ · · · ≥ µn ≥ 0.
(7) For every (µ1, . . . , µn) ∈ Zn satisfying µ1 ≥ · · · ≥ µn ≥ 0, there is an irreducible

representation whose highest weight vector has that weight.

We will denote the irreducible representation whose highest weight is µ by S[µ](C
2n).

Example 2.1.2. (1) Take ρ to be the natural inclusion Sp2n(C) → GL2n(C), so W =
C2n. The standard basis vectors e1, . . . , e2n are weight vectors where for i = 1, . . . , n,
the weight of ei is (0, . . . , 1, . . . , 0) (with a 1 in position i) and the weight of e2n+1−i
is (0, . . . ,−1, . . . , 0) (with a −1 in position i). The highest weight vector is e1 and
the character is

∑n
i=1(xi + x−1

i ). Note that this implies that W is isomorphic to its
dual representation since its character is invariant under xi 7→ x−1

i .
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(2) In general, if ρ : GL2n(C) → GL(W ) is a rational representation, then we get a
rational representation by restricting to Sp2n(C). We denote this representation by
ρ|Sp2n(C). Then we have

char(ρ|Sp2n(C))(x1, . . . , xn) = char(ρ)(x1, . . . , xn, x
−1
n , . . . , x−1

1 ).

(3) Consider the second exterior power
∧2 C2n with n ≥ 2. Its character as a GL2n(C)

representation (using y variables) is
∑

1≤i<j≤2n yiyj. So the character of its restric-

tion to Sp2n(C) is
∑

1≤i<j≤n(xixj + x−1
i x−1

j ) +
∑

i 6=j xix
−1
j + n. By definition of the

symplectic group, the line spanned by Ω is a trivial subrepresentation of
∧2 C2n. Let∧2

0 C2n denote a complementary subrepresentation. In fact, this is irreducible: the
only weights that appear in it that potentially be highest weights are (1, 1, 0, . . . , 0)
and (0, 0, . . . , 0). We leave it as an exercise to show that there are no further trivial
subrepresentations. �

A general question that we will address: given an irreducible GL2n(C) representation
Sλ(C

2n), how do we determine the decomposition of its restriction to Sp2n(C) as a direct
sum of irreducible representations? This is known as a branching problem. We will see
that the answer is uniform in n as long as n ≥ `(λ), but otherwise there are complications
(which we will also discuss).

The following fact will be used and we sketch a proof in the homework:

Proposition 2.1.3. GLn(C) and Sp2n(C) are connected in the Zariski topology.

2.2. Multiplicity-free action. We will study a multiplicity-free action of GLn(C)×Sp2n(C).
This representation will be very helpful for understanding the branching problem. The re-
sults about representations carry over to this product group so we won’t restate them.

Given a symplectic form ω on C2n, a subspace V ⊂ C2n is isotropic if ω(x, y) = 0 for all
x, y ∈ V . A few basic properties (which we leave to exercises):

(1) Every 1-dimensional subspace is isotropic.
(2) If V is isotropic, then dimV ≤ n. In this case, V is called Lagrangian.
(3) Given 2 isotropic subspaces V1, V2 with dimV1 = dimV2, there exists g ∈ Sp2n(C)

such that gV1 = V2.
(4) Every isotropic subspace is contained in a Lagrangian subspace.

Now consider the space U = (C2n ⊗ Cn)∗ which we identify with 2n × n matrices. We
define an action of GLn(C)× Sp2n(C) by

(g, h) · u = (h−1)Tug−1.

Define
X = {u ∈ U | uTΩu = 0}.

Since uTΩu is a skew-symmetric matrix whose entries are polynomial functions of the en-
tries of u, we see that X is an affine variety which is the solution set of

(
n
2

)
polynomials.

Alternatively, X is the subset of maps u : Cn → C2n such that u(Cn) is an isotropic sub-
space. Then X is closed under the action of GLn(C)× Sp2n(C): if u ∈ X, then using that
(h−1)T = ΩhΩT , we have

(g−1)TuTΩhTΩTΩΩhΩTug−1 = (g−1)TuTΩug−1 = (g−1)T0g−1 = 0.

Proposition 2.2.1. X is irreducible.
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Proof. Let X◦ be the subset of matrices of full rank n, i.e., where the map u : Cn → C2n

is injective. Then GLn(C) × Sp2n(C) acts transitively on X◦: the image is a Lagrangian
subspace and Sp2n(C) acts transitively on those, while for a fixed Lagrangian L, the set of
linear isomorphisms Cn → L is a single orbit under pre-composition by GLn(C).

Picking any point in x ∈ X◦, we get a surjective map GLn(C) × Sp2n(C) → X◦ via
(g, h) 7→ (g, h) ·x. Since the target is connected, it is also irreducible (exercise). This implies
that the target is also irreducible (the image of an irreducible space is always irreducible).

Next, we show that X◦ is dense in X which finishes the proof (if X = X1 ∪ X2 both
closed, then X◦ = Xi∩X◦ for some i by irreducibility, i.e., X◦ is contained in one of the Xi,
but denseness implies Xi = X). Let Y ⊂ X be a closed subset containing X◦ and assume
Y 6= X. Pick u ∈ X \ Y , i.e., ranku = r < n. We can find a basis v1, . . . , vn for Cn so that
u(v1), . . . , u(vr) are linearly independent and u(vr+1) = · · · = u(vn) = 0. By the properties
above, we can find vectors wr+1, . . . , wn ∈ C2n so that u(v1), . . . , u(vr), wr+1, . . . , wn spans
an isotropic subspace of dimension n.

Now define ϕ : C → X by letting ϕ(t) be the function ϕ(t)(vi) = u(vi) for i = 1, . . . , r
and ϕ(t)(vi) = twi for i = r + 1, . . . , n. Then ϕ is continuous and ϕ(0) = u while ϕ(t) ∈ X◦
for t 6= 0. In particular, ϕ−1(Y ) = C \ 0 is closed, but then that implies C = ϕ−1(Y ) ∪ 0 is
reducible, a contradiction. Hence u does not exist, so Y = X, which means X◦ is dense. �

Let J be the 2n × n matrix with Ji,i = 1 for i = 1, . . . , n and 0’s elsewhere. Let B ⊂
GLn(C) be the subgroup of upper-triangular matrices, and similarly, let B′ ⊂ Sp2n(C) be
the subgroup of upper-triangular matrices.

Let fi ∈ C[X] be the function which takes the determinant of the upper-left i×i submatrix.

Proposition 2.2.2. fi is a highest weight vector with weight (1, . . . , 1, 0, . . . , 0), (1, . . . , 1, 0, . . . , 0)
(the number of 1’s in each vector is i).

Proof. Pick upper-triangular matrices g ∈ GLn(C) and h ∈ Sp2n(C) and write g =

[
x1 y1

0 z1

]
and h =

[
x2 y2

0 z2

]
where x1, x2 are i× i. Then (g, h) · fi is the determinant of the upper-left

i × i submatrix of hTug, which is det(x1) det(x2)fi. In particular, it is a highest weight
vector. If g, h are diagonal, then det(x1) det(x2) is the product of the first i entries of g and
h, so we get the weight also. �

Lemma 2.2.3. The B ×B′ orbit in X containing J is open and dense.

Proof. We claim that the orbit is precisely the set of matrices A such that fi(A) 6= 0 for
i = 1, . . . , n. It is easy to see that being in the orbit implies the condition on submatrices,
so we just prove the reverse direction. Before proving the claim, note that this shows that
the orbit is

⋂n
i=1(U \ Z(fi)), which is open (denseness follows from Propositions 1.2.4 and

1.2.5).
The action of B is by column operations (we can add any multiple of a column to one

that appears to the right of it and also scale columns). Since f1(A) 6= 0, we can use column
operations to assume that the first row is (1, 0, . . . , 0). Note this doesn’t change the fact
that the fi are nonzero. Using f2 6= 0, we see the (2, 2) entry is nonzero and then assume
the second row is (x, 1, 0, . . . , 0) (for some x ∈ C). Continuing in this way, we can use an
element of B to turn the top n × n matrix into a lower-triangular matrix with 1’s on the
diagonal.
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Similarly, B′ acts by row operations (we can add any multiple of a row to one that appears
below it and also scale) which preserve the symplectic form. An arbitrary invertible linear
transformation g of the basis vectors e1, . . . , en can be extended to the symplectic group

element

[
g 0
0 (I ′)−1(gT )−1I ′

]
, so we can also do row operations to assume the top n × n

matrix of A is the identity.

So far, we know that our matrix is in the B × B′ orbit of

[
In
h

]
. Since this belongs to X,

we get −hT I ′ + I ′h = 0. Multiplying by I ′ on the left and right we get −I ′hT + hI ′ = 0 and

implies that H =

[
I −hT
0 I

]
∈ Sp2n(C). Finally, (1, H−1) ·

[
In
h

]
= J . �

Lemma 2.2.4. If (λ, λ′) is the weight of a highest weight vector in C[X], then λi = λ′i for
1 ≤ i ≤ n.

Proof. The stabilizer of J contains pairs of diagonal matrices (g, h) where the entries of h
are x1, . . . , xn, x

−1
n , . . . , x−1

1 and the entries of g are x−1
1 , . . . , x−1

n . By Theorem 1.2.6, we see

that x
λ1−λ′1
1 · · ·xλn−λ

′
n

n = 1 for all x1, . . . , xm. This forces all of the exponents to be 0. �

Finally, each pair (λ, λ′) as above is the highest weight for some irreducible representa-
tion in C[X] by Proposition 1.2.7 since every partition λ is a sum of vectors of the form
(1, 1, . . . , 1, 0, . . . , 0).

Corollary 2.2.5 (Symplectic Cauchy identity). We have an isomorphism of GLn(C) ×
Sp2n(C) representations

C[X] ∼=
⊕
λ

Sλ(C
n)⊗ S[λ](C

2n)

where the sum is over all integer partitions λ1 ≥ · · · ≥ λn ≥ 0.

2.3. Branching problem. We can use X from the previous section to study the branching
problem from GL2n(C) to Sp2n(C). Our approach uses some theorems from commutative
algebra, but I will reformulate them in a way that is usable for us.

First, we revisit the equations defining X. We said X = {u | uTΩu = 0}. Since Ω = −Ω,
uTΩu is a skew-symmetric n × n matrix. So taking its upper-triangular entries, we get

(
n
2

)
equations whose common solution set is X.

Proposition 2.3.1. dimX = (3n2 + n)/2 = dimU −
(
n
2

)
.

Proof. We first describe the stabilizer subgroup of J in GLn(C)×Sp2n(C). Since it’s closed

under inverses, we know that (g, h) · J = J implies that hTJg = J . Write h =

[
h1 h2

h3 h4

]
which are n × n. Then this condition implies that h1 = (g−1)T and h2 = 0. The fact that
hTΩh = Ω then implies that h4 = I ′gI ′ and −hT3 I ′g−1 + (g−1)T I ′h3 = 0. Multiply this last
condition by I ′gT on the left and g on the right to get I ′(h3g)T I ′− h3g. This condition says
that h3g is symmetric with respect to the antidiagonal, so in particular, the space of such
choices is just a translate of a vector space of dimension

(
n+1

2

)
. The space of choices for g

has dimension n2, so the stabilizer subgroup has dimension n2 +
(
n+1

2

)
.

This means the orbit of J has dimension

dim(GLn(C)) + dim Sp2n(C)− (n2 +

(
n+ 1

2

)
) =

3n2 + n

2
.
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Since the orbit is dense in X, this is also dimX. �

Krull’s principal ideal theorem implies that given affine varieties X ⊂ Y such that X is
the solution set of r polynomials in C[Y ], we have dimX ≥ dimY − r. When equality is
achieved, as in our example, the set of r polynomials is called a system of parameters. If
furthermore Y is a vector space, then every system of parameters is a regular sequence
(we will move the definitions and some properties to homework). Here is an important
consequence for us:

Theorem 2.3.2. Let U be a vector space and let f1, . . . , fr ∈ C[U ] be a regular sequence
of homogeneous polynomials. Pick a basis {g′i} for C[U ]/(f1, . . . , fr) and let gi ∈ C[U ] be a
coset representative for g′i. Then the map given by

C[U ]/(f1, . . . , fr)⊗C[y1, . . . , yr]→ C[U ]

g′i ⊗ p(y) 7→ gip(f1, . . . , fr)

is an isomorphism of vector spaces.

This will be more useful for us with representations.

Corollary 2.3.3. Let U be a representation and let f1, . . . , fr ∈ C[U ] be a regular sequence
of homogeneous polynomials such that their span is a subrepresentation V . Then we have an
isomorphism of representations

C[U ]/(f1, . . . , fr)⊗ Sym(V ) ∼= C[U ].

Let’s unpackage this for our example. We take U as in this section and f1, . . . , fr are
the entries of the skew-symmetric matrix uTΩu with r =

(
n
2

)
. From the calculation in the

previous section, we get

((g, h) · u)TΩ((g, h) · u) = (g−1)T (uTΩu)g−1

so that we see that f1, . . . , fr span a subrepresentation V of C[U ] where V ∼=
∧2 Cn (with

the Sp2n(C) factor acting trivially). This implies that we have an isomorphism of GLn(C)×
Sp2n(C) representations

C[U ]/(f1, . . . , fr)⊗ Sym(
2∧

Cn) ∼= C[U ].

We want to identify C[U ]/(f1, . . . , fr) with C[X]. The potential issue is this: there might
exist polynomials that are identically 0 on X but which are not generated by f1, . . . , fr.
Fortunately this is not the case:

Proposition 2.3.4. Any polynomial that is identically 0 on X is generated by the entries
of uTΩu. In particular, C[X] = C[U ]/(f1, . . . , fr).

This follows (though we leave it as an exercise) from the following theorem (which we will
not prove, but a more general statement appears as [E, Exercise 11.10]):

Theorem 2.3.5 (Serre’s criterion, special case). Let X be an affine variety in a vector space
U such that X = Z(f1, . . . , fr) for a regular sequence f1, . . . , fr. Let x1, . . . , xN be a basis
for U∗ and consider the Jacobian matrix ( ∂fi

∂xj
). If X is irreducible and there exists a point

α ∈ X such that ( ∂fi
∂xj

(α)) has maximal rank r, then C[X] = C[U ]/(f1, . . . , fr).

(This is also true if X is not irreducible, provided that we can find a point α with the above
property lying on each irreducible component of X, i.e., the maximal irreducible subsets.)
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Remark 2.3.6 (Weyl’s construction). C[X] is a quotient of C[U ] and the kernel is generated
by
∧2(Cn), so in particular the kernel is a quotient C[U ] ⊗

∧2 Cn, i.e., we have an exact
sequence

C[U ]⊗
2∧

Cn → C[U ]→ C[X]→ 0.

We can consider the Sλ(C
n) components of this sequence to get⊕

µ

Sµ(C2n)⊕c
λ
µ,(1,1) → Sλ(C

2n)→ S[λ](C
2n)→ 0.

The first term simplifies a bit: we just sum over µ such that |λ| = |µ| + 2 and λ/µ is a
vertical strip. This gives us a recipe for constructing S[λ](C

2n) using Schur functors: given
µ and λ as above, we have a map

Sµ(C2n)⊗
2∧

(C2n)→ Sλ(C
2n)

by Pieri’s rule. We can identify Sµ(C2n) as the subspace Sµ(C2n) ⊗ 〈Ω〉 of the source, and
then the image of this subspace is a Sp2n(C)-subrepresentation of Sλ(C

2n). If we quotient
by all of these subrepresentations, then we get the irreducible S[λ](C

2n). This is also known
as the space of “traceless tensors”. �

In our situation, we get

C[X]⊗ Sym(
2∧

Cn) ∼= Sym(Cn ⊗C2n).(2.3.7)

Using all of the various multiplicity-free representations we’ve studied this becomes the
following identity:(⊕

µ

Sµ(Cn)⊗ S[µ](C
2n)

)
⊗

(⊕
ν

S(2ν)†(C
n)

)
∼=
⊕
λ

Sλ(C
n)⊗ Sλ(C

2n).

(in the last Sλ(C
2n), this is the restriction of the Schur functor to Sp2n(C)). The left hand

side can be combined using Littlewood–Richardson coefficients:⊕
µ,ν,λ

(Sλ(C
n)⊗ S[µ](C

2n))
⊕cλ

µ,(2ν)† .

Comparing these two expressions we see how Schur functors decompose into irreducible
representations:

Theorem 2.3.8 (Stable branching rule from GL to Sp). Let λ be a partition with `(λ) ≤ n.
Then we have an isomorphism of Sp2n(C)-representations

Sλ(C
2n) ∼=

⊕
µ

S[µ](C
2n)⊕mλ,µ , mλ,µ =

∑
ν

cλµ,(2ν)† .

