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1. Introduction

1.1. Prerequisites. Prior familiarity with homological algebra will be useful but not essen-
tial. I’ll review the key points as we go along, but will not give the proofs of basic facts. For
details, any textbook on modern algebra should suffice.

This is an example-driven theory, and we will go through some examples from group
theory, representation theory, topology, and algebraic geometry. I also will not assume these
as prerequisites, and again will just state the facts that we’ll need as they come up.

1.2. Motivation. We will study two aspects of representation stability in this course:

• A generalization of homological stability: one is given a sequence of abelian groups

/ vector spaces V1, V2, . . . together with homomorphisms V1
f1−→ V2

f2−→ · · · . These
groups may arise as the (co)homology of some family of objects, and the phenomena
of interest is when fi are isomorphisms for i≫ 0.

As an example, one might consider the homology of symmetric groups Σn, and
more specifically the first homology group. In general, for any group G, H1(G) =
G/[G,G], the abelianization of G ([G,G] is the subgroup of G generated by elements
of the form xyx−1y−1). The standard inclusions Σ1 → Σ2 → · · · induces maps
H1(Σ1) → H1(Σ2) → · · · . While H1(Σ1) is trivial, H1(Σi) ∼= Z/2 for i ≥ 2, and one
can check fi is an isomorphism for i ≥ 2.

For another example, one might take Xn to be the space of unordered n-tuples of
distinct points in the plane and consider its homology groups.
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• A method for exploiting symmetry to prove uniformity statements across a family of
examples. We’ll develop this more later, but for an example in algebraic geometry,
consider a tensor product of vector spaces V1 ⊗ · · · ⊗ Vn. Every element is a sum of
simple tensors (those of the form v1 ⊗ · · · ⊗ vn for vi ∈ Vi); define the rank of an
element to be r if r is the least number of simple tensor summands needed. Define
the border rank to be ≤ r if an element can be arbitrarily approximated by rank r
tensors. When n = 2, this all reduces to the usual notion of rank for matrices.
In general, it is hard to determine the (border) rank of a tensor, but a theorem of

Draisma–Kuttler that we will discuss says that one can test this by the vanishing of
polynomials of degree at most C(r), where C(r) depends only on r, but not on n or
dimVi.

Remark 1.2.1. Why is tensor rank interesting? Here’s one example. Multiplication of n×n
matrices can be represented by a bilinear map kn2⊗kn2 → kn2

, which is the same as a tensor
in (kn2

)∗ ⊗ (kn2

)∗ ⊗ kn2

. The rank of this tensor is the minimum number of multiplications
(in k) needed to perform matrix multiplication (see [La, §1.1, 1.2]). The naive algorithm
gives an upper bound of n3, but one can do better. In particular, for n = 2, the rank is
actually 7, while the precise value is already unknown for n = 3 (it’s at least 19 and at most
23).

The formula is a bit complicated, but the idea can be illustrated with multiplication of
complex numbers. The standard way gives four real multiplications:

(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i.

Alternatively, we have

(a+ bi)(c+ di) = (k1 − k3) + (k1 + k2)i

k1 = c(a+ b), k2 = a(d− c), k3 = b(c+ d),

so you can get away with only 3 real multiplications at the cost of more additions. However, in
some scenarios, minimizing the number of multiplications at the cost of increasing additions
is desirable (for example, doing things by hand or with floating point approximation). �

To elaborate on the first point, assume the Vi are finite-dimensional vector spaces over a
field k for simplicity. An obvious consequence of stability for the sequence V1 → V2 → · · ·
is that the sequence (dimVi)i≥0 is eventually constant.

One of the first classes of examples of representation stable sequences is to consider a
sequence Vi as before, where now Vi is a representation of the symmetric group Σi. The
transition maps fi : Vi → Vi+1 should be Σi-equivariant, where we embed Σi ⊂ Σi+1 by
having it fix i+ 1, and they should also obey another condition which we omit for now.
The right generalization of stability is finite generation. For i ≤ j, set fj,i = fj◦fj−1◦· · ·◦fi.

