Math 184, Fall 2019
Homework 2
Due: Friday, Oct. 18 by 3:00PM in homework box \#2 in basement of AP\&M (late homework will not be accepted)

Explanations should be given for your solutions. Use complete sentences. Some hints are on the last page.
(1) Consider the equation

$$
x_{1}+x_{2}+\cdots+x_{6}=30 .
$$

For each of the following conditions, how many solutions are there? (Each part is an independent problem, don't combine the conditions.)
(a) The x_{i} are non-negative even integers.
(b) The x_{i} are non-negative odd integers.
(c) The x_{i} are non-negative integers and $x_{6} \leq 2$.
(2) We consider some variations of standard Poker hands. Start with a standard deck of cards (4 suits, 13 values, so 52 cards in total). You will count ways to choose 6 cards.
(a) How many ways can we have two triples? i.e., 3 of the cards have the same value and the other 3 cards also have the same value.
(b) How many ways can we have exactly two pairs? i.e., 2 of the cards have the same value, another 2 cards have the same value (but different from the first), and the remaining 2 cards have different values from these cards and each other.
(c) An "alternating straight" is a choice of 6 cards whose values can be put in consecutive order, and the suits alternate between two different suits. An example is $5 \Omega, 6 \diamond, 7 \circlearrowleft, 8 \diamond, 9 \circlearrowleft, 10 \diamond$. How many are there?
(3) Find a simple formula for $S(n, n-2)$, i.e., the number of partitions of $[n]$ into $n-2$ blocks (assume that $n \geq 3$).
(4) Let $F(n)$ be the number of all partitions of $[n]$ such that every block has size ≥ 2. Prove that

$$
B(n)=F(n)+F(n+1),
$$

where $B(n)$ is the nth Bell number.
(5) Fix an integer $n \geq 2$. Call a composition $\left(a_{1}, \ldots, a_{k}\right)$ of n doubly even if the number of a_{i} which are even is also even (i.e., there could be no even a_{i}, or 2 of them, or 4, or ...).

Show that the number of doubly even compositions of n is 2^{n-2}.
For example, if $n=4$, then here are the 4 doubly even compositions of 4 :

$$
(2,2), \quad(3,1), \quad(1,3), \quad(1,1,1,1)
$$

Hints

(1) (a) Since x_{i} is even, write it as $x_{i}=2 y_{i}$.
(b) Same, but write $x_{i}=2 y_{i}+1$.
(4) By definition, $B(n)-F(n)$ is the number of partitions of $[n]$ such that there is at least 1 block with size 1. Show that this number is $F(n+1)$ as follows: given such a partition, add a new singleton $\{n+1\}$ and then merge together all of the singleton blocks into a single block.
(5) Given a composition $\alpha=\left(a_{1}, \ldots, a_{k}\right)$, define another composition $\Phi(\alpha)$ by

$$
\Phi(\alpha)=\left\{\begin{array}{ll}
\left(1, a_{1}-1, a_{2}, a_{3}, \ldots, a_{k}\right) & \text { if } a_{1}>1 \\
\left(a_{2}+1, a_{3}, \ldots, a_{k}\right) & \text { if } a_{1}=1
\end{array} .\right.
$$

(in both cases, we didn't do anything to a_{3}, \ldots, a_{k}). Show that Φ defines a bijection between the set of doubly even compositions of n and the set of compositions of n which are not doubly even.