The “stable” in the name refers to the condition `(λ) ≤ n. Note that the answer does
not depend on n as long as this condition is satisfied. We can make sense of this question
in general, but the method above does not give an answer. We call the case `(λ) > n the
unstable case.
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Example 2.3.9. When λ = µ, we have mλ,λ = 1 since the only valid choice for ν is the
empty partition corresponding to the trivial representation, and cλλ,∅ = 1. The highest weight

vector for GL2n(C) in Sλ(C
2n) is also a highest weight vector of weight λ for the subgroup

Sp2n(C). �

Example 2.3.10. If λ = (1d), then cλ
µ,(2ν)† > 0 implies that both µ and (2ν)† are contained

in (1d), i.e., Y (µ) is a column of size ≤ d and (2ν)† is an even length column of size ≤ d. So
if d ≤ n, we see that

d∧
(C2n) ∼= S[1d](C

2n)⊕ S[1d−2](C
2n)⊕ S[1d−4](C

2n)⊕ · · · .

To see that the unstable case is different, consider d = 2n. Then
∧2n(C2n) is the determinant

representation, and this is trivial on Sp2n(C), so
∧2n(C2n) ∼= S[0](C

2n). �

2.4. Characters of the symplectic group. Given a representation ρ : Sp2n(C)→ GL(W ),
its character char(ρ)(x1, . . . , xn) is the trace of the diagonal matrix with entries x1, . . . , xn, x

−1
n , . . . , x−1

1 .
As with GL-representations, we can show this is symmetric under the group Sn permuting
variables, but actually we can say more.

Let Hn be the group of permutations σ of {x1, . . . , xn, x
−1
n , . . . , x−1

1 } such that σ(1/xi) =
1/σ(xi). In particular, an element consists of a permutation of {1, . . . , n}, and then sepa-
rately for each i, we either choose to send xi to xσ(i) or 1/xσ(i) (and then 1/xi is sent to the
other one). So |Hn| = 2nn! and is the hyperoctahedral group (it’s the group of symme-
tries of an n-dimensional cube). Abstractly, it is the semidirect product Sn n (Z/2)n where
the generator of the ith copy of Z/2 is the permutation ti defined by xi 7→ x−1

i and xj 7→ xj
for j 6= i. (In general Lie theory terms, Hn is the Weyl group of Sp2n(C).)

Lemma 2.4.1. If ρ is a representation of Sp2n(C), then char(ρ)(x1, . . . , xn) is invariant
under Hn.

Proof. Hn is generated by Sn and t1, . . . , tn, so it suffices to show invariance under each.
For σ ∈ Sn, we have a n × n permutation matrix M(σ) and conjugating by the following

element in Sp2n(C):

[
M(σ) 0

0 I ′M(σ)I ′

]
has the effect of x±i 7→ x±σ(i) for a diagonal matrix

with entries x1, . . . , xn, x
−1
n , . . . , x−1

1 . For ti, consider the element in Sp2n(C) given by ej 7→ ej
for j /∈ {i,−i}, ei 7→ e−i, and e−i 7→ −ei. Then conjugating by this element has the effect of
swapping xi and x−1

i for a diagonal matrix with entries x1, . . . , xn, x
−1
n , . . . , x−1

1 . �

Corollary 2.4.2. Every representation of Sp2n(C) is isomorphic to its dual.

Proof. If f(x1, . . . , xn) is the character of V , then f(x−1
1 , . . . , x−1

n ) is the character of V ∗, but
these are equal by the fact that f is Hn-invariant. �

The analogue of Λ(n), the ring of symmetric polynomials, is the ring of Hn-invariant func-
tions ΛSp(2n) = Z[x±1 , . . . , x

±
n ]Hn . Since characters determine representations, the characters

of S[λ](C
2n) are linearly independent. Every monomial is in the orbit of a unique element of

the form xλ11 · · ·xλnn for a partition λ, and the characters actually form a basis for ΛSp(2n).
We let s[λ](x1, . . . , xn) be the character of S[λ](C

2n).
For reference, we state the Weyl character formula. For σ ∈ Hn we let sgn(σ) denote its

sign as an element of S2n.
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Theorem 2.4.3 (Weyl character formula for Sp2n(C)). Set ρ = (n, n− 1, . . . , 2, 1). Then

s[λ](x1, . . . , xn) =
det(x

λj+n−j+1
i − x−(λj+n−j+1)

i )ni,j=1∏n
i=1(xi − x−1

i )
∏

1≤i<j≤n(xi + x−1
i − xj − x−1

j )

=

∑
σ∈Hn sgn(σ)σ(xλ+ρ)∑
σ∈Hn sgn(σ)σ(xρ)

Theorem 2.4.4 (Symplectic Cauchy identity).∏
1≤i<j≤n(1− yiyjt2)∏n

i=1

∏n
j=1(1− xiyjt)(1− x−1

i yjt)
=
∑
λ

s[λ](x1, . . . , xn)sλ(y1, . . . , yn)t|λ|

where the sum is over all λ1 ≥ · · · ≥ λn ≥ 0.

Proof. Let X be as in the previous section. Then by Corollary 2.2.5, we have

char(C[X]) =
∑
λ

s[λ](x1, . . . , xn)sλ(y1, . . . , yn)t|λ|

Using (3.3.4) and the GL Cauchy identities, we get

char(C[X])
∏

1≤i<j≤n

(1− yiyjt2)−1 =
n∏
i=1

n∏
j=1

(1− xiyjt)−1(1− x−1
i yjt)

−1

(the t2 is because
∧2 Cn are degree 2 functions in C[U ]). Rearranging the terms gives us

the identity that we want to prove. �

In Theorem 2.3.8, we obtained an identity of the form

sλ(x1, . . . , xn, x
−1
n , . . . , x−1

1 ) = s[λ](x1, . . . , xn) +
∑

µ, |µ|<|λ|

mλ,µs[µ](x1, . . . , xn).

If we pick an ordering of the partitions of size ≤ |λ| that refines size, i.e., α < β implies
|α| ≤ |β|, then the coefficients mλ,µ can be put into a matrix which is upper-triangular with
1’s on the diagonal, and hence is invertible and its inverse again has integer entries. This
tells us there are certain integers nλ,µ such that

s[λ](x1, . . . , xn) =
∑
µ

nλ,µsµ(x1, . . . , xn, x
−1
n , . . . , x−1

1 ).

Furthermore, nλ,λ = 1 and nλ,µ 6= 0 implies |λ| ≥ |µ|. Also, since mλ,µ is independent of n
once n ≥ `(λ), the same is true for nλ,µ. The coefficients nλ,µ can be determined, but we
will postpone it until later (my approach uses Koszul complexes and I will save it for later
to minimize outside technicalities).

This leads to the following idea: in the ring of symmetric functions Λ, we define sym-
plectic Schur functions via

s[λ] =
∑
µ

nλ,µsµ.

By the upper-triangularity property, these also form a basis for Λ.
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We define specialization maps

πSp(2n) : Λ→ ΛSp(2n)

s[λ] 7→
∑
µ

nλ,µsµ(x1, . . . , xn, x
−1
n , . . . , x−1

1 ).

If n ≥ `(λ), then πSp(2n)(s[λ]) = s[λ](x1, . . . , xn), but otherwise we do not know. We can be
more precise about what happens when n < `(λ), but again I will postpone the discussion.

Lemma 2.4.5 (Modified symplectic Cauchy identity). For any n, r, we have∏
1≤i<j≤r(1− yiyjt2)∏n

i=1

∏r
j=1(1− xiyjt)(1− x−1

i yjt)
=
∑
λ

πSp(2n)(s[λ])sλ(y1, . . . , yr)t
|λ|

where the sum is over partitions λ with `(λ) ≤ r.

Proof. It suffices to show that the identity holds with πSp(2n)(s[λ]) replaced by s[λ](x1, . . . , xn)
and n ≥ 2r. This is obtained by setting yr+1 = · · · = yn = 0 in the symplectic Cauchy
identity. �

We consider the problem of multiplying two symplectic Schur functions. We have integers
such that

s[µ]s[ν] =
∑
λ

Spcλµ,νs[λ]

We will make use of the following GL-identity:

Corollary 2.4.6 (GL branching rule).

sλ(x1, . . . , xn, y1, . . . , ym) =
∑
µ,ν

cλµ,νsµ(x1, . . . , xn)sν(y1, . . . , ym)

where the sum is over all pairs of partitions µ, ν.

Proof. Pick r large. We use the Cauchy identity in two ways:∑
λ

sλ(x1, . . . , xn, y1, . . . , ym)sλ(z1, . . . , zr)t
|λ|

=
r∏
i=1

(
n∏
j=1

(1− xjzit)
m∏
j=1

(1− yjzit)

)

=

(∑
µ

sµ(x1, . . . , xn)sµ(z1, . . . , zr)t
|µ|

)(∑
ν

sν(y1, . . . , ym)sν(z1, . . . , zr)t
|ν|

)
=
∑
µ,ν,λ

sµ(x1, . . . , xn)sν(y1, . . . , ym)cλµ,νsλ(z1, . . . , zr)t
|λ|

By linear independence of Schur polynomials, the coefficients of sλ(z1, . . . , zr) are the same,
which is the identity we want to prove. �

Theorem 2.4.7 (Newell–Littlewood product formula). We have

s[µ](x1, . . . , xn)s[ν](x1, . . . , xn) =
∑
λ,α,β,γ

cλβ,γc
µ
β,αc

ν
γ,απSp(2n)(s[λ])
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and, in particular,
Spcλµ,ν =

∑
α,β,γ

cµα,βc
ν
α,γc

λ
β,γ

where the sum is over all triples of partitions.

Proof. Using the modified symplectic Cauchy identity and the usual Cauchy identity, we
have ∏

1≤i<j≤2n(1− yiyjt2)∏n
i=1

∏2n
j=1(1− xiyjt)(1− x−1

i yjt)
·
n∏
i=1

2n∏
j=n+1

(1− yiyjt2)−1

=

(∑
λ

πSp(2n)(s[λ])sλ(y1, . . . , y2n)t|λ|

)(∑
α

sα(y1, . . . , yn)sα(yn+1, . . . , y2n)t2|α|

)

=

(∑
λ,µ,ν

πSp(2n)(s[λ])c
λ
β,γsβ(y1, . . . , yn)sγ(yn+1, . . . , y2n)t|β|+|γ|

)(∑
α

sα(y1, . . . , yn)sα(yn+1, . . . , y2n)t2|α|

)
=

∑
λ,β,γ,α,µ,ν

πSp(2n)(s[λ])c
λ
β,γc

µ
β,αc

ν
γ,αsµ(y1, . . . , yn)sν(yn+1, . . . , y2n)t|µ|+|ν|.

But also, the first expression factors as∏
1≤i<j≤n(1− yiyjt)∏n

i=1

∏n
j=1(1− xiyjt)(1− x−1

i yjt)
·

∏
n+1≤i<j≤2n(1− yiyjt)∏n

i=1

∏2n
j=n+1(1− xiyjt)(1− x−1

i yjt)

=

(∑
µ

s[µ](x1, . . . , xn)sµ(y1, . . . , yn)t|µ|

)(∑
ν

s[ν](x1, . . . , xn)sν(yn+1, . . . , y2n)t|ν|

)
and compare the coefficients of sµ(y1, . . . , yn)sν(yn+1, . . . , y2n) to get

s[µ](x1, . . . , xn)s[ν](x1, . . . , xn) =
∑
λ,α,β,γ

cλβ,γc
µ
β,αc

ν
γ,απSp(2n)(s[λ]). �

3. Orthogonal groups

We now deal with the next series, the orthogonal groups. Many of the proofs are the same
as for the symplectic groups, so we will just go through the definitions and highlight the
differences.

3.1. Definitions and basic properties. We defined an action of GLm(C) on Sym2 Cm,
the space of m×m symmetric matrices, by

g · u = (g−1)Tug−1.

The orthogonal group Om(C) is the stabilizer of a full rank matrix. Note that any two
full rank matrices are in the same orbit, so any two choices lead to conjugate subgroups of
GLm(C), and in particular are isomorphic.

For concreteness, let I ′ be the m×m matrix which is 1 on the antidiagonal, i.e., I ′i,j = 1
if j = m+ 1− i and 0 otherwise. We take this as our full symmetric matrix. In symbols,

Om(C) = {g | gT I ′g = I ′} = {g ∈ GLm(C) | I ′(gT )−1I ′ = g}.
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If g ∈ Om(C), then det g ∈ {1,−1} (and both values are possible). We define the special
orthogonal group as those with determinant 1:

SOm(C) = {g ∈ Om(C) | det g = 1}.
Unlike the symplectic case, we do not need to restrict the parity of m (although there will

be differences in the even and odd cases). Note that either description shows that Om(C) is
the zero set of polynomial functions on the space of m×m matrices, and hence is an affine
variety (since we can realize GL as an affine variety). We will write m = 2n in the even
case and m = 2n+ 1 in the odd case. If we want to treat both cases uniformly, we will write
m = 2n+ ε where ε ∈ {0, 1}.

We can compute the Krull dimension:

dim Om(C) = dim GLm(C)− dim Sym2 Cm = m2 −
(
m+ 1

2

)
=

(
m

2

)
.

The matrix I ′ defines a bilinear form on Cm as follows: given v, w ∈ Cm, we define

ω(v, w) = vT I ′w.

Since I ′T = I ′, we see that ω(v, w) = ω(w, v), so it is symmetric. Furthermore, since
rank I ′ = m, ω is non-degenerate: for all v, there exists w such that ω(v, w) 6= 0. An
orthogonal form is, by definition, a symmetric non-degenerate bilinear form. With respect
to the standard basis e1, . . . , em, we have

ω(ei, em+1−j) = δi,j.

We will call any basis with this property a hyperbolic basis.
A representation is a homomorphism ρ from either SOm(C) or Om(C) to GL(W ) for

some vector space W whose entries are rational functions after picking a basis for W . Much
of the theory from GLm(C) carries over. We repeat it here with the updated terms. The
representations of both groups are related, though in a slightly tedious way. We will focus
on SOm(C).

Given a hyperbolic basis, we let the Borel subgroup B be the group of upper triangular
matrices in SOm(C) and the maximal torus T be the group of diagonal matrices. The
latter are diagonal matrices with entries x1, x2, . . . , xn, x

−1
n , . . . , x−1

1 if m = 2n is even and
x1, x2, . . . , xn, 1, x

−1
n , . . . , x−1

1 if m = 2n+ 1 is odd.
If ρ : SOm(C)→ GL(W ) is a representation, then there is a basis w1, . . . , wr for W such

that each wi is an eigenvector of ρ(t) for all t ∈ T ; if the entries of t are x1, . . . , xn, (1?), x−1
n , . . . , x−1

1 ,
then the eigenvalues are of the form x

µi,1
1 · · ·xµi,nn for some µi,1, . . . , µi,n ∈ Z. Any vector w

which is an eigenvector for all ρ(t) is called a weight vector and (µ1, . . . , µn) is its weight
if ρ(t)(w) = xµ11 · · ·xµnn w for all x1, . . . , xn. We also write µ(t) for xµ11 · · ·xµnn .

The character of ρ is defined to be the function char(ρ)(x1, . . . , xn) = Tr ρ(t) where t is
the diagonal matrix with entries x1, . . . , xn, (1?), x−1

n , . . . , x−1
1 and Tr denotes trace. Alter-

natively, char(ρ)(x1, . . . , xn) =
∑r

i=1 x
µi,1
1 · · ·xµi,nn .

A nonzero vector w ∈ W is a highest weight vector if b ·w is a scalar multiple of w for
all b ∈ B. In particular, it is an eigenvector for all ρ(t) for t ∈ T , so it is also a weight vector.
If µ is the weight of this vector, we write µ(b) for the scalar multiple i.e., b · w = µ(b)w.

We can define direct sums, tensor products, and duals in the same way and they transform
characters in the same way.

Theorem 3.1.1. (1) Every finite-dimensional representation of SOm(C) is semisimple.



NOTES FOR MATH 251C 31

(2) Two representations of SOm(C) are isomorphic if and only if they have the same
character.

(3) (Schur’s lemma) There are no nonzero homomorphisms between non-isomorphic sim-
ple representations. Any homomorphism from a simple representation to itself must
be a scalar multiple of the identity.

(4) Every finite-dimensional representation contains a highest weight vector.
(5) Any two highest weight vectors (for a particular choice of Borel subgroup) in an

irreducible representation are scalar multiples of each other.
(6) If m is odd, then the weight (µ1, . . . , µn) of a highest weight vector satisfies µ1 ≥
· · · ≥ µn ≥ 0. If m is even, then µ1 ≥ · · · ≥ µn−1 ≥ |µn|.

(7) For every (µ1, . . . , µn) ∈ Zn satisfying the conditions above, there is an irreducible
representation whose highest weight vector has that weight.

When µn = 0 or m is odd, we will denote the irreducible representation whose highest
weight is µ by S[µ](C

m) (not to be confused with irreducible representations of the symplectic
group). Otherwise, when m is even and µn > 0, we use S[µ]+(C2n) to denote the representa-
tion with highest weight µ and S[µ]−(C2n) to denote the representation with highest weight
(µ1, . . . , µn−1,−µn). We reserve S[µ](C

2n) for their direct sum (this will make statements
easier).