Say that x1, . . . , xd with xi ∈ Vni
generate the sequence V if every x ∈ Vn can be written as

a k[Σn]-linear combination of the fn,ni
(xi).

Example 1.2.2. (1) Let Vn = kn with Σn acting by permutations on the coordinates.
The map fn : k

n → kn+1 is the inclusion (a1, . . . , an) 7→ (a1, . . . , an, 0). The element
1 ∈ V1 generates the sequence.

(2) Let Vn = k(
n
2) with a basis consisting of 2-element subsets of {1, . . . , n} with the usual

permutation action. The maps fn are the obvious ones. Then e{1,2} ∈ V2 generates.
More generally, we can do the same with k-element subsets of {1, . . . , n}.
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(3) Let Vn = kn2

with a basis consisting of ordered pairs of elements in {1, . . . , n} with
the usual permutation action. Then e(1,1) ∈ V1 and e(1,2) ∈ V2 gives a generating
set. �

Finite generation implies a number of things about the representations Vi, but one conse-
quence avoiding representation theory is that the sequence (dimVi)i≥0 grows like a polyno-
mial function for i ≫ 0. This definition of sequences of Σn-representations is a bit clumsy,
and we’ll see later that the language of FI-modules will give a more natural notion to work
with.

There are many sources of examples of these kinds of sequences. Related to the above
example, we can take Xn to be the space of ordered n-tuples of distinct points in the plane
and consider its homology groups. Each of these carries a natural action of the symmetric
group Σn.

The representation theory of symmetric groups is a well-developed theory, especially over
fields of characteristic 0. This will be the focus for the first part of the course.

2. Representation theory

We won’t go through most of the proofs for this part, just enough to get a feeling for
how to work these objects. Some of this material is found in more detail in my symmetric
functions notes:
http://www.math.wisc.edu/~svs/740/notes.pdf

2.1. Schur–Weyl duality. We will need to know that the irreducible complex representa-
tions of Σn are indexed by partitions of size n. There are several ways to get to this, but we
will use Schur–Weyl duality to motivate the indexing.

Let A be a finite-dimensional algebra over a field k. Recall that an A-module M is simple
if its only submodules are 0 and M itself. An A-module M is semisimple if, for every
submodule N ⊂ M , there exists another submodule N ′ ⊂ M such that N ∩ N ′ = 0 and
N +N ′ =M , i.e., the smallest submodule containing both N and N ′ is M . We denote this
relation byM = N ⊕N ′. We say that A is semisimple if all of its finite-dimensional modules
are semisimple.

Note that ifM is semisimple and finite-dimensional, then we can decomposeM as a direct
sum of simple modules.

Let Mn(k) be the algebra of n×n matrices with entries in k. Given a moduleM in general,
we let End(M) denote the ring of linear endomorphisms (self-maps) of M . We won’t prove
the next statement, but it can be found in many abstract algebra textbooks.

Lemma 2.1.1. For any n1, . . . , nr, the product
∏r

i=1 Mni
(k) is a semisimple algebra. If k is

algebraically closed, then every semisimple finite-dimensional algebra is of this form where
r is the number of isomorphism classes of irreducible representations, and the ni are their
dimensions.

Given a group G, the group algebra k[G] is the vector space with basis {eg | g ∈ G} with
multiplication egeh = egh. A k[G]-module is the same thing as a linear representation of G,
so we will use these perspectives interchangeably.

Lemma 2.1.2. Let k be a field, G be a finite group, and suppose that |G| is invertible in k.
Then k[G] is semisimple.

http://www.math.wisc.edu/~svs/740/notes.pdf
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Proof. Let M be a representation of G and let N ⊂ M be a submodule. Choose any linear
projection π : M → N , i.e., π(x) = x for all x ∈ N . Define a new map ψ : M → N by

ψ(m) =
1

|G|
∑

g∈G

gψ(g−1m).