Example 3.1.2. (1) Take ρ to be the natural inclusion SOm(C) → GLm(C), so W =
Cm. The standard basis vectors e1, . . . , em are weight vectors where for i = 1, . . . , n,
the weight of ei is (0, . . . , 1, . . . , 0) (with a 1 in position i) and the weight of em+1−i
is (0, . . . ,−1, . . . , 0) (with a −1 in position i). If m is odd, the weight of en+1 is
(0, 0, . . . , 0). The highest weight vector is e1 and the character is

∑n
i=1(xi + x−1

i ) +
ε. Note that this implies that W is isomorphic to its dual representation since its
character is invariant under xi 7→ x−1

i .
(2) In general, if ρ : GLm(C) → GL(W ) is a rational representation, then we get a

rational representation by restricting to SOm(C). We denote this representation by
ρ|SOm(C). Then we have

char(ρ|SOm(C))(x1, . . . , xn) = char(ρ)(x1, . . . , xn, (1?), x−1
n , . . . , x−1

1 ).

(3) Consider the second symmetric power Sym2 Cm with m ≥ 2. Its character as a
GLm(C) representation (using y variables) is

∑
1≤i≤j≤m yiyj. So the character of its

restriction to SOm(C) is
∑

1≤i<j≤n(xixj +x−1
i x−1

j ) +
∑

i 6=j xix
−1
j + ε

∑n
i=1 xi +m. By

definition of the orthogonal group, the line spanned by I ′ is a trivial subrepresentation
of Sym2 Cm. Let Sym2

0 Cm denote a complementary subrepresentation. In fact, this
is irreducible: the only weights that appear in it that potentially be highest weights
are (2, 0, . . . , 0) and (0, 0, . . . , 0). We leave it as an exercise to show that there are no
further trivial subrepresentations. �

As before, we will address the question: given an irreducible GLm(C) representation
Sλ(C

m), how do we determine the decomposition of its restriction to SOm(C) as a direct
sum of irreducible representations? We will see that the answer is uniform in m as long
as n ≥ `(λ) (with some minor complications when m is even), but otherwise there are
complications (which we will also discuss).

The following fact will be used and we sketch a proof in the homework:

Proposition 3.1.3. SOm(C) is connected in the Zariski topology.
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Note, however, that Om(C) has 2 connected components, corresponding to whether the
determinant of an element is 1 or −1.

Remark 3.1.4. SOm(C) is a normal subgroup of Om(C) and the quotient is isomorphic to
Z/2.

When m is odd, −I ∈ Om(C) has determinant −1 and hence is a representative for the
nontrivial coset. Since it is in the center of Om(C), we have Om(C) ∼= SOm(C)×Z/2. This
makes it easy to understand the irreducible representations of Om(C) in terms of those of
SOm(C): we take all of them and either have −I acts as 1 or −1 (so we get twice as many
representations).

The situation when m is even is more complicated: O2n(C) is not a direct product and
the relationship between irreducible representations of SO2n(C) and O2n(C) is more subtle.
For every partition λ with `(λ) ≤ n − 1, there are a pair of irreducible representations Vλ
and Vλ⊗det which differ by tensoring with the determinant representation both of which are
isomorphic to S[λ](C

m) when restricted to SO2n(C). For each partition λ with `(λ) = n, there
is one irreducible representation Vλ ∼= Vλ ⊗ det whose restriction to SO2n(C) is isomorphic
to S[λ](C

2n) = S[λ]+(C2n)⊕ S[λ]−(C2n). �

Remark 3.1.5. For those who have studied Lie algebras: every representation of a Lie
group can be differentiated to get a representation of the corresponding Lie algebra. The
reverse is almost true. Precisely, every finite-dimensional representation of the Lie algebra (in
our examples) can be integrated to a representation of the simply-connected cover of the Lie
group. Here simply-connected is understood with respect to the standard Euclidean topology,
i.e., the fundamental group is trivial, or all loops are homotopy equivalent to a point. Both
GLn(C) and Sp2n(C) are simply-connected, but SOm(C) is not: its fundamental group is
isomorphic to Z/2. So it has a double cover, which is called the spin group. This means that
SOm(C) only sees roughly “half” of the representations of its Lie algebra. Time permitting,
we will discuss the spin group and the missing representations later in the course. �

3.2. Multiplicity-free action. We will study a multiplicity-free action of GLn(C)×SOm(C).
This representation will be very helpful for understanding the branching problem. The re-
sults about representations carry over to this product group so we won’t restate them.

Given an orthogonal form ω on Cm, a subspace V ⊂ Cm is isotropic if ω(x, y) = 0 for
all x, y ∈ V . A few basic properties (which we leave to exercises):

(1) If V is isotropic, then dimV ≤ n.
(2) Given 2 isotropic subspaces V1, V2 with dimV1 = dimV2, there exists g ∈ Om(C) such

that gV1 = V2. Assuming that either m is odd, or that m is even and dimVi < n, we
can actually find g ∈ SOm(C) such that gV1 = V2. In the exceptional case that m
is even and dimVi = n, there are 2 orbits of isotropic subspaces under the action of
SO2n(C). In particular, the span of e1, . . . , en and e1, . . . , en−1, en+1 are in separate
orbits.

(3) Every isotropic subspace is contained in an n-dimensional isotropic subspace.

Now consider the space U = (Cm ⊗ Cn)∗ which we identify with m × n matrices. We
define an action of GLn(C)×Om(C) by

(g, h) · u = (h−1)Tug−1.

Define
X = {u ∈ U | uT I ′u = 0}.
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Since uT I ′u is a symmetric matrix whose entries are polynomial functions of the entries of u,
we see that X is an affine variety which is the solution set of

(
n+1

2

)
polynomials. Alternatively,

X is the subset of maps u : Cn → Cm such that u(Cn) is an isotropic subspace. Then X is
closed under the action of GLn(C)×Om(C): if u ∈ X, then using that (h−1)T = I ′hI ′, we
have

(g−1)TuT I ′hT I ′I ′I ′hI ′ug−1 = (g−1)TuT I ′ug−1 = (g−1)T0g−1 = 0.

Proposition 3.2.1. X is irreducible if m is odd and has 2 irreducible components if m is
even.

Proof. Let X◦ be the subset of matrices of full rank n, i.e., where the map u : Cn → Cm is
injective. Then GLn(C) × Om(C) acts transitively on X◦: the image is an n-dimensional
subspace and Om(C) acts transitively on those, while for a fixed n-dimensional isotropic
subspace L, the set of linear isomorphisms Cn → L is a single orbit under pre-composition
by GLn(C). If m is odd, then we can replace Om(C) by SOm(C).

Picking any point in x ∈ X◦, we get a surjective map GLn(C) × Om(C) → X◦ via
(g, h) 7→ (g, h) · x which remains surjective when m is odd when we use SOm(C). Since
GLn(C) × SOm(C) is connected, it is also irreducible. This implies that the target is
also irreducible when m is odd. Otherwise, when n is even, we see that the source has 2
connected components, and hence 2 irreducible components, and hence the target has at most
2 irreducible components. These actually have to be disjoint: if not, then by considering a
point in the intersection, we would see that all maximal isotropic subspaces are in the same
SO2n(C) orbit which is false.

Next, we show that X◦ is dense in X which finishes the proof. This is the same as the
proof of Proposition 2.2.1. �

Let J be the m×n matrix with Ji,i = 1 for i = 1, . . . , n and 0’s elsewhere. If m is even, we
also define J ′ to be the 2n×n matrix with Ji,i = 1 for i = 1, . . . , n−1 and Jn+1,n = 1 and 0’s
elsewhere. Let B ⊂ GLn(C) be the subgroup of upper-triangular matrices, and similarly,
let B′ ⊂ SOm(C) be the subgroup of upper-triangular matrices.

Let fi ∈ C[X] be the function which takes the determinant of the upper-left i×i submatrix.
If m is even, define f ′n ∈ C[X] to be the determinant of the n × n submatrix with rows
1, 2, . . . , n− 1, n+ 1.

Proposition 3.2.2. fi is a highest weight vector with weight (1, . . . , 1, 0, . . . , 0), (1, . . . , 1, 0, . . . , 0)
(the number of 1’s in each vector is i) and f ′n is a highest weight vector with weight (1, 1, . . . , 1),
(1, . . . , 1,−1).

Lemma 3.2.3. The B×B′ orbit in X containing J is open. If m is odd, it is also dense, oth-
erwise it is dense in the irreducible component containing it. The other component contains
the B ×B′ orbit containing J ′ as a dense orbit.

Proof. The orbit of J is the set of matrices with f1, . . . , fn 6= 0 and the orbit of J ′ is the
same with fn replaced by f ′n. The ideas are similar to the proof in the symplectic case. �

Lemma 3.2.4. If (λ, λ′) is the weight of a highest weight vector in C[X], then λi = λ′i for
1 ≤ i ≤ n− 1. If m is odd, then furthermore λn = λ′n and if m is even, then λn = |λ′n|.

Proof. If m is odd, then the stabilizer of J contains pairs of diagonal matrices (g, h) where
the entries of h are x1, . . . , xn, 1, x

−1
n , . . . , x−1

1 and the entries of g are x−1
1 , . . . , x−1

n . By



34 STEVEN V SAM

Theorem 1.2.6, we see that x
λ1−λ′1
1 · · · xλn−λ

′
n

n = 1 for all x1, . . . , xm. This forces all of the
exponents to be 0.

If m is even, the stabilizer of J contains pairs of diagonal matrices (g, h) where the entries
of h are x1, . . . , xn, x

−1
n , . . . , x−1

1 and the entries of g are x−1
1 , . . . , x−1

n . So any highest weight
appearing in the functions on the irreducible component containing J satisfies λi = λ′i for
i = 1, . . . , n. Similarly, the stabilizer of J contains pairs of diagonal matrices (g, h) where
the entries of h are x1, . . . , xn, x

−1
n , . . . , x−1

1 and the entries of g are x−1
1 , . . . , x−1

n−1, xn. So
any highest weight appearing in the functions on the irreducible component containing J ′

satisfies λi = λ′i for i = 1, . . . , n− 1 and λn = −λ′n. �

Finally, we use Proposition 1.2.7 to realize the highest weights above. For m odd this
is straightforward as X is irreducible and every partition is a sum of vectors of the form
(1, . . . , 1, 0, . . . , 0). When m is even, we work with the functions on each irreducible compo-
nent. The one containing J has functions with highest weights (λ, λ′) with λ = λ′ and the
one containing J ′ has functions with highest weights (λ, λ′) with λi = λ′i for i = 1, . . . , n− 1
and λn = −λ′n for the same reason. Hence X has functions with those highest weights as
well. The only thing we have to be careful of is that when λn = λ′n = 0, these highest weights
may appear with multiplicity 2 since we get one contribution from each component. But
this is easy to rule out using their explicit form as products of f1, . . . , fn−1.

Corollary 3.2.5 (Orthogonal Cauchy identity). We have an isomorphism of GLn(C) ×
SOm(C) representations

C[X] ∼=
⊕
λ

Sλ(C
n)⊗ S[λ](C

m)

where the sum is over all integer partitions λ1 ≥ · · · ≥ λn ≥ 0.

3.3. Branching problem. We can use X from the previous section to study the branching
problem from GLm(C) to SOm(C).

First, we revisit the equations defining X. We said X = {u | uT I ′u = 0}. Since I ′ = I ′,
uT I ′u is a symmetric n × n matrix. So taking its upper-triangular entries, we get

(
n+1

2

)
equations whose common solution set is X.

Proposition 3.3.1. dimX = dimU −
(
n+1

2

)
.

Let’s unpackage Corollary 2.3.3 for our example. We take U as in this section and f1, . . . , fr
are the entries of the skew-symmetric matrix uT I ′u with r =

(
n+1

2

)
. From the calculation in

the previous section, we get

((g, h) · u)T I ′((g, h) · u) = (g−1)T (uT I ′u)g−1

so that we see that f1, . . . , fr span a subrepresentation V of C[U ] where V ∼= Sym2 Cn

(with the SOm(C) factor acting trivially). This implies that we have an isomorphism of
GLn(C)× SOm(C) representations

C[U ]/(f1, . . . , fr)⊗ Sym(Sym2 Cn) ∼= C[U ].

We want to identify C[U ]/(f1, . . . , fr) with C[X]. As in the symplectic case, we have
(using Theorem 2.3.5):

Proposition 3.3.2. Any polynomial that is identically 0 on X is generated by the entries
of uT I ′u. In particular, C[X] = C[U ]/(f1, . . . , fr).
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Remark 3.3.3 (Weyl’s construction). C[X] is a quotient of C[U ] and the kernel is generated
by Sym2(Cn), so in particular the kernel is a quotient C[U ]⊗Sym2 Cn, i.e., we have an exact
sequence

C[U ]⊗ Sym2 Cn → C[U ]→ C[X]→ 0.

We can consider the Sλ(C
n) components of this sequence to get⊕

µ

Sµ(Cm)⊕c
λ
µ,(2) → Sλ(C

m)→ S[λ](C
m)→ 0.

The first term simplifies a bit: we just sum over µ such that |λ| = |µ| + 2 and λ/µ is a
horizontal strip. This gives us a recipe for constructing S[λ](C

m) using Schur functors: given
µ and λ as above, we have a map

Sµ(Cm)⊗ Sym2(Cm)→ Sλ(C
m)

by Pieri’s rule. We can identify Sµ(Cm) as the subaspace Sµ(Cm)⊗ 〈I ′〉 of the source, and
then the image of this subspace is a Om(C)-subrepresentation of Sλ(C

m). If we quotient
by all of these subrepresentations, then we get S[λ](C

m). This is also known as the space of
“traceless tensors”. �

In our situation, we get

C[X]⊗ Sym(Sym2 Cn) ∼= Sym(Cn ⊗Cm).(3.3.4)

Using all of the various multiplicity-free representations we’ve studied this becomes the
following identity:(⊕

µ

Sµ(Cn)⊗ S[µ](C
m)

)
⊗

(⊕
ν

S2ν(C
n)

)
∼=
⊕
λ

Sλ(C
n)⊗ Sλ(C

m).

(in the last Sλ(C
2n), this is the restriction of the Schur functor to SOm(C).) The left hand

side can be combined using Littlewood–Richardson coefficients:⊕
µ,ν,λ

(Sλ(C
n)⊗ S[µ](C

m))⊕c
λ
µ,2ν .

Comparing these two expressions we see how Schur functors decompose into irreducible
representations:

Theorem 3.3.5 (Stable branching rule from GL to O). Let λ be a partition with `(λ) ≤ n.
Then we have an isomorphism of Om(C)-representations

Sλ(C
m) ∼=

⊕
µ

S[µ](C
m)⊕mλ,µ , mλ,µ =

∑
ν

cλµ,2ν .

The “stable” in the name refers to the condition `(λ) ≤ n. Note that the answer does
not depend on n as long as this condition is satisfied. We can make sense of this question
in general, but the method above does not give an answer. We call the case `(λ) > n the
unstable case.

Example 3.3.6. When λ = µ, we have mλ,λ = 1 since the only valid choice for ν is the
empty partition corresponding to the trivial representation, and cλλ,∅ = 1. The highest weight
vector for GLm(C) in Sλ(C

m) is also a highest weight vector of weight λ for the subgroup
SOm(C). �



36 STEVEN V SAM

Example 3.3.7. If λ = (d), then cλµ,2ν > 0 implies that both µ and 2ν are contained in (d),
i.e., Y (µ) is a row of size ≤ d and 2ν is an even length row of size ≤ d. So if 1 ≤ n, we see
that

Symd(Cm) ∼= S[d](C
m)⊕ S[d−2](C

m)⊕ S[d−4](C
m)⊕ · · · . �

3.4. Characters of the orthogonal group. Given a representation ρ : SOm(C)→ GL(W ),
its character char(ρ)(x1, . . . , xn) is the trace of the diagonal matrix with entries x1, . . . , xn, (1?),
x−1
n , . . . , x−1

1 . Recall that Hn is the hyperoctahedral group acting on the variables by per-
mutations and inversions. We let H ′n be the subgroup of Hn consisting of elements that do
an even number of inversions, i.e., the number of i such that σ(xi) = x−1

j is even.

Lemma 3.4.1. Let ρ be a representation of SOm(C). If m is odd, then char(ρ)(x1, . . . , xn)
is invariant under Hn. If m is even, then char(ρ)(x1, . . . , xn) is invariant under H ′n.

Proof. Hn is generated by Sn and t1, . . . , tn, so it suffices to show invariance under each in
the odd case and invariance under pairwise products of the ti in the even case. For σ ∈ Sn,
we have a n × n permutation matrix M(σ) and conjugating by the following element in

SO2n(C):

[
M(σ) 0

0 I ′M(σ)I ′

]
has the effect of x±i 7→ x±σ(i) for a diagonal matrix with entries

x1, . . . , xn, x
−1
n , . . . , x−1

1 . For m = 2n+ 1 we take instead the matrix

M(σ) 0 0
0 1 0
0 0 I ′M(σ)I ′

.

For ti, consider the element in Om(C) given by ej 7→ ej for j /∈ {i,−i}, ei 7→ e−i, and
e−i 7→ ei. Then conjugating by this element has the effect of swapping xi and x−1

i for a
diagonal matrix with entries x1, . . . , xn, x

−1
n , . . . , x−1

1 . This has determinant −1, so in the
odd case, we can get an element of SO2n+1(C) which is the same except en+1 7→ −en+1. In
the even case, this shows that products of the pairwise ti are elements of SO2n(C) since they
have determinant 1. �

Corollary 3.4.2. If m is odd or divisible by 4, then every representation of SOm(C) is
isomorphic to its dual.

Proof. If f(x1, . . . , xn) is the character of V , then f(x−1
1 , . . . , x−1

n ) is the character of V ∗, but
these are equal by the fact that f is Hn-invariant (in the odd case) or H ′n (in the case where
n is even). �

Remark 3.4.3. How about if m = 2 (mod 4)? Actually, the same argument works to show
that S[λ](C

m) is self-dual for all partitions λ since these are all Om(C)-representations, and
we can realize conjugation by all elements of Hn there. But recall that S[λ](C

m) is the sum
of two irreducible representations as a SOm(C)-representation. When n is odd, these are
not self-dual, but are duals of each other (we will not prove this). �

The analogue of Λ(n), the ring of symmetric polynomials, is ΛSO(2n+1) = Z[x±1 , . . . , x
±
n ]Hn

and ΛSO(2n+1) = Z[x±1 , . . . , x
±
n ]H

′
n . However, it will be better to work with something slightly

more uniform, so we define ΛO(m) = Z[x±1 , . . . , x
±
n ]Hn . This is not literally the space where

characters of O(m) live since we are ignoring the determinant representation. Since charac-
ters determine representations, the characters of S[λ](C

2n) are linearly independent. Every

monomial is in the orbit of a unique element of the form xλ11 · · ·xλnn for a partition λ, and
the characters actually form a basis for ΛSp(n). We let s[λ](x1, . . . , xn) be the character of
S[λ](C

m).
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For reference, we state the Weyl character formula. As before, for σ ∈ Hn we let sgn(σ)
denote its sign as an element of S2n.

Theorem 3.4.4 (Weyl character formula for SO2n+1(C)). Set ρ = (n− 1
2
, n− 3

2
, . . . , 3

2
, 1

2
).

Then

s[λ](x1, . . . , xn) =
det(x

λj+n−j+ 1
2

i − x−(λj+n−j+ 1
2

)

i )ni,j=1∏n
i=1(x

1/2
i − x

−1/2
i )

∏
1≤i<j≤n(xi + x−1

i − xj − x−1
j )

=

∑
σ∈Hn sgn(σ)σ(xλ+ρ)∑
σ∈Hn sgn(σ)σ(xρ)

The case of SO2n(C) is a bit more complicated, so we will omit it.

Theorem 3.4.5 (Orthogonal Cauchy identity). For m even, we have∏
1≤i≤j≤n(1− yiyjt2)∏n

i=1

∏n
j=1(1− xiyjt)(1− x−1

i yjt)
=
∑
λ

s[λ](x1, . . . , xn)sλ(y1, . . . , yn)t|λ|

and for m odd, we have∏
1≤i≤j≤n(1− yiyjt2)∏n

j=1(1− yjt) ·
∏n

i=1

∏n
j=1(1− xiyjt)(1− x−1

i yjt)
=
∑
λ

s[λ](x1, . . . , xn)sλ(y1, . . . , yn)t|λ|

where the sums are over all λ1 ≥ · · · ≥ λn ≥ 0.

In Theorem 3.3.5, we obtained an identity of the form

sλ(x1, . . . , xn, (1?), x−1
n , . . . , x−1

1 ) = s[λ](x1, . . . , xn) +
∑

µ, |µ|<|λ|

mλ,µs[µ](x1, . . . , xn).

As in the symplectic case, this tells us there are certain integers nλ,µ such that

s[λ](x1, . . . , xn) =
∑
µ

nλ,µsµ(x1, . . . , xn, (1?), x−1
n , . . . , x−1

1 ).

Furthermore, nλ,λ = 1 and nλ,µ 6= 0 implies |λ| ≥ |µ|. Also, since mλ,µ is independent of n
once n ≥ `(λ), the same is true for nλ,µ.

This leads to the following idea: in the ring of symmetric functions Λ, we define orthog-
onal Schur functions via

s[λ] =
∑
µ

nλ,µsµ.

By the upper-triangularity property, these also form a basis for Λ.
We define specialization maps

πO(2n) : Λ→ ΛO(m)

s[λ] 7→
∑
µ

nλ,µsµ(x1, . . . , xn, (1?), x−1
n , . . . , x−1

1 ).

If n ≥ `(λ), then πO(m)(s[λ]) = s[λ](x1, . . . , xn), but otherwise we do not know. We can be
more precise about what happens when n < `(λ), but again I will postpone the discussion.

We consider the problem of multiplying two symplectic Schur functions. We have integers
such that

s[µ]s[ν] =
∑
λ

Ocλµ,νs[λ]
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Theorem 3.4.6 (Newell–Littlewood product formula). We have

s[µ](x1, . . . , xn)s[ν](x1, . . . , xn) =
∑
λ,α,β,γ

cλβ,γc
µ
β,αc

ν
γ,απO(m)(s[λ])

and, in particular,
Ocλµ,ν =

∑
α,β,γ

cµα,βc
ν
α,γc

λ
β,γ

where the sum is over all triples of partitions.

Surprisingly, we see that Ocλµ,ν = Spcλµ,ν .

4. Homogeneous spaces

4.1. Projective space. Given a vector space U , let P(U) denote the set of 1-dimensional
subspaces in U . This is called projective space. If U = Cn+1, we usually just write Pn

in place of P(Cn+1) (the n + 1 vs. n will be explained shortly). Alternatively, consider the
action of C∗ on U by scalar multiplication. This action is free on U\0 and P(U) = (U\0)/C∗.
We use this description to give P(U) the quotient topology (where U \ 0 inherits the Zariski
topology from U).

This gives a convenient set of coordinates for Pn: we denote a point by [a0 : · · · : an]
with the understanding that at least one ai 6= 0 and [a0 : · · · : an] = [λa0 : · · · : λan] for
any λ 6= 0. The topology on Pn can be described explicitly. An ideal I ⊂ C[x0, . . . , xn]
is homogeneous if it is generated by homogeneous polynomials. Equivalently, this means
that if f ∈ I and f =

∑d
i=0 fi is its sum into degree i homogeneous polynomials, then each

fi ∈ I. Given a homogeneous polynomial f and a = [a0 : · · · : an], it does not make sense to
ask for the value f(a), but it does make sense to ask if f(a) = 0.

So we define
Z(I) = {a ∈ Pn | f(a) = 0 for all f ∈ I}.

These are the closed subsets of the topology on Pn, and Z(I) is called a projective variety.
Given a projective variety X ⊂ Pn, we let C[X] = C[x0, . . . , xn]/IX where IX is the ideal
of all homogeneous polynomials f such that f(a) = 0 for all a ∈ X. Note that C[Pn] =
C[x0, . . . , xn].

This is a special case of what we already discussed: given a projective subvariety X ⊂ Pn,
we let X̂ denote its inverse image in Cn+1 \ 0 together with 0. This is the affine cone of X

and is an affine variety. Then C[X] = C[X̂].

Remark 4.1.1. There is one subtle point: we haven’t discussed isomorphisms between
varieties in different ambient spaces, but it’s important to note that the coordinate ring of
an affine variety is independent of the embedding, while for a projective variety it does in
general depend on the embedding. �

Finally, we justify the change in superscript from n+ 1 to n:

Proposition 4.1.2. dim Pn = n and Pn is irreducible.

Proof. GLn+1(C) acts transitively on Pn by g · ` = g(`) where ` is a 1-dimensional subspace
in Cn+1. The stabilizer of the line spanned by e1 consists of matrices g such that e1 is an
eigenvector of g, which just means the last n entries in the first column are 0. We see that
this stabilizer has dimension (n+ 1)2 − n, so dim Pn = n. �
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Remark 4.1.3. We could also give Cn+1 the standard Euclidean topology and then Pn

inherits the Euclidean topology. This is convenient to do, though we won’t really need to
do so in this course. Note that vector spaces are compact in the Zariski topology (exercise)
but not in the Euclidean topology. Projective space is compact in the Euclidean topology
though. �

There’s another description of Pn as a union of vector spaces. For each i = 0, . . . , n, let
Ui ⊂ Pn denote the set of points a such that ai 6= 0. We may as well assume ai = 1 so
that the remaining n coordinates on Ui are fixed numbers (there is no longer an equivalence
relation). This shows that Ui ∼= Cn and Pn = U0 ∪ · · · ∪ Un. Using the Euclidean topology,
we can use this to define Pn as a complex manifold (the Ui are the charts).

The set of points where an = 0 is isomorphic to Pn−1, so we get

Pn = Cn qPn−1.

If we apply this decomposition recursively, we end up with

Pn = Cn qCn−1 q · · · qC1 qC0.

Explicitly, for i < n, Ci = {a ∈ Pn | ai+1 = · · · = an = 0, ai 6= 0}. Each Ci is closed under
the action of the Borel subgroup of upper triangular matrices, and in fact is an orbit. This
is an example of a Bruhat decomposition.

Remark 4.1.4. There are a lot of technical issues that need to be addressed to do a lot of
basic constructions. For example, given projective varieties X, Y , can we make sense of the
product X × Y as a projective variety? This embeds into a product of projective spaces,
but note that Pn×Pm is not the same thing as Pn+m! Another example: how to determine
when two (embedded) varieties are isomorphic? i.e., can we give an intrinsic definition of
varieties which does not rely on embedding them into projective space or vector spaces?

We will largely ignore these issues and work at a more intuitive (less rigorous) level. The
arguments I make can be made rigorous, but one is better off learning the details in a course
in algebraic geometry. �

4.2. Grassmannians. Our definition of projective space admits a natural definition: given
a vector space U , let Gr(k, U) be the set of k-dimensional subspaces of U . Then Gr(1, U) =
P(U) and there is a natural identification Gr(k, U) = Gr(dimU − k, U∗). This is called a
Grassmannian. For U = Cn, we just write Gr(k, n) instead (so Pn = Gr(1, n+ 1), which
is slightly awkward for notation).

We can also realize this as a quotient: let Ck×n be the space of k × n matrices. Given a
subspace W ⊂ U , pick a basis for W and represent W as an element of Ck×n by taking the
matrix whose rows are the basis vectors just picked. This matrix is always full rank but the
representative is not unique since a different choice of basis gives a different representative.
However, any two choice of bases will differ by row operations, which corresponds to the
action of GLk(C) on the left. Letting (Ck×n)◦ denote the full rank matrices, we have a
natural identification

Gr(k, n) = (Ck×n)◦/GLk(C)

so we can again give it the quotient topology.
Here is another approach to define a topology on Gr(k, n) (we will omit the verification

they are the same): given a k-dimensional subspace W , the exterior power
∧kW is 1-

dimensional and is a subspace of
∧k U . Explicitly, if w1, . . . , wk is a basis for W , then

∧kW ,
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as a subspace of
∧k U , is the span of w1 ∧ · · · ∧ wk. Note that if we pick a different basis,

then they differ by an element of GLk(C), and g(w1) ∧ · · · ∧ g(wk) = (det g)w1 ∧ · · · ∧ wk.
Hence we get an injective (to recover W from w1 ∧ · · · ∧wk just take the span of w1, . . . , wk)
map

Gr(k, U)→ P(
k∧
U)

W 7→
k∧
W.

This is the Plücker embedding.
Even more explicitly, we have a basis for

∧k Cn indexed by k-element subsets of {1, . . . , n},
so we let the projective coordinates on P(

∧k Cn) be labeled aI for subsets I. Given a
subspace W , we represent it as a k × n matrix as before. Let f(W )I be the determinant

of the k × k submatrix with columns indexed by I. This gives a point f(W ) ∈ P(
∧k Cn)

which is independent of the choice of basis. Then the coordinates f(W )I are called Plücker
coordinates.

Proposition 4.2.1. Gr(k, n) is a projective subvariety of P(
∧k Cn).

Proof. The image of Gr(k, n) consists of equivalence classes of lines of the form w1∧· · ·∧wk,
i.e., totally decomposable tensors. So it suffices to show there is a set of homogeneous
polynomials fi so that fi(α) = 0 if and only if α ∈ Gr(k, n). Define a map

ϕ :
k∧

Cn → Hom(Cn,
k+1∧

Cn)

(where Hom(A,B) denotes the vector space of linear maps A→ B) by ϕ(α)(u) = α∧u. Note

that α∧u = 0 if and only if α = β∧u for some β ∈
∧k−1 Cn (exercise). So if α = w1∧· · ·∧wk

is totally decomposable, then kerϕ(α) = span(w1, . . . , wk) and hence rankϕ(α) = n − k.
Conversely, if kerϕ(α) is not totally decomposable, then dim kerϕ(α) < k. This means that
α is totally decomposable if and only if all of the size n− k+ 1 minors of ϕ(α) are 0. These
are homogeneous polynomial functions of degree n− k + 1 (ϕ is linear) if we choose a basis

for
∧k Cn. �

Remark 4.2.2. The functions we just produced do not generate the full ideal of polynomials
that are 0 on Gr(k, n). In fact, the full ideal is generated by quadratic polynomials known
as the Plücker equations. We won’t need them, so we won’t discuss it. �

Example 4.2.3. Since Gr(k, n) ∼= Gr(n−k, n), the simplest example which isn’t projective
space is k = 2 and n = 4. In general, for k = 2, we can realize

∧2 Cn as the space of skew-
symmetric matrices, and the Grassmannian Gr(2, n) consists of the lines spanned by elements
of the form v ∧ w, which are rank 2 skew-symmetric matrices. Hence, we can describe it as
the zero set of the 4× 4 Pfaffians of principal submatrices. These are the Plücker equations
in this case. When n = 4, there is just 1 Pfaffian, and the equation can be written as

x12x34 − x13x24 + x14x23 = 0. �

Proposition 4.2.4. dim Gr(k, n) = k(n− k) and Gr(k, n) is irreducible.
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Proof. GLn(C) acts transitively on the set of k-dimensional subspaces. The stabilizer of

the space spanned by e1, . . . , ek consists of block matrices of the form

[
A B
0 C

]
where A

is k × k and C is (n − k) × (n − k). The stabilizer has dimensions n2 − k(n − k), so
dim Gr(k, n) = k(n− k). �

4.2.1. Bruhat decomposition. We now describe a generalization of the Bruhat decomposition
of projective space. Represent each k-dimensional subspace of Cn as the row span of a k×n
matrix. Since it is full rank, at least one k × k submatrix is invertible. We index these
submatrices by their columns I = i1 > · · · > ik and order these indices lexicographically.
Let XI be the set of subspaces such that the Ith submatrix has full rank, and the Jth
submatrix does not have full rank for all J > I. Then Gr(k, n) = qIXI .

Given W ∈ XI , there is a unique matrix whose row span is W so that the submatrix
indexed by I is the matrix with 1’s on the antidiagonal. In this form, all of the columns to
the right of i1 are 0, and more generally, all columns between ij and ij−1 are in the span of
the columns ij−1, . . . , i1, i.e., they are 0 in rows ≥ j. Otherwise the entries can be chosen
freely.

Example 4.2.5. If k = 3 and n = 7 and I = (7, 4, 2), then a general element of XI looks
like ∗ 0 ∗ 0 ∗ ∗ 1

∗ 0 ∗ 1 0 0 0
∗ 1 0 0 0 0 0


where ∗ can be any number. �

In the example, the free entries form a Young diagram. In general, this is true. We
define λ(I) by λ(I)j = ij − (k + 1 − j). We see that XI

∼= C|λ(I)|. This indexing gives a
bijection between the k-element subsets of {1, . . . , n} and partitions λ satisfying `(λ) ≤ k
and λ1 ≤ n− k. Furthermore, this normal form shows that each XI is a single B-orbit.

As a variation of this idea, for each indexing set I, let UI be the set of subspaces such
that the submatrix indexed by I is invertible. Then there is a unique representative so that
this is the antidiagonal matrix, but otherwise the rest of the k(n− k) entries can be chosen
freely, so UI ∼= Ck(n−k). Then Gr(k, n) =

⋃
I UI . In the Euclidean topology, these are charts

which can be used to give Gr(k, n) the structure of a complex manifold.

4.2.2. Vector bundles. Roughly speaking, a rank n vector bundle over a variety X will be a
space Y with a map π : Y → X such that the fibers Yx = π−1(x) are n-dimensional vector
spaces and there is an open covering

⋃
Ui of X so that π−1(Ui) ∼= Cn × Ui.

Consider the product Cn ×Gr(k, n). We will think of this as a trivial vector bundle over
Gr(k, n). Define

R = {(v,W ) ∈ Cn ×Gr(k, n) | v ∈ W}.
This has a map π : R→ Gr(k, n) given by π(v,W ) = W and π−1(W ) is naturally identified
with W itself. This is the tautological subbundle on Gr(k, n). It is a vector subbundle of
the trivial bundle. We let Q denote the quotient bundle Cn×Gr(k, n)/R (roughly: quotient
bundles do nothing to the base space X but the fibers get replaced by the appropriate
quotient spaces), so that the fiber of Q over W is the quotient space Cn/W . Given two
vector bundles E and F on a variety X, Hom(E,F ) is the vector bundle on X whose fibers
are Hom(E,F )x = Hom(Ex, Fx). We can import essentially all of the operations on vector
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spaces to vector bundles: direct sums, tensor products, symmetric and exterior powers, Schur
functors, etc.