Then

• ψ(x) = x for all x ∈ N : given x ∈ N , g−1x ∈ N since N is a submodule, and
ψ(g−1x) = g−1x, so the sum simplifies to x,
• ψ is G-equivariant, i.e., hψ(m) = ψ(hm) for all h ∈ G and m ∈M :

hψ(m) =
1

|G|
∑

g∈G

hgψ(g−1m) =
1

|G|
∑

g′∈G

g′ψ((g′)−1hm) = ψ(hm)

where in the second equality, we do the change of indexing g′ = hg.

Let N ′ = kerψ. Then M = N ⊕N ′. �

We will be concerned with G = Σn the symmetric group, and k = C, the field of complex
numbers.

Given an algebra A acting on a vector space E, let

B = EndA(E) = {ϕ : E → E | ϕ(ae) = aϕ(e) for all a ∈ A and e ∈ E}.
Proposition 2.1.3 (Double centralizer theorem). Let E be a finite-dimensional vector space.
Suppose A ⊂ End(E) is a semisimple subalgebra.

(1) A = EndB(E).
(2) B is semisimple.
(3) As a representation of A× B, E decomposes as

E =
⊕

i∈I

Vi ⊗Wi,

where the Vi are all of the irreducible A-modules and the Wi are all of the irreducible
B-modules. In particular, the correspondence Vi ↔ Wi is a bijection between the
irreducible modules of A and B.

Proof. Since A is semisimple, we can decompose E into a direct sum of simple A-modules:

E =
⊕

i∈I

V ⊕ci
i =

⊕

i∈I

Vi ⊗Wi,

where Wi = HomA(Vi, E) is the multiplicity space of Vi. Then B =
⊕

i∈I End(Wi), so it is
semisimple, and the simple B-modules are the Wi. It is also clear from this decomposition
that A =

⊕

i∈I End(Vi) = EndB(E), and so A is semisimple by Lemma 2.1.1. �

Now we come to our example of interest. Let V = Cn and let E = V ⊗d. Then Σd acts on
E by permuting the tensor factors, i.e.,

σ ·
∑

v1 ⊗ · · · ⊗ vd =
∑

vσ−1(1) ⊗ · · · ⊗ vσ−1(d).

In particular, this defines a homomorphism C[Σd] → End(E), and we let A be the image.
By definition, quotients of semisimple algebras are still semisimple, so A is semisimple by
Lemma 2.1.2.
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There is also an action ofGL(V ) = GLn(C) (the group of invertible linear transformations
of V ) by the natural action of linear change of coordinates, i.e.,

g ·
∑

v1 ⊗ · · · ⊗ vd =
∑

(gv1)⊗ · · · ⊗ (gvd).

This gives a group homomorphism GL(V )→ GL(E), and we let B be the algebra generated
by the image. Evidently, we have B ⊆ EndA(E) and A ⊆ EndB(E).

Proposition 2.1.4 (Schur–Weyl duality). B = EndA(E). In particular, A = EndB(E) and
we have a decomposition

E =
⊕

i∈I

Vi ⊗Wi

where the Vi are all of the irreducible modules for A (and hence a subset of the irreducible
representations of Σd) and the Wi are all of the irreducible modules for B (and hence a subset
of the irreducible representations of GL(V )).

Proof. We have an identification End(V ⊗d) = End(V )⊗d, and EndA(E) is identified with the
symmetric elements in End(V )⊗d. By the next lemma, EndA(E) is spanned by the elements
ϕ⊗d = ϕ⊗· · ·⊗ϕ where ϕ ∈ End(V ). We claim that ϕ⊗d ∈ B. Note that tid+ϕ is invertible
for all but finitely many values of t. In particular, (tid +ϕ)⊗d ∈ B. Linear spaces are closed
(in the Euclidean topology, or Zariski topology if you prefer), so we can take the limit t→ 0
to conclude that ϕ⊗d ∈ B.
The remainder of the proposition follows from the double centralizer theorem. �

Lemma 2.1.5. Let W be a vector space over a field of characteristic 0. Then the Σd-
invariant elements in W⊗d are linearly spanned by elements of the form w⊗d = w ⊗ · · · ⊗ w
for w ∈ W .