Given a vector bundle E over X, a section s : X → E is a continuous function such that
π ◦ s is the identity on X. There is a canonical zero section s0 which sends x to 0 ∈ Ex. We
let X0 = s0(X), which is a closed subset of E.

4.3. (Partial) flag varieties. Given d = d1 < d2 < · · · < dr < n, let Fl(d;n) =
Fl(d1, d2, . . . , dr;n) denote the set of r-tuples of subspaces (Wd1 ,Wd2 , . . . ,Wdr) such that
Wd1 ⊂ Wd2 ⊂ · · · ⊂ Wdr and dimWdi = di. This is a partial flag variety and is naturally
a subset of Gr(d1, n) ×Gr(d2, n) × · · · ×Gr(d2, n). The (full) flag variety Fl(n) is the
case when r = n− 1 and d = 1 < 2 < · · · < n − 1. In the latter case, the points are called
complete flags.

Proposition 4.3.1. Fl(d;n) is a closed subset of Gr(d1, n)× · · · ×Gr(dr, n) and hence is
a projective variety.

Proof. We need to show that the condition Wdi ⊂ Wdi+1
defines a closed subset. Let X =

Gr(d1, n) × · · · ×Gr(dr, n) and define Rdi ⊂ Cn ×X as tuples (v,Wd1 , . . . ,Wdr) such that
v ∈ Wdi and let Qdi = (Cn×X)/Rdi . Consider the composition Rdi → Qdi+1

. This map gives
a map s : X → Hom(Rdi ,Qdi+1

) and s−1(X0) consists of subspaces such that Wdi ⊂ Wdi+1
,

so the condition is closed. Then Fl(d;n) is the intersection of r − 1 of these closed subsets,
so is itself closed. �

GLn(C) acts transitively on any partial flag variety. Let’s consider the stabilizer subgroup
of the standard flag in Fl(d;n), i.e., Wdi is spanned by e1, . . . , edi . We see that it consists of
block (r blocks) upper-triangular matrices where the kth block has size dk. This proves the
following:

Proposition 4.3.2. dim Fl(d;n) =
∑r

i=1(di − di−1)(n − di) (d0 = 0) and Fl(d;n) is irre-
ducible. In particular, dim Fl(n) =

(
n
2

)
.

There is another way to compute this dimension using the following fact:
If f : X → Y is a polynomial map between irreducible varieties such that dim f−1(y) = e

for all y ∈ Y , then dimX = dimY + e.
Note that we have forgetful maps Fl(d;n)→ Fl(d′;n) where d′ is any subsequence of d.

The fibers can be identified with flag varieties of a certain type (we leave this as an exercise)
and the dimension can be computed in this way.

Going back to stabilizers, we see that the stabilizer subgroup of the standard flag in
Fl(n) is the Borel subgroup of upper triangular matrices. In fact, given any complete flag
W1 ⊂ W2 ⊂ · · · , we get a basis w1, w2, . . . , wn by taking wi ∈ Wi \Wi−1 (and w1 ∈ W1 \ 0)
and the corresponding Borel subgroup is the stabilizer of W•. We see then that the data of
a Borel subgroup only depends on a complete flag, which is less information than a basis.
This actually gives us a bijection between Borel subgroups and complete flags, so Fl(n) is
also known as the variety of Borel subgroups. It is also denoted by GLn(C)/B.

Any subgroup of GLn(C) that is closed in the Zariski topology and contains a Borel
subgroup is known as a parabolic subgroup. We see that the stabilizers of partial flags
are always parabolic subgroups. In fact, every parabolic subgroup is the stabilizer of some
partial flag (we don’t prove this). Parabolic subgroups are not in general conjugate; they
have a type which in this case corresponds to the discrete datum d. But parabolic subgroups
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of the same type d are conjugate to one another (since GLn(C) acts transitively on Fl(d;n)).
Hence Fl(d;n) is usually denoted by something like GLn(C)/Pd.

More generally, the partial flag varieties are known as homogeneous spaces: these are
projective varieties with a transitive action of our group. It turns out that we have described
all of them for GLn(C) (there is also the example of a single point, but we will exclude it).

Here is another realization of partial flag varieties. Consider an irreducible representation
Sλ(C

n) and the corresponding projective space P(Sλ(C
n)). Define

Xλ = {[x] ∈ P(SλC
n) | x is a highest weight vector for some Borel subgroup}.

Lemma 4.3.3. Xλ is closed under the action of GLnC and is in fact a single orbit.

Proof. Let v be a highest weight vector for a Borel subgroup B. Then gv is a highest weight
vector for g−1Bg, so Xλ is closed under GLnC.

Let w be another highest weight vector with respect to another Borel subgroup B′. We
know that any two Borel subgroups are conjugate, so B′ = gBg−1 for some g ∈ GLn(C).
This means that gbg−1[w] = [w] for all b ∈ B, or equivalently that bg−1[w] = g−1[w] for all
b ∈ B, i.e., that g−1w is a highest weight vector for B. By uniqueness of highest weight
vectors, this means that g−1[w] = [v]. �

Let us compute the stabilizer of the highest weight vector with respect to the standard
Borel subgroup of upper triangular matrices. First, consider λ = (1d), so SλC

n =
∧d Cn.

The highest weight vector is any multiple of e1 ∧ · · · ∧ ed and the stabilizer is the group of
block upper-triangular matrices with block sizes d and n−d. This is the parabolic subgroup
Pd.

Recall that SλC
n can be constructed as a quotient of

∧µ1 Cn⊗· · ·⊗
∧µs Cn where µ = λ†.

The highest weight vector of SλC
n is the image of the tensor product of the corresponding

highest weight vectors of each exterior power. So we see that the stabilizer is Pµ1 ∩ · · · ∩Pµr
which is the stabilizer of the standard flag consisting of subspaces of dimensions {µ1, . . . , µr}
(note that multiplicities among these numbers do not change the stabilizer). In particular:

Proposition 4.3.4. Xλ
∼= Fl(d;n) where d is obtained from λ† by removing redundancies

and sorting in increasing order.

4.4. Borel–Weil theorem. Let G = GLn(C), P = Pd, X = Fl(d;n) (what follows will
generalize to other groups).

A vector bundle E over the homogeneous space X is called homogeneous if E has an
(algebraic) action of G such that π(ge) = gπ(e) for all g ∈ G and e ∈ E. This implies that
the fiber Ex is a representation of the stabilizer of x. For concreteness if x is the standard
flag, then Ex is a representation of Pd.

Theorem 4.4.1. E is completely encoded by the representation Ex. More formally, there
is an equivalence between the category of homogeneous bundles on G/P and the category of
rational P -representations.

We have explained how to go from a homogeneous bundle to a P -representation. In the
other direction, if V is a P -representation, then we define

IndGPV := (G× V )/ ∼, (g, v) ∼ (gp−1, pv) for g ∈ G, p ∈ P , v ∈ V .
We define π : IndGPV → G/P by π(g, v) = gP . There is an action of G on IndGPV by
g′ · (g, v) = (g′g, v) which is compatible with π. Then π−1(gP ) is naturally identified with
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V , so we see that IndGPV is a homogeneous bundle whose rank is dimV . Also, π−1(P ) is the
original representation we started with. We omit the discussion that IndGPEx = E.

Given a vector bundle E onX, we let H0(X;E) denote the space of sections, i.e., s : X → E
such that π ◦ s = idX . This is a complex vector space since the sum of two sections makes
sense as does scalar multiplication. A basic fact from algebraic geometry is that if X is a
projective variety, then H0(X;E) is finite-dimensional. If E is homogeneous, then it is is
also a rational representation of G via (g · s)(x) = g(s(g−1x)).

We have that T ∼= B/[B,B] and in particular, we have a surjection B → T . Given a
weight λ, we have a 1-dimensional rational representation Cλ of T defined by t · z = λ(t)z.
Via the surjection B → T , this gives us a rational representation of B that we also call Cλ.
In particular,

Lλ = IndGBCλ

is a vector bundle of rank 1 (i.e., a line bundle) on G/B.

Theorem 4.4.2 (Borel–Weil theorem). If λ is dominant (i.e., λ1 ≥ · · · ≥ λn), then
H0(G/B;Lλ)

∗ ∼= SλC
n.

Proof. Let L be the subgroup of lower-triangular matrices with 1’s on the diagonal. The
number of highest weight vectors (up to scalar multiple) in H0(G/B;Lλ)

∗ is the same as the
number of L-fixed vectors in H0(G/B;Lλ).

In Lemma 1.2.9, we showed that the set of matrices of the form `b with ` ∈ L and b ∈ B
is open and dense in the space of n × n matrices (and hence also in GLn(C)). This also
implies that {`B | ` ∈ L} is dense in G/B. If s ∈ H0(G/B;Lλ) is an L-fixed vector, then
`(s(`−1B)) = (` · s)(B) = s(B) for all ` ∈ L, and hence s is determined by its value on
B since this determines its values on a dense subset. This proves that L-fixed vectors are
unique up to scalar multiple.

Now we construct an L-fixed section. Note that a section of Lλ = (G × Cλ)/ ∼ can be
written as s(gB) = (g, f(g)) where f : G → C is a function such that f(gb) = λ(b)f(g) for
all b ∈ B and g ∈ G. We define such a function as follows. Let fi(g) be the determinant
of the upper left i × i submatrix of g. Then define f(g) =

∏n
i=1 fi(g)λi−λi+1 where we set

λn+1 = 0. Then f(gb) = f(g)f(b) = λ(b)f(g), so we have a section. If t is diagonal with
entries x1, . . . , xn, then

(t · s)(gB) = t(s(t−1gB)) = t(t−1g, f(t−1)f(g)) = t(t−1g, λ(t)−1f(g)) = (g, λ(t)−1f(g)).

Then s has weight −λ, and so the corresponding dual highest weight vector in H0(G/B;Lλ)
∗

has weight λ. �

Remark 4.4.3. Since Cλ ⊗ Cµ = Cλ+µ as representations of T (and hence B), it follows
that Lλ ⊗ Lµ

∼= Lλ+µ as homogeneous bundles. In general, the set of line bundles (modulo
isomorphism) on a space is a group under tensor product, called the Picard group (inverse
is given by taking duals). Note that the line bundle L(1n) has a section which is nowhere
zero: s(gB) = (g, det g). We use this to define an isomorphism G/B × C → L(1n) by
(gB, α) 7→ (g, α det g)/ ∼. Hence Lλ

∼= Lλ ⊗ L(dn) for any d ∈ Z as line bundles (but they
are non-isomorphic as homogeneous bundles). It turns out these are all of the redundancies,
so the Picard group of G/B is isomorphic to Zn−1. �

Remark 4.4.4. All of this can be done in a relative setting. Instead of taking the flag variety
of a vector space, we can make sense of the flag variety of a vector bundle. Let E be a vector
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bundle of rank n on X. Intuitively, Fl(E) is a space together with a map π : Fl(E) → X
so that π−1(x) is naturally identified with Fl(E|x). Given a weight λ = (λ1, . . . , λn), we can
make sense of the line bundle Lλ over Fl(E). The analogue of taking sections is to compute
the pushforward π∗Lλ, which will end up being the vector bundle (SλE)∗ on X. Similarly,
we can construct relative partial flag varieties. �

Remark 4.4.5. You may wonder why H0 is used for the notation of sections. It turns
out that H0 is a left-exact functor: given a subbundle E ⊂ F , we have maps H0(X;E) →
H0(X;F ) → H0(X;F/E) whose composition is 0. Left-exact means that the first map is
injective and that the image of the first map equals the kernel of the second map. In general,
the second map need not be surjective. Homological algebra tells us that there is a sequence
of spaces Hi(X;E) for i ≥ 0 that repair this situation in some sense. Namely, we can extend
the sequence to

· · · → H0(X;F/E)→ H1(X;E)→ H1(X;F )→ · · ·
so that at all stages, the image of each map is equal to the kernel of the next map. Bott’s
theorem (also called Borel–Weil–Bott) explains how to compute Hi(G/B;Lλ) in general. We
won’t discuss it, but only mention that for each λ, there is at most one i so that the space
is nonzero. �

4.5. Symplectic and orthogonal analogues. The homogeneous spaces for the symplectic
group are an easy variation of flag varieties. Let C2n be a symplectic vector space with
symplectic form ω and pick integers d = (d1, . . . , dr) satisfying 0 < d1 < · · · < dr ≤ n. The
isotropic (partial) flag variety IFl(d; C2n), or just IFl(d; 2n), is the set of partial flags
Wd1 ⊂ · · · ⊂ Wdr ⊂ C2n such that dimWdj = dj and each Wdj is an isotropic subspace. We
leave it as an exercise to see that Sp2n(C) acts transitively on IFl(d; 2n). We let IFl(2n)
denote the full isotropic flag variety, i.e., the case when d = (1, 2, . . . , n).

Proposition 4.5.1. IFl(d; 2n) is a projective variety.

Proof. Consider Fl(d; 2n). Then IFl(d; 2n) is the subset where Wdr is isotropic. There is
a tautological subbundle Rdr ⊂ C2n × Fl(d; 2n) given by (v,W•) such that v ∈ Wdr . We
define a section s of (

∧2
Rdr)

∗ as follows. Given a flag W•, the fiber is
∧2W ∗

dr
. We define

an element s(W•) which is a linear functional on
∧2Wdr defined by u ∧ v 7→ ω(u, v). Then

IFl(d; 2n) = s−1(IFl(d; 2n)0), so is closed. �

Remark 4.5.2. If E is a vector bundle on a space X, then we call it symplectic if it there
is a linear map

∧2E → C × X, where the latter is the trivial line bundle, such that the
restriction of this to each fiber is a symplectic form. Using this, we can construct a relative
isotropic flag variety IFl(d;E) which has a map π to X such that π−1(x) = IFl(d;Ex).
More generally, we could replace C×X by any line bundle on X. �

If d = (1), then IFl(d; 2n) = P2n−1 since every line is automatically isotropic.

Proposition 4.5.3. dim IFl(2n) = n2.

Proof. Let R be the tautological subbundle for P2n−1. Then define R⊥ ⊂ C2n × P2n−1 as
(v,W ) such that ω(v, u) = 0 for all u ∈ W . Then R ⊂ R⊥ and R⊥/R is a symplectic bundle.
Furthermore, IFl(2n) = IFl(R⊥/R) and the fibers are all isomorphic to IFl(2n− 2), so

dim IFl(2n) = dim P2n−1 + dim IFl(2n− 2).

By induction, we see that dim IFl(2n) = n2. �
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There is a surjective map IFl(2n) → IFl(d; 2n) by forgetting the subspaces that are not
indexed by d. The fibers are products of flag varieties (for the general linear group) of the
quotient spaces Wdi/Wdi−1

, and this can be used to compute dim Fl(d; 2n) for any d.
The homogeneous spaces for the special orthogonal group are also an easy variation of

flag varieties though there are a few minor technical subtleties in the even case. Let C2n+1

be an odd-dimensional orthogonal vector space with orthogonal form ω and pick integers
d = (d1, . . . , dr) satisfying 0 < d1 < · · · < dr ≤ n. The isotropic (partial) flag variety
OFl(d; C2n+1), or just OFl(d; 2n + 1), is the set of partial flags Wd1 ⊂ · · · ⊂ Wdr ⊂ C2n+1

such that dimWdj = dj and each Wdj is an isotropic subspace. We leave it as an exercise to
see that SO2n+1(C) acts transitively on OFl(d; 2n+ 1).

It is tempting to make the same definition in the even-dimensional case. Recall that there
are 2 orbits of n-dimensional isotropic subspaces under SO2n(C). We can distinguish them
based on the parity of dim(W ∩ span{e1, . . . , en}). We call W even or odd based on this
parity. This suggests that the datum d should allow for n and n′, where n′ will denote an
odd n-dimensional isotropic subspace. However, the following result suggests that a further
change should be made.

Lemma 4.5.4. Given an (n−1)-dimensional isotropic subspace of an orthogonal space C2n,
there are exactly two n-dimensional isotropic subspaces that contain it.

Proof. Let W ⊂ C2n be an (n − 1)-dimensional isotropic subspace. Then W⊥/W is a 2-
dimensional orthogonal space and 1-dimensional subspaces of W⊥/W are in bijection with
n-dimensional isotropic subspaces that containW . But the orthogonal form can be written as
xy after some change of coordinates, so there are exactly 2 solutions up to scalar multiple. �

This implies that once we include n− 1 in d, the odd and even n-dimensional subspaces
are determined, i.e., including n− 1 in d makes n and n′ redundant. There are a few choices
to remove these redundancies, but we stick to the following. Consider the set {1, 2, . . . , n−
2, n, n′} and let d be a subset. The isotropic (partial) flag variety OFl(d; 2n) is the set
of subspaces {Wi | i ∈ d} such that:

• If i < j then Wi ⊂ Wj (we use the convention i < n′ if i < n)
• If n, n′ ∈ d, then dim(Wn ∩Wn′) = n− 1.

Note that if n, n′ ∈ d, then we could replace both by n − 1 thanks to the lemma above.
However, it is then awkward to describe the cases where only one of n and n′ belongs to d.

In both cases, we let OFl(m) denote the full isotropic flag variety, i.e., when d contains
all possible elements.

Proposition 4.5.5. OFl(d;m) is a projective variety.

The proof is basically the same as for the symplectic case. The only thing to note is when
m = 2n and both n, n′ ∈ d. In that case, we should replace them with n− 1 so that we can
embed in the appropriate flag variety.

Remark 4.5.6. If E is a vector bundle on a space X, then we call it orthogonal if there
is a linear map Sym2E → C ×X, where the latter is the trivial line bundle, such that the
restriction of this to each fiber is an orthogonal form. Using this, we can construct a relative
isotropic flag variety OFl(d;E) which has a map π to X such that π−1(x) = OFl(d;Ex).
More generally, we could replace C×X by any line bundle on X. �
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If d = (1), then OFl(d;m) is defined by a single quadratic polynomial
∑m−n

i=1 xixm+1−i = 0
in Pm−1, so it has dimension m− 2.

Proposition 4.5.7. dim OFl(m) = n(m− n− 1).

Proof. Let R be the tautological subbundle for OFl(1;m). Then R⊥/R is an orthogonal
bundle and OFl(m) = OFl(R⊥/R) and the fibers are all isomorphic to OFl(m− 2), so

dim OFl(m) = m− 2 + dim OFl(m− 2).

The base cases are m = 2, in which case OFl(2) is 2 points, and hence 0-dimensional, and
m = 3, in which case OFl(3) is a curve in P2, and hence 1-dimensional. So by induction,
we see that dim OFl(m) = n(m− n− 1). �

As in the symplectic case, we can use this to compute the dimensions of any OFl(d;m).
An analogue of the Borel–Weil theorem can be setup in both cases. The details are

essentially the same, so we omit the discussion.

4.6. Kempf–Weyman collapsing. Let U be a vector space and consider the trivial vector
bundle U ×X over a projective variety X. Given a subbundle S ⊂ U ×X, we can consider
the first projection map S→ U . By general theory, since X is projective, the image Y of S
in U is closed. We call it a collapsing of the vector bundle S. If X is irreducible, then the
same is true for S, and so Y is also automatically irreducible. In some favorable cases, we can
use this to compute the coordinate ring of Y , generators for its ideal, and more. However,
this would requires a lot more technical background than I wish to cover in this course, so
we will just focus on examples, starting with some that we’ve already studied.

Example 4.6.1 (Determinantal varieties). Let E,F be vector spaces and consider U =
Hom(E,F ), the space of linear maps E → F . Assume that dimE ≤ dimF and fix an
integer r < dimE. Let Y be the subset of U consisting of linear maps of rank ≤ r. Note
that Y is an affine subvariety (it is the zero locus of the determinants of the submatrices of
size r + 1 once we pick bases).

Note that Y is not linear in the sense that it is not closed under addition. However, we
can “linearize” Y as follows. For a fixed r-dimensional subspace W ⊂ F , the set of arbitrary
maps E → W is a linear subspace of Y . If we vary the choice of W (alternatively, consider
the closure of this linear subspace under the action of GL(F )), then we get Y .

This suggests that we can realize Y as a collapsed vector bundle. Let X = Gr(r, F ),
and let R be the tautological subbundle on X. Consider S = Hom(E,R) ∼= E∗ ⊗ R ⊂
(E∗ ⊗ F )×X = U ×X. Then the image of S in U is exactly Y .

More explicitly, S = {(f,W ) | W ∈ Gr(r, F ), f : E → W} and the map π is π(f,W ) = f .
Then π−1(f) = {(f,W ) | image f ⊆ W}. If rank f = r, then the fiber is exactly one
point and π is birational isomorphism, i.e., is an isomorphism away from a closed subset
(technically, we have to also show that the inverse f 7→ (f, image f) is an algebraic function).
In fact, the Grassmannian is a smooth projective variety (automatic since it is homogeneous:
a general point is smooth and all points are the same) and so S is smooth as well, which
means that it is a desingularization of Y .

The varieties of symmetric and skew-symmetric matrices of bounded rank also fits into
this picture. �

Example 4.6.2 (Isotropic maps). Let E be a vector space of dimension m and V a sym-
plectic space of dimension 2n. Again let U = Hom(E, V ) and let Y be the set of maps
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f : E → V such that f(E) ⊂ V is an isotropic space. This behaves much like the previ-
ous example: let X = IGr(min(m,n), V ). Again, let R be the tautological subbundle of
V × X. We take S = Hom(E,R). All of the above discussion applies here. We can also
modify Y by considering only maps such that f(E) is isotropic and rank f ≤ r for some
fixed r ≤ min(m,n).

We can also take V to be an orthogonal space instead if we like. There is one caveat: if
dimV = 2n is even, and m ≥ n, then we need to take X = OGr(n, V )qOGr(n′, V ). �

Example 4.6.3 (Nilpotent cone). Let E be a vector space of dimension n and let U =
Hom(E,E). A matrix x ∈ U is nilpotent if some power of x is 0. In fact, this forces xn = 0,
so the set of Y of nilpotent matrices is an affine subvariety called the nilpotent cone. It
is the zero locus of the entries of xn for example. A more efficient set of equations is to
take the coefficients of the characteristic polynomial of x: nilpotent is equivalent to having
characteristic polynomial equal to tn, so expanding det(x − tIn) gives polynomials in the
entries of x that are 0.

To realize this as a collapsed vector bundle, we try to find a linear subspace inside of
Y . Here’s one: if we pick a basis, then a quick computation shows that all matrices which
are strictly upper-triangular with respect to this basis are automatically nilpotent. Actu-
ally, we just need a choice of complete flag rather than a choice of basis. This is a lin-
ear subspace. Furthermore, we claim that closing this subspace by the action of GL(E)
(change of basis) gives all of Y . Given a nilpotent matrix, we have a sequence of subspaces
imagex ⊃ imagex2 ⊃ · · · ⊃ imagexn−1. If imagexi 6= 0, then it strictly contains imagexi+1

(if not, then x would not be nilpotent). Hence we get a partial flag. If we refine this to a
complete flag F1 ⊂ F2 ⊂ · · · ⊂ Fn−1, then x(Fi) ⊆ Fi−1 for all i. There is an element of
GL(E) that takes the standard complete flag to this complete flag, so our claim is proven.

Take X = Fl(E) and let Ri be the ith tautological subbundle on X. Take S to be the
subbundle of U ×X consisting of pairs (x, F•) such that x(Fi) ⊆ Fi−1 for all i. (Remark: S

is the cotangent bundle of X.) Then the image of S in U is Y . A general choice of x ∈ Y
has one Jordan block, so that imagex ⊃ imagex2 ⊃ · · · ⊃ imagexn−1 is already a complete
flag. In that case, we see that π−1(x) is a single point and so π : S → Y is a birational
isomorphism. This implies that dimY = dimX + rank S. We leave it as an exercise to show
that the ideal of Y is generated by the coefficients of the characteristic polynomial.

Rather than deal with all nilpotent matrices, we can stratify Y by the sizes of the Jordan
blocks in Jordan normal form. We leave this as an exercise. �

Example 4.6.4 (Binary forms). Let U = Symd C2 be the space of degree d polynomials in
2 variables. We know that such a polynomial always factors as a product of d linear forms.
Fix p such that 2 ≤ p ≤ d, and let Y be the set of polynomials such that some linear form
appears with multiplicity ≥ p.

Pick a basis x, y for C2 and consider all polynomials of the form xpf where deg f = d− p.
This is a linear subspace, and closing this set under the action of GL2(C) gives Y . Set
X = P1, and let S be the subbundle of U ×X given by pairs ([`], `pf). Then the image of
S in U is Y . Note that a general polynomial in Y will be of the form `pf where ` does not
divide f , so the map is again a birational isomorphism. �

4.7. Dynkin diagrams. I end this portion by reformulating what we’ve discussed in a
more uniform Lie-theoretic way. The classification of simple Lie algebras over the complex
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numbers can be reduced to the classification of Dynkin diagrams. They come in 4 infinite
families together with 5 exceptional examples (I will omit the latter):

An
1 2

. . .
n− 1 n

Bn
1 2

. . .
n− 1 n
⇒

Cn
1 2

. . .
n− 1 n
⇐

Dn
1 2

. . .
n− 2 n− 1

n

Each Lie algebra has a simply-connected Lie group associated to them.

• For An, it is the special linear group SLn+1(C) (subgroup of determinant 1 matrices
in GLn+1(C)).
• For Bn, it is the odd rank spin groups Spin2n+1(C). This is a double cover of the

special orthogonal group SO2n+1(C). However, we can use the special orthogonal
group in what follows.
• For Cn, it is the symplectic group Sp2n(C).
• For Dn, it is the even rank spin group Spin2n(C).

Each node i corresponds to a “fundamental representation” with highest weight ωi, and
more generally, a function f from the nodes to non-negative integers corresponds to an irre-
ducible representation with highest weight

∑
i f(i)ωi. We translate this now to the notation

we’ve been using with integer sequences.

• For An, ωi = (1i, 0n+1−i). Note that for SLn+1(C), the determinant representation is
trivial (which is why there are n nodes and not n+ 1). The only difference between
representations of SLn+1(C) and GLn+1(C) is that highest weights for the latter are
weakly decreasing sequences in Zn+1 while for the former we take Zn+1 modulo the
subgroup spanned by (1n+1).
• For Bn, and i < n, ωi = (1i, 0n−i). In our previous notation, ωn = 1

2
(1n). So in par-

ticular, the irreducible representations of SO2n+1(C) have highest weights
∑

i f(i)ωi
where f(n) is even. The cases where f(i) is odd correspond to representations of
Spin2n+1(C) that do not factor through SO2n+1(C).
• For Cn, ωi = (1i, 0n−i).
• For Dn and i ≤ n − 2, ωi = (1i, 0n−i). In our previous notation, ωn−1 = 1

2
(1n)

and ωn = 1
2
(1n−1,−1). So the irreducible representations of SO2n(C) have highest

weights
∑

i f(i)ωi where f(n − 1) + f(n) is even, and the odd case corresponds to
representations of Spin2n(C) that do not factor through SO2n+1(C).

In all cases, n refers to the dimension of any maximal torus. There will be a standard
maximal torus and each node corresponds to a pair of “root subgroups”, one denoted “pos-
itive” and one “negative”. In the case of SLn+1(C), the positive root subgroup of the ith
node is the set of matrices with 1’s on the diagonal, an arbitrary scalar in position (i, i+ 1),
and 0’s elsewhere. The negative one is the transpose of this.
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The positive root subgroups together with the standard maximal torus generate a stan-
dard Borel subgroup (taking the negative ones instead gives an “opposite” Borel subgroup).
Conjugacy classes of parabolic subgroups are indexed by sets of nodes not equal to the
whole graph. Explicitly, given a set of nodes, the subgroup generated by the standard Borel
subgroup and the corresponding negative root subgroups is a parabolic subgroup whose
conjugacy class we take.

Hence, homogeneous spaces are classified by proper subsets of the nodes. In our examples,
they always indexed certain kinds of flags, and the nodes can be identified with subspaces
of a particular kind.

• For An, the ith node corresponds to i-dimensional subspaces.
• For Bn and Cn, the ith node corresponds to i-dimensional isotropic subspaces.
• For Dn, if i ≤ n − 2, then the ith node corresponds to i-dimensional isotropic sub-

spaces. The (n − 1)st and nth nodes correspond to the two types of n-dimensional
isotropic subspaces.

In almost all cases, the condition to be a flag is that subspaces are nested when appropriate
(the exception is for Dn when dealing with nodes n−1 and n, in which case their intersection
should be of dimension n− 1).

For small values of n, the diagrams in these families overlap, which leads to isomorphisms of
the Lie algebras, their simply-connected Lie groups, the corresponding homogeneous spaces,
and the corresponding irreducible representations.

Example 4.7.1. We have B2 = C2. This tells us that Spin5(C) ∼= Sp4(C). The first
fundamental representation of Spin5(C) is the vector representation C5 and that matches
with the second fundamental representation of Sp4(C) which is

∧2 C4/〈Ω〉. In particular,
the latter representation has an orthogonal form on it which is compatible with the Sp4(C)-
action.

This also implies that OFl(1; 5) ∼= IFl(2; 4). The former is a quadric hypersurface in
P4. By semisimplicity,

∧2 C4/〈Ω〉 can be realized as a subspace in
∧2 C4 and being in

the ordinary Grassmannian means that the Pfaffian vanishes, which is quadratic. So this
isomorphism tells us that being in the complement of 〈Ω〉 and having 0 Pfaffian suffices to
belong to IFl(2; 4). �

Example 4.7.2. We have A3 = D3. In that case, the first fundamental representation of D3,
which is an orthogonal space C6 matches up with the second fundamental representation of
A3, which is

∧2 C4. The orthogonal form on the latter is given by exterior multiplication:
given α, β ∈

∧2 C4, define ω(α, β) to be the coefficient of e1 ∧ e2 ∧ e3 ∧ e4 in α ∧ β. The
condition α ∧ α = 0 translates to rankα ≤ 2, so we see that the quadric hypersurface in P5

matches up with the Grassmannian Gr(2, 4).
Since node 1 of A3 goes to node 2 of D3, this says that P3 ∼= OFl(3; 6), and similarly P3 ∼=

Gr(3, 4) ∼= OFl(3′; 6). If we mark both outer nodes, we get an isomorphism Fl(1, 3; 4) ∼=
OFl(3, 3′; 6), where the latter can equivalently be described as the space of 2-dimensional
isotropic subspaces. �

Example 4.7.3. Note that An = An in a non-trivial way: we can reverse the order of the
nodes, so that node i matches with node n+1−i. This amounts to matching up

∧i Cn+1 with

(
∧n+1−i Cn+1)∗. These two are isomorphic as SLn+1(C)-representations (though differ by a

power of the determinant representation as GLn+1(C)-representations). This also realizes
the isomorphism Gr(i, n+ 1) ∼= Gr(n+ 1− i, n+ 1).
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Similarly, Dn has a non-trivial automorphism that swaps n − 1 and n. From what we’ve
said before, if n is odd, this amounts to swapping a representation for its dual. �

5. Classical invariant theory

5.1. Schur–Weyl duality. Let V be a finite-dimensional vector space. The tensor power
V ⊗n is a representation of GL(V ), and it is also a representation of the symmetric group
Sn by permuting tensors. More specifically, to get a left action, we have

σ · (v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

Define End(W ) = Hom(W,W ). Consider the space of linear operators U = End(V ⊗n). Then
U is a C-algebra where addition is the usual addition, and multiplication is composition of
linear maps. The action of GL(V ) gives a function GL(V ) → U . Let A be the linear
subspace spanned by the image. This is a subalgebra of U . Similarly, let B be the linear
span of the image of Sn → U , which is also a subalgebra.

Given a subalgebra R ⊂ End(W ) for any vector space W , we define its commutant
R! = {x ∈ U | xr = rx for all r ∈ R}.

For our purposes, a finite-dimensional C-algebra is semisimple if it is isomorphic to a
direct product of matrix algebras. This is equivalent to asking that every finite-dimensional
representation is semisimple.

Theorem 5.1.1 (Double commutant theorem). Let R ⊂ End(W ) be a semisimple subalge-
bra.

(1) S = R! is semisimple and R = S!.
(2) As an R × S-representation, W =

⊕
i∈IMi ⊗Ni where Mi are irreducible represen-

tations of R, and the Ni are irreducible representations of S. Furthermore, Mi 6∼= Mj

and Ni 6∼= Nj for i 6= j.

Proof. Since R is semisimple, we have a decomposition W =
⊕

i∈IM
⊕mi
i where Mi are

the different irreducible representations of R and mi are their multiplicities. Then we can
identify R =

∏
i∈I End(Mi). By Schur’s lemma, S = R! is identified with a product of matrix

algebras
∏

i∈I End(Cmi) and in particular is semisimple. The ith component acts on M⊕mi
i
∼=

(Cmi)⊕dimMi where Cmi is the standard representation on column vectors and acts by 0 on
all other components. Applying Schur’s lemma again shows that S! =

∏
i∈I End(CdimMi).

But R ⊂ S! and they have the same dimension, so we get equality.
The second part follows since the algebra of n × n has a unique irreducible represen-

tation given by column vectors Cn. The product structure of R and S then gives the
non-isomorphism statements. �

We have B ⊆ A! and A ⊆ B! since the actions commute with each other.

Proposition 5.1.2. B! = A.