Proof. Pick a basis x1, . . . , xn for W . The subspace spanned by the w⊗d is a GL(W )-
invariant subspace of the symmetric invariants of W⊗d, which we can identify with the space
Symd(W ) of homogeneous polynomials in variables x1, . . . , xn, so it suffices to show that any
nonzero GL(W )-invariant subspace of Symd(W ) is the whole space. This has a standard
basis consisting of monomials.

So let U be any GL(W )-invariant subspace of Symd(W ). First, consider a diagonal matrix
in GL(W ) with generic entries. Using a Vandermonde-type argument, one can show that if
f ∈ U , then all of the monomials with nonzero coefficient in f are also in U . Now, given
any monomial xd11 · · · xdnn ∈ U , we can conclude that any other monomial is also in U . We
illustrate this with an example. Let g ∈ GL(W ) be the matrix which fixes x2, . . . , xn and
sends x1 to x1 + x2. Then (x1 + x2)

d1xd22 · · · xdnn ∈ U and xd1−1
1 xd2+1

2 · · · xdnn has a nonzero
coefficient (this is where characteristic 0 is important) and hence also belongs to U . By
lowering and raising exponents appropriately, we can get to any other monomial. �

Remark 2.1.6. The statement about Symd(W ) is not correct in positive characteristic. For
example, let W = kn for a field of characteristic p. Then the space spanned by xp1, . . . , x

p
n

in Symp(W ) is closed under GL(W ). However, it cannot be identified with the subspace
of Σp-invariants in W⊗p in a GL(W )-equivariant way. This subspace of Σp-invariants is
also known as the divided power of W . With some more care, the statement about divided
powers can be proven in more generality, but we won’t need it. �
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The next question is to identify the indexing set I in the decomposition given by Schur–
Weyl duality. We’ll use some information about GLn(C) to do this, and go via symmetric
functions.

2.2. Symmetric functions. Let x1, . . . , xn be a finite set of indeterminates. The symmetric
group on n letters is Σn. It acts on Z[x1, . . . , xn], the ring of polynomials in n variables and
integer coefficients, by substitution of variables:

σ · f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

The ring of symmetric polynomials is the set of fixed polynomials:

Λ(n) := {f ∈ Z[x1, . . . , xn] | σ · f = f for all σ ∈ Σn}.
This is a subring of Z[x1, . . . , xn].

We will also treat the case n = ∞. Let x1, x2, . . . be a countably infinite set of indeter-
minates. Let Σ∞ be the group of all permutations of {1, 2, . . . }. Let R be the ring of power
series in x1, x2, . . . of bounded degree. Hence, elements of R can be infinite sums, but only
in a finite number of degrees.

Write πn : Λ→ Λ(n) for the homomorphism which sets xn+1 = xn+2 = · · · = 0.

Remark 2.2.1. (For those familiar with inverse limits.) There is a ring homomorphism
πn+1,n : Λ(n + 1) → Λ(n) obtained by setting xn+1 = 0. Furthermore, Λ(n) =

⊕

d≥0 Λ(n)d
where Λ(n)d is the subgroup of homogeneous symmetric polynomials of degree d. The map
πn+1,n restricts to a map Λ(n+ 1)d → Λ(n)d; set

Λd = lim←−
n

Λ(n)d.

Then

Λ =
⊕

d≥0

Λd.

Note that we aren’t saying that Λ is the inverse limit of the Λ(n); the latter object includes
infinite sums of unbounded degree. �

Then Σ∞ acts on R, and we define the ring of symmetric functions

Λ := {f ∈ R | σ · f = f for all σ ∈ Σ∞}.
Again, this is a subring of R.

Example 2.2.2. Here are some basic examples of elements in Λ (we will study them more
soon):

pk :=
∑

i≥1

xki

ek :=
∑

i1<i2<···<ik

xi1xi2 · · · xik

hk :=
∑

i1≤i2≤···≤ik

xi1xi2 · · · xik . �

Sometimes, we want to work with rational coefficients instead of integer coefficients. In
that case, we’ll write ΛQ or Λ(n)Q to denote the appropriate rings.
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2.3. Polynomial representations of general linear groups. Let GLn(C) denote the
group of invertible n× n complex matrices.