Proof. We have an identification

U = End(V ⊗n) = (EndV )⊗n

given as follows: if A1 ⊗ · · · ⊗An is a simple tensor on the right side, then we send it to the
linear map V ⊗n → V ⊗n given again on simple tensors by v1⊗· · ·⊗vn 7→ A1(v1)⊗· · ·⊗An(vn).
Under this identification, the image of g ∈ GL(V ) in (EndV )⊗n is g ⊗ · · · ⊗ g.
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Using this description, we claim that A = ϕ ∈ (EndV )⊗n such that σϕ = ϕ for all
σ ∈ Sn, i.e., the linear space of symmetric tensors. Let f be a linear function on the
space of symmetric tensors. Then we get a degree n polynomial F on End(V ) via F (A) =
f(A⊗· · ·⊗A) and this is an isomorphism between linear functions and degree n polynomials.
Since GL(V ) ⊂ End(V ) is Zariski dense, F is identically 0 if and only if F (g) = 0 for all
g ∈ GL(V ). In particular, if f is any linear function on the space of symmetric tensors
which is 0 on the subspace A, then f = 0, which implies that A is the entire space.

Finally, we translate what it means to be symmetric, i.e., commute with all permutations
to End(V ⊗n). Pick A1⊗· · ·⊗An ∈ (EndV )⊗n and σ ∈ Sn. Then σ(A1⊗· · ·⊗An) = Aσ−1(1)⊗
· · · ⊗ Aσ−1(n) corresponds to the linear map v1 ⊗ · · · ⊗ vn 7→ Aσ−1(1)(v1)⊗ · · · ⊗ Aσ−1(n)(vn).
We can rewrite this last expression as

σ · (A1(vσ(1))⊗ · · · ⊗ An(vσ(n))) = σ(A1 ⊗ · · · ⊗ An)σ−1(v1 ⊗ · · · ⊗ vn).

So being symmetric in (EndV )⊗n corresponds to commuting with all permutations in End(V ⊗n),
which shows that A = B!. �

Corollary 5.1.3. A! = B.

Proof. Recall that representations of finite groups are semisimple over the complex numbers,
so this means that B, which is a quotient of the group algebra of Sn, is also semisimple. So
we can apply the double commutant theorem. �

Corollary 5.1.4. As Sn ×GL(V )-representations, we have

V ⊗n ∼=
⊕
λ

Sλ ⊗ Sλ(V )

where λ ranges over all partitions of size n and `(λ) ≤ dimV , and the Sλ are irreducible
representations of Sn.

The Sλ are called Specht modules.

Proof. This follows from the double commutant theorem. It remains to find the indexing set
I in that theorem. We know from Pieri’s rule that V ⊗n is a sum of Schur functors Sλ(C

n)
where λ is as in the theorem. �

Another consequence of Pieri’s rule is that dim Sλ is the set of sequences of adding boxes
to the empty partition to get λ such that each intermediate shape is a Young diagram. If
we put the number i in the ith box, we get a standard Young tableau (a special kind of
semistandard Young tableau). Hence, dim Sλ is the number of standard Young tableaux of
shape λ.

Next, we would like to describe the analogue of this result when GL(V ) is replaced by
either O(V ) or Sp(V ). This is known as the first fundamental theorem of invariant theory
(FFT) for these groups.

5.2. FFT for classical groups. Here we follow [P, Chapter 11].
We start with a slightly different setup. Let E and V be vector spaces with dimV = m

and dimE = n, and let G ⊂ GL(V ) be a subgroup. We will consider the ring of invariants

Sym(V ⊗ E)G =
⊕
λ

Sλ(V )G ⊗ Sλ(E)
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where the equality comes from the Cauchy identity. Since GL(E) commutes with GL(V )
(and hence G), we see that the invariant ring has an action of GL(E).

Lemma 5.2.1. If dimV = m and n ≥ m, then Sym(V ⊗Cn)G is generated by Sym(V ⊗Cm)G

together with the action of GLnC.

Proof. The sum is over all partitions λ such that `(λ) ≤ min(dimV, dimE). In particular, if
dimE > dimV , let E ′ ⊂ E be a subspace with dimE ′ = dimV . Then SλE

′ ⊆ SλE and the
latter is generated by SλE

′ under GL(E) (since we can arrange a choice of Borel subgroup
so that the subspace contains a highest weight vector of GL(E)). �

If G ⊆ SL(V ), i.e., det g = 1 for all g ∈ G, then the determinants of m×m submatrices
are all invariants.

Lemma 5.2.2. If G ⊆ SL(V ) and n ≥ m, then Sym(V ⊗ Cn)G is generated by Sym(V ⊗
Cm−1)G together with the m×m determinants, and the action of GLnC.

Proof. When λ = (1m), we have SλV =
∧m V is the determinant representation. Further-

more, for any λ with `(λ) = m we can write λ = (km) + µ where `(µ) < m, and the
highest weight vector of SλV ⊗SλC

m is a product of the kth power of highest weight vector
of
∧m V ⊗

∧m Cm and the highest weight vector of SµV ⊗ SµC
m. Now use the previous

result. �

Now consider the orthogonal group G = O(V ) with orthogonal form ω. We can use this to
make the identification V ∼= V ∗: a vector v ∈ V becomes the linear functional u 7→ ω(u, v).
This gives an invariant subspace of Sym2 V and hence there is an invariant subspace in
Sym2 V ⊗ Sym2E. Under our identification, this is spanned by the invariant functions ϕi,j
for 1 ≤ i ≤ j ≤ n given by

ϕi,j(
n∑
k=1

vk ⊗ ek) = ω(vi, vj).

If j < i, we set ϕi,j = ϕj,i.

Theorem 5.2.3 (FFT for SO,O). Let dimV = m.

(1) Sym(V ⊗Cn)SO(V ) is generated as a C-algebra by the ϕi,j and, if n ≥ m, the m×m
determinants.

(2) Sym(V ⊗Cn)O(V ) is generated as a C-algebra by the ϕi,j.

Proof. Let R be the ring generated by the ϕi,j and the m×m determinants. Note that R is
closed under the action of GLn(C).

Next, we show that (1) implies (2). From the above it suffices to assume m = n. Since
O(V ) acts on the m×m determinants by ±1, (1) implies that the ring of O(V ) invariants
is the subring of R generated by the ϕi,j and products of an even number of the m × m
determinants. If u is the generic m×m matrix whose entries are V ⊗Cm, then

uT I ′u = (ϕi,j)i,j=1,...,n = Φ.

In particular, det Φ = (−1)m det(u)2. Since det Φ is generated by the ϕi,j, this shows that
products of an even number of the m×m determinant are redundant as generators for the
O(V )-invariant ring and hence (2) follows from (1).

Now we prove that both (1) and (2) hold by induction on m. By the above discussion, it
suffices to prove (1) but we will assume that both hold for m− 1. If m = 1, then SO(V ) is
the trivial group and Sym(V ⊗Cm) ∼= C[t] where t is the 1× 1 determinant.
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Now assume m > 1. Since SO(V ) ⊂ SL(V ), by the previous lemma we may assume
that n = m − 1. Pick a vector u ∈ V of norm 1, i.e., ω(u, u) = 1 and let V ′ be its
orthogonal complement. Then V ′ is also an orthogonal space which we think of as both a
quotient and subspace of V . Furthermore, any g′ ∈ O(V ′) can be extended to an element
g ∈ SO(V ) by defining g(u) = det(g′)u. Hence, if f ∈ Sym(V ⊗ Cm−1)SO(V ), then its
restriction f ′ ∈ Sym(V ′ ⊗Cm−1) is an O(V )-invariant. By induction, this means that f ′ is
a polynomial in the ϕi,j. Let F ∈ Sym(V ⊗Cm−1) be the same polynomial in the ϕi,j.

We claim that F = f . If u′ is any other norm 1 vector, then there exists g ∈ SO(V )
such that g(u) = u′ and hence the restriction of F − f to Sym(V ′′ ⊗ Cm−1), where V ′′ is
the orthogonal complement of u′, is 0. Next, if we identify V ⊗ Cm−1 = V ⊕m−1, then the
set of (v1, . . . , vm−1) such that their span is a non-degenerate (m− 1)-dimensional subspace
is Zariski dense (being degenerate means that either they don’t have (m − 1)-dimensional
span, or else that some vector vi has zero pairing with all others, and both conditions are
Zariski closed). By what we have just argued, F = f on this Zariski dense set, so they are
equal. �

Now consider the tensor power V ⊗n. If n = 2k is even, pick a perfect matching M of
{1, . . . , n}, i.e., write {1, . . . , n} as a disjoint union of 2 element subsets. Then we get a
O(V )-invariant linear function V ⊗n → C by

ϕM(v1 ⊗ · · · ⊗ vn) =
∏

{i,j}∈M

ω(vi, vj).

We can identity this functional with an element of V ⊗n using our identification V = V ∗ from
before.

Corollary 5.2.4. (V ⊗n)O(V ) is 0 if n is odd and otherwise is spanned by ϕM over all choices
of perfect matchings M .

Proof. We have Sym(V ⊗ Cn) = Sym(V ⊕n) = Sym(V )⊗n which contains V ⊗n as a linear
subspace. Under the action of the maximal torus T ⊂ GLnC, V ⊗n is the (1n)-weight space.
From FFT, the O(V )-invariants of Sym(V ⊗Cn) is generated by ϕi,j, which is a weight vector
for T of weight (0, . . . , 1, . . . , 1, . . . 0) with 1’s in positions i and j. Hence the invariants in
V ⊗n is spanned by all products of ϕi,j whose weight adds up to (1n), which is only possible
if n is even, and in that case, we get the ϕM . �

Now consider the case G = Sp(V ) with symplectic form ω. Again we can identify V = V ∗

using this form and we get an invariant subspace in
∧2 V ⊗

∧2E which is spanned by
invariant functions ψi,j for 1 ≤ i < j ≤ n given by

ψi,j(
n∑
k=1

vk ⊗ ek) = ω(vi, vj).

If j < i, we set ψi,j = −ψj,i.

Theorem 5.2.5 (FFT for Sp). Sym(V ⊗Cn)Sp(V ) is generated as a C-algebra by the ψi,j.

Proof. Let dimV = 2m.
Let R be the ring generated by the ψi,j. Then R is closed under the action of GLn(C)

and hence it suffices to consider the case n = 2m. In that case, let u be the generic matrix.
We have

uTΩu = (ψi,j) = Ψ
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where Ψ is skew-symmetric. Then Pf(Ψ) = detu · Pf Ω = ± detu. Since Pf(Ψ) ∈ R, we
see that R also contains the 2m× 2m determinant functions, and so we may further assume
that n = 2m− 1.

We proceed by induction on m. If m = 1, then our ring is Sym(V ), and each Symk(V )
for k > 0 is an irreducible representation of Sp(V ), so R is just the constants, so there is
nothing to prove.

Let v1, . . . , v2m be a symplectic basis for V , let V ′ be the span of v2, . . . , v2m and let W
be the span of v2, . . . , v2m−1. We will think of V ′ and W as both subspaces and quotients
of V . Then W is a symplectic space of dimension 2m − 2. Let f ∈ Sym(V ⊗C2m−1)Sp(V ).
We claim that the restriction of f to Sym(V ′ ⊗C2m−1) does not depend on the coordinates
involving v2m. To see this, for t ∈ C\0, consider gt ∈ Sp(V ) which is the identity on W and
g(v1) = t−1v1, g(v2m) = tv2m. Then the restriction of f is invariant under gt for all t, but
since it does not use v1, it will get scaled by powers of t if it involves any v2m, and hence it
must not involve v2m.

Now restrict f to Sym(W ⊗C2m−1). Since Sp(W ) ⊂ Sp(V ), by induction we have that
f is a polynomial in the ψi,j. Let F ∈ Sym(V ⊗C2m−1) be the same polynomial. By what
we argued, the restriction of F − f to Sym(V ′ ⊗C2m−1) is 0. The rest follows by a Zariski
density argument as before. �

Now consider the tensor power V ⊗n. If n = 2k is even, pick a perfect matching M of
{1, . . . , n}, i.e., write {1, . . . , n} as a disjoint union of 2 element subsets. Then we get a
Sp(V )-invariant linear function V ⊗n → C by

ψM(v1 ⊗ · · · ⊗ vn) =
∏

{i,j}∈M

ω(vi, vj).

We can identity this functional with an element of V ⊗n using our identification V = V ∗ from
before.

Corollary 5.2.6. (V ⊗n)Sp(V ) is 0 if n is odd and otherwise is spanned by ψM over all choices
of perfect matchings M .

5.3. Brauer algebras. Let G be either the orthogonal group or symplectic group for V and
consider V ⊗n. Define ε = 1 for the orthogonal case and ε = −1 for the symplectic case. Let
A be the linear subspace of End(V ⊗n) spanned by the elements of G. We want to compute
B = A!. We can reduce this to FFT as follows. We have

End(V ⊗n) = (V ⊗n)∗ ⊗ V ⊗n = V ⊗2n

where the form ω gives the identification V ∗ = V . Then A! corresponds to the linear G-
invariants of V ⊗2n, which is spanned by functions coming from perfect matchings. Let M
be a perfect matching of {1, . . . , 2n}. Under this identification, it makes sense to distinguish
{1, . . . , n} from {n+ 1, . . . , 2n}.

Given a perfect matchingM , the corresponding endomorphism βM can be defined “locally”
on an element v1 ⊗ · · · ⊗ vn as follows.

• For all edges {i, j} with i, j ≤ n, we remove vi and vj and scale the result by ω(vi, vj).
• Next, if there is an edge between {i, j + n} with i, j ≤ n, then we move vi to the
jth tensor position. The set of all edges forms a permutation between some of the
bottom vertices and some of the top vertices. In the symplectic case, we also scale
by the sign of this permutation.
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• Finally, for all edges {i+n, j+n} with i, j ≤ n, we insert the element Ω in positions i
and j, where Ω ∈ V ⊗2 is the sum over dual basis vectors. To be precise, for O(m) with
hyperbolic basis {e1, . . . , em}, Ω =

∑m
i=1 ei ⊗ em+1−i. For Sp(2m) with symplectic

basis {e1, . . . , e2m}, Ω =
∑m

i=1(−ei ⊗ e2m+1−i + e2m+1−i ⊗ ei).

Theorem 5.3.1. The centralizer B = A! is linearly spanned by βM as M ranges over all
perfect matchings of {1, . . . , 2n}.

What is the product structure on the βM? In general, they are not linearly independent,
so it will be easier to define an algebra abstractly for which the βM are a basis and to describe
its multiplication.

We first define a monoid Bn on the set of perfect matchings of {1, . . . , 2n}. We think
of {1, . . . , 2n} as 2 rows of n ordered dots and the subset {i, j} is represented by an edge
between these two dots. The product MM ′ of matchings M and M ′ is obtained by stacking
on M ′ on top of M , identifying the 2 middle rows, and picking out the resulting edges
between dots not in the middle row. We also set n(M,M ′) to be the number of connected
components of the graph involving only the middle row.

To illustrate, we give an example of composition in B6. Let M be the matching
• • • • • •

• • • • • •
and let M ′ be the matching

• • • • • •

• • • • • •
After putting M above M ′, we obtain the graph

• • • • • •

• • • • • •

• • • • • •
There is one component that only touches middle vertices, and so n(M,M ′) = 1. Discarding
it and ignoring the middle vertices, we are left with

• • • • • •

• • • • • •
and this is MM ′.

Finally, given δ ∈ C, the Brauer algebra Bn(δ) is the C-algebra with basis given by the
perfect matchings of {1, . . . , 2n} with multiplication given by

M ·M ′ = δn(M,M ′)MM ′

where the product on the right is the product in Bn. (If δ = n(M,M ′) = 0, we interpret
00 = 1.)
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Proposition 5.3.2. We have a surjective homomorphisms

Bn(dimV )→ EndO(V )(V
⊗n), Bn(− dimV )→ EndSp(V )(V

⊗n)

which in both cases sends the basis vector M to βM .

As is, it’s not so easy to show that multiplication is preserved. It’s easier to start with a
presentation of the Brauer algebra by generators and relations and show directly that all of
the relations behave correctly, but we will omit this, since understanding the multiplication
won’t be crucial for the following discussion.

Remark 5.3.3. The strange sign conventions in the symplectic case are needed. For ex-
ample, (1, 2)Ω = −Ω, but in the Brauer algebra, permuting the ends of a “cap” leaves it
invariant. So to compensate, permutations act by an additional sign. �

Remark 5.3.4. The image of the Brauer algebra is A! which is semisimple by the double
commutant theorem. For Schur–Weyl duality, the group algebra of the symmetric group
was already semisimple. However, in general, Bn(δ) can fail to be semisimple when δ ∈ Z.
Nonetheless, since it factors through a semisimple quotient, the action of Bn(± dimV ) on
V ⊗n is semisimple. �

Here is a variation. For each i < j, we have a map ωi,j : V ⊗n → V ⊗(n−2) such that
ωi,j(v1⊗· · ·⊗vn) is ω(vi, vj) times the result of removing vi and vj. We let V [n] =

⋂
i<j kerωi,j

and call it the space of traceless tensors.

Theorem 5.3.5. The commutant of the image of G in End(V [n]) is the linear span of the
symmetric group and hence as a Sn ×G-representation, we have

V [n] ∼=
⊕
λ

Sλ ⊗ S[λ]V

where the sum is over all partitions λ of size n with 2`(λ) ≤ min(dimV, n).

Proof. By restricting to the traceless tensors, the perfect matchings which have edges {i, j}
with i, j ≤ n now act by 0. The remaining perfect matchings can be identified with per-
mutations of n, and hence we see that the linear span of Sn is the commutant of the linear
span of G.

As for the indexing set, the restrictions are necessary, so it suffices to show that these
terms actually appear. By Schur–Weyl duality, it suffices to show that there is a traceless
tensor in SλV , but since 2`(λ) ≤ dimV , we know its highest weight vector with respect to
the Borel subgroup for the standard hyperbolic basis uses only e1, . . . , ed where d ≤ dimV/2,
and there are no nonzero pairings between these vectors. �

Corollary 5.3.6. As a Bn(± dimV )×G-representation, we have

V ⊗n ∼=
⊕
λ

W λ ⊗ S[λ](V )

where λ ranges over all partitions such that 2`(λ) ≤ dimV , n ≥ |λ|, and n−|λ| is even, and
the W λ are distinct irreducible Bn(± dimV )-representations.

Proof. We already know that the pair of algebras are commutants of one another, so it re-
mains to understand the indexing set. We have a surjective map ω1,2 : V ⊗n → V ⊗(n−2) whose
kernel contains V [n], and hence by induction, we see that S[λ]V appears in the decomposition
if λ satisfies the conditions stated. �
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6. Spin groups

Now we turn to the question of constructing the spinor representations, which we have
alluded to a few times as being the missing representations in the theory of the orthogonal
groups. The standard construction uses Clifford algebras, which we explain first.

6.1. Clifford algebras. Let V be a finite-dimensional orthogonal space with form ω. First,
the tensor algebra T (V ) =

⊕
d≥0 V

⊗d is an associative algebra with product given by
concatenation of tensors, i.e.,

(v1 ⊗ · · · ⊗ vd) · (w1 ⊗ · · · ⊗ we) = v1 ⊗ · · · ⊗ vd ⊗ w1 ⊗ · · · ⊗ we.
The Clifford algebra C(V, ω) = C(V ) is the quotient of T (V ) by the 2-sided ideal generated
by the relations

vw + wv = 2ω(v, w).

Here v, w ∈ V ⊗1 and the right hand side is in C = V ⊗0. So the relations are not homogeneous
with respect to the natural Z-grading, but they are homogeneous with respect to the natural
Z/2-grading, so we have a decomposition

C(V ) = C+(V )⊕ C−(V )

where C+(V ) is the image of
⊕

d≥0 V
⊗2d and C−(V ) is the image of

⊕
d≥0 V

⊗(2d+1). The

elements of C+(V ) are even and the elements of C−(V ) are odd and every element can
uniquely be written as a sum of an even and odd element. Furthermore, multiplication of
homogeneous elements has the expected behavior (even times even is even, etc.)

We will make use of the following universal property of C(V ): If A is any associative
C-algebra, then to specify a homomorphism ϕ : C(V )→ A, it is enough to specify ϕ(v) for
all v ∈ V subject to the fact that they satisfy ϕ(v)ϕ(w) + ϕ(w)ϕ(v) = 2ω(v, w).

Lemma 6.1.1. Let v1, . . . , vm be a basis for V . For I = (i1, . . . , ik) with 1 ≤ i1 < · · · <
· · · ik ≤ m, define vI = vi1 · · · vik (with v∅ = 1). Then the vI form a basis for C(V ) and
hence dimC(V ) = 2dimV .

Proof. The products of the vi span T (V ) and hence span C(V ). The relations tell us that if
we see two vectors vivj out of order (i.e., i > j), then we can replace it by 2ω(vi, vj)− vjvi,
so that we can rewrite any such product as a linear combination of products where all of the
vectors are in order. Hence the vI span C(V ).

Next, for each d, define C≤d(V ) to be the span of all elements w1 · · ·wk where wi ∈ V and
k ≤ d. Then we have an isomorphism of vector spaces

C(V ) ∼=
⊕
d≥0

C≤d(V )/C≤d−1(V ).

The elements in C≤d(V )/C≤d−1(V ) satisfy the relations for
∧d V (since our basic relation

becomes just vw+wv = 0) which we know has a basis given by vI with |I| = d. Hence they
are linearly independent and the same is true in C(V ). �

The Clifford algebras turn out to be semisimple algebras, but the decomposition into
matrix algebras depends on the parity of m. We first consider the case when m = 2n is even.
In that case, write V = W ⊕W ′ where W,W ′ are n-dimensional isotropic subspaces. For
instance, with respect to a hyperbolic basis e1, . . . , e2n, W is the span of e1, . . . , en and W ′

is the span of en+1, . . . , e2n. Note that W ′ is canonically isomorphic to W ∗ via ω.
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We define
∧•(W ) =

⊕
d≥0

∧dW . This is an associative algebra (the exterior algebra)
via concatenation of tensors.

Theorem 6.1.2. If dimV is even, then we have an isomorphism C(V ) ∼= End(
∧•W ), i.e.,

C(V ) is isomorphic to the algebra of matrices of size 2n. In particular, C(V ) is a simple
algebra.

Proof. We first construct a homomorphism ϕ : C(V ) → End(
∧•W ) using the universal

property of C(V ).
For each w ∈ W , let ϕ(w) denote left multiplication by w in the exterior algebra, i.e.,

ϕ(w)(α) = w ∧ α. For w′ ∈ W ′, we define

ϕ(w′)(w1 ∧ · · · ∧ wd) =
d∑
i=1

(−1)i−12ω(w′, wi)(w1 ∧ · · · ŵi · · · ∧ wd)

where ŵi means that we remove that factor. For a general v ∈ V , we write v = w +w′ with
w ∈ W and w′ ∈ W ′ and define ϕ(v) = ϕ(w) + ϕ(w′).

We have to check that they satisfy ϕ(v)ϕ(v′) + ϕ(v′)ϕ(v) = 2ω(v, v′). By linearity, it is
enough to check this when v, v′ are elements of either W or W ′.

• If v, v′ ∈ W , then ϕ(v) and ϕ(v′) anticommute and ω(v, v′) = 0.
• Similarly, if v, v′ ∈ W ′, a direct calculation also shows that ϕ(v) and ϕ(v′) anticom-

mute and ω(v, v′) = 0.
• Finally, assume v ∈ W and v′ ∈ W ′. Then

ϕ(v)ϕ(v′)(w1 ∧ · · · ∧ wd) =
d∑
i=1

(−1)i−12ω(v′, wi)(v ∧ w1 ∧ · · · ŵi · · · ∧ wd)

ϕ(v′)ϕ(v)(w1 ∧ · · · ∧ wd) = 2ω(v′, v)w1 ∧ · · · ∧ wd +
d∑
i=1

(−1)i2ω(v′, wi)(v ∧ w1 ∧ · · · ŵi · · · ∧ wd).

When we add them, the two sums cancel, so ϕ(v)ϕ(v′) + ϕ(v′)ϕ(v) = 2ω(v, v′).

Next, we show that ϕ is injective. Suppose that a =
∑

I αIeI ∈ kerϕ where I ranges
over all subsets of {1, . . . , 2n}. We will show that all αI = 0 by induction on s(I) =
#(I ∩{n+ 1, . . . , 2n}). For the base case, we have ϕ(a)(1) =

∑
I αIeI where the sum is over

all I such that s(I) = 0. Since these are a basis for
∧•W , we see that αI = 0 for all such I.

In general, assuming we know it is true for s(I) ≤ d, we consider ϕ(a)(ei1 ∧ · · · ∧ eid+1
)

over all choices i1 < · · · < id+1. Then ϕ(eI) applied to this element is 0 if s(I) > d+ 1 or if
s(I) = d+ 1 and I 6= {i1, . . . , id+1}. If I = {i1, . . . , id+1}, then we ϕ(eI)(ei1 ∧ · · · ∧ eid+1

) is a
nonzero constant cI , and so we get

ϕ(a)(ei1 ∧ · · · ∧ eid+1
) = ci1,...,id+1

∑
I⊆{1,...,n}

αI∪{i1,...,id+1}eI .

Again, the eI are linearly independent in
∧•W , so αI∪{i1,...,id+1} = 0 for all I.

Since ϕ is injective, and dimC(V ) = 22n = (2n)2 = dim End(
∧•W ), we conclude that ϕ

is an isomorphism. �

Next, define
∧even(W ) =

⊕
d≥0

∧2dW and
∧odd(W ) =

⊕
d≥0

∧2d+1W .

Corollary 6.1.3. C+(V ) ∼= End(
∧evenW )× End(

∧odd W ) so C+(V ) is also semisimple.
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Proof. The action of C+(V ) on
∧•W preserves both of these subspaces, so we get a map

ϕ : C+(V )→ End(
even∧

W )× End(
odd∧

(W )

which is injective since it is the restriction of the injective map ϕ on C(V ). Since

dimC+(V ) = dimC(V )/2 = 22n−1 = 2 · (2n−1)2 = dim(End(
even∧

W )× End(
odd∧

(W )),

this map is also an isomorphism. �

Now we consider the odd case m = 2n+ 1. In that case, we write V = W ⊕W ′⊕L where
W,W ′ are n-dimensional isotropic subspace as before, and L = (W ⊕W ′)⊥. With respect to
a hyperbolic basis e1, . . . , e2n+1, W is the span of e1, . . . , en, L is the span of en+1, and W ′ is
the span of en+2, . . . , e2n+1.

Theorem 6.1.4. If dimV is odd, then we have an isomorphism C(V ) ∼= End(
∧•W ) ×

End(
∧•W ′), i.e., C(V ) is isomorphic to the product of two algebras of matrices of size 2n

each. In particular, C(V ) is a semisimple algebra.
Furthermore, C+(V ) ∼= End(

∧•W ) ∼= End(
∧•W ′).

Proof. We proceed as in the even case to define ϕ : C(V )→ End(
∧•W ). For v ∈ W ⊕W ′,

we define ϕ(v) in exactly the same way. Pick ` ∈ L so that ω(`, `) = 1. Then we define
ϕ(`)(w1 ∧ · · · ∧ wd) = (−1)dw1 ∧ · · · ∧ wd. Then for any w ∈ W ⊕W ′, we have ϕ(`)ϕ(w) =
−ϕ(w)ϕ(`) since ϕ(w) changes the parity of every homogeneous element of

∧•W . Also
ω(w, `) = 0 by definition. So ϕ is a homomorphism.

We define ϕ′ : C(V ) → End(
∧•W ′) in exactly the same way except we swap the roles

of W and W ′ and we multiply ϕ(`) by (−1)n. Combining them gives us a homomorphism
Φ: C(V ) → End(

∧•W ) × End(
∧•W ′). For a subset I ⊆ {1, . . . , 2n + 1} \ {n + 1}, let

I ′ = I ∪ {n + 1}. Suppose a =
∑

I(αIeI + αI′eI′) ∈ ker Φ. Then a ∈ kerϕ and a ∈ kerϕ′.
Using an argument similar to the previous one, we can show that αI+αI′ = 0 and αI−αI′ = 0
by induction on #(I ∩ {n + 2, . . . , 2n + 1}) (we omit the details) and hence Φ is injective.
By a dimension count, Φ is an isomorphism.

Now consider the action of C+(V ) on
∧•W ). Since every basis element of C+(V ) is either

a basis element of C+(W ⊕W ′) or ` times such a basis element, the argument in the even
case implies the last statement. �

We will need the following statement later, whose proof we leave as an exercise.

Lemma 6.1.5. • If x ∈ C+(V ) and xv = vx for all v ∈ V , then x ∈ C0(V ) is a scalar.
• If x ∈ C−(V ) and xv = −vx for all v ∈ V , then x = 0.

6.2. Spin groups. The Clifford algebra C(V ) has a linear map x 7→ x∗ defined by

(v1 · · · vd)∗ = (−1)dvd · · · v1

for v1, . . . , vd ∈ V . It is an anti-involution: (x∗)∗ = x and (xy)∗ = y∗x∗. To see this is
well-defined, define C(V )op to be the opposite algebra of C(V ), i.e., it has a multiplication
x · y = yx where the right side is multiplication in C(V ). Then we need to check that ∗
satisfies the universal property. Pick v, w ∈ V . Then

v∗ · w∗ + w∗ · v∗ = (−w)(−v) + (−v)(−w) = 2ω(v, w).
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We also define an algebra homomorphism α : C(V )→ C(V ) by

α(v1 · · · vd) = (−1)dv1 · · · vd.

We define

Pin(V ) = {x ∈ C(V ) | xx∗ = 1, xvx∗ ∈ V for all v ∈ V },
Spin(V ) = {x ∈ C+(V ) | xx∗ = 1, xvx∗ ∈ V for all v ∈ V }.

Then both are clearly groups under multiplication, which we call the pin group and spin
group, respectively. Thinking of them as a subsets of matrix algebra(s), the conditions are
given by the polynomial equations, and hence both are algebraic groups. Note that we have
a group homomorphism Pin(V )→ Z/2 which takes the degree of an element and the kernel
is Spin(V ). We will see in the proof below that Pin(V ) contains odd elements, so Spin(V )
is an index 2 subgroup of Pin(V ).

Given x ∈ Pin(V ), we define ρx ∈ GL(V ) by ρx(v) = α(x)vx∗. The latter is an element
of V ⊂ C(V ). Then ρ is a homomorphism.

Theorem 6.2.1. The image of Pin(V ) under ρ is O(V ) and ker ρ = {±1}. The image of
Spin(V ) under ρ is SO(V ).

Proof. First we need to show that ρx ∈ O(V ), i.e., ω(ρx(v), ρx(w)) = ω(v, w) for all v, w ∈ V .
Note that v = −v∗ for any v ∈ V . Now use the Clifford relation:

2ω(ρx(v), ρx(w)) = ρx(v)ρx(w) + ρx(w)ρx(v)

= −ρx(v)(ρx(w))∗ − ρx(w)(ρx(v))∗

= −α(x)vx∗xw∗α(x)∗ − α(x)wx∗xv∗α(x)∗

= −α(x)vw∗α(x)∗ − α(x)wv∗α(x)∗

= α(x)(−vw∗ − wv∗)α(x)∗

= 2ω(v, w)α(xx∗) = 2ω(v, w)

Next, we need to show that ρ is surjective onto O(V ). By a previous homework, it was
shown that O(V ) is generated by reflections sa for a ∈ V such that ω(a, a) 6= 0 where

sa(v) = v − 2ω(v, a)

ω(a, a)
a

Note that sa = sλa for any nonzero λ ∈ C, so we may assume that ω(a, a) = −1 in the above
generating set. Given that, in the Clifford algebra we have aa∗ = −a2 = −ω(a, a) = 1 and
axa∗ = (2ω(a, x)− xa)a∗ = −2ω(a, x)a− x ∈ V , so that a ∈ Pin(V ). Furthermore,

ρa(v) = α(a)va∗ = −ava∗ = 2ω(a, v)a+ v = sa(v)

and hence ρ is surjective.
Finally, we compute ker ρ. Pick x ∈ ker ρ and write x = x0 + x1 as a sum of even and

odd elements. Since ρx is the identity, for all v ∈ V , we have v = α(x)vx∗, or equivalently,
vx = α(x)v. Expanding this, we get vx0 + vx1 = x0v − x1v, and matching homogeneous
components, we get vx0 = x0v and vx1 = −x1v. By Lemma 6.1.5, x0 is a scalar and x1 = 0.
But then xx∗ = x2

0 = 1 so x0 = ±1 and hence ker ρ = {±1}.
This shows that if g ∈ O(V ) and g = sa1 · · · sar , then ρ−1(g) = {±a1 · · · ar}. Since SO(V )

consists of products of an even number of reflections, we see that ρ−1(SO(V )) ⊆ C+(V ) and
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hence ρ−1(SO(V )) ⊆ Spin(V ). Since both are index 2 subgroups of Pin(V ), we get equality
and hence ρ(Spin(V )) = SO(V ). �

Remark 6.2.2. One can show that Spin(V ) is a connected group. Since the Euclidean
topology refines the Zariski topology, it suffices to show that it is connected in the Euclidean
topology. Since ρ(Spin(V )) = SO(V ) is connected, it suffices to show that any two elements
in a fiber are connected by a path, and via translation, it suffices to do 1 and −1. For that,
pick v, w ∈ V such that ω(v, v) = ω(w,w) = −1 and ω(v, w) = 0 and define for t ∈ [0, π/2]

t 7→ (cos(t)v + sin(t)w)(cos(t)v − sin(t)w)

Then this is a path from 1 to −1 in Spin(V ) (we omit the check that it satisfies the condi-
tions). �

Proposition 6.2.3.
∧•W is an irreducible representation of Pin(V ).

If dimV is odd, then it remains irreducible for Spin(V ).

If dimV is even, then
∧evenW and

∧oddW are irreducible representations for Spin(V )
which are not isomorphic.

We call
∧•W the spinor representation, and

∧even W and
∧odd W are the half-spinor

representations.

Proof. First, note that Pin(V ) linearly spans C(V ): from the previous proof, if we pick a
basis x1, . . . , xm of V so that ω(xi, xi) = −1, then xI ∈ C(V ) and they form a basis of C(V ).
Then

∧•W is an irreducible representation of C(V ) and hence the same is true for Pin(V ).
The statements about Spin(V ) amount to the behavior of C+(V ) in each of the cases of m
even and m odd. �
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