A polynomial representation of GLn(C) is a homomorphism ρ : GLn(C) → GL(V )
where V is a C-vector space, and the entries of ρ can be expressed in terms of polynomials
(as soon as we pick a basis for V ).

A simple example is the identity map ρ : GLn(C)→ GLn(C). Slightly more sophisticated
is ρ : GL2(C)→ GL(Sym2(C2)) where Sym2(C2) is the space of degree 2 polynomials in x, y
(which is a basis for C2). The homomorphism can be defined by linear change of coordinates,
i.e.,

ρ(g)(ax2 + bxy + cy2) = a(gx)2 + b(gx)(gy) + c(gy)2.

If we pick the basis x2, xy, y2 for Sym2(C2), this can be written in coordinates as

GL2(C)→ GL3(C)

(

g1,1 g1,2
g2,1 g2,2

)

7→





g21,1 g1,1g1,2 g21,2
2g1,1g2,1 g1,1g2,2 + g1,2g2,1 2g1,2g2,2
g22,1 g2,1g2,2 g22,2



 .(2.3.1)

More generally, we can define ρ : GLn(C) → GL(Symd(Cn)) for any n, d. Another impor-
tant example uses exterior powers instead of symmetric powers, so we have ρ : GLn(C) →
GL(∧d(Cn)).

An important invariant of a polynomial representation ρ is its character: define

char(ρ)(x1, . . . , xn) := Tr(ρ(diag(x1, . . . , xn))),

where diag(x1, . . . , xn) is the diagonal matrix with entries x1, . . . , xn and Tr denotes trace.

Lemma 2.3.2. char(ρ)(x1, . . . , xn) ∈ Λ(n).

Proof. Each permutation σ ∈ Σn corresponds to a permutation matrix M(σ): this is the
matrix with a 1 in row σ(i) and column i for i = 1, . . . , n and 0’s everywhere else. Then

M(σ)−1diag(x1, . . . , xn)M(σ) = diag(xσ(1), . . . , xσ(n)).

Now use that the trace of a matrix is invariant under conjugation:

char(ρ)(x1, . . . , xn) = Tr(ρ(diag(x1, . . . , xn)))

= Tr(ρ(M(σ))−1ρ(diag(x1, . . . , xn))ρ(M(σ)))

= Tr(ρ(M(σ)−1diag(x1, . . . , xn)M(σ)))

= Tr(ρ(diag(xσ(1), . . . , xσ(n))))

= char(ρ)(xσ(1), . . . , xσ(n)). �

Example 2.3.3. • The character of the identity representation is x1 + x2 + · · ·+ xn.
• The character of the representation ρ : GLn(C)→ GL(Symd(Cn)) is

hn(x1, . . . , xn) =
∑

1≤i1≤···≤id≤n

xi1 · · · xid .

• The character of the representation ρ : GLn(C)→ GL(∧d(Cn)) is

en(x1, . . . , xn) =
∑

1≤i1<···<id≤n

xi1 · · · xid . �

A few remarks that aren’t easy to see right now (though we may revisit):
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• The set of characters in Λ(n) generates all of Λ(n) as an abelian group.
• If we are more careful about how to define characters in infinite-dimensional settings,
we get that characters of polynomial representations of GL∞(C) are elements of Λ.
• The character determines the representation up to isomorphism: if char(ρ) = char(ρ′),
then ρ and ρ′ define isomorphic representations: one can be obtained from the other
by a suitable isomorphism of the underlying vector spaces V and V ′.

If we take these remarks as fact for now, this gives one motivation for studying Λ. This
representation-theoretic interpretation of Λ will clarify various definitions and constructions
we will encounter. A few basic ones that we can see now:

• If ρi : GLn(C) → GL(Vi) are polynomial representations for i = 1, 2, we can form
the direct sum representation ρ1 ⊕ ρ2 : GLn(C)→ GL(V1 ⊕ V2) via

(ρ1 ⊕ ρ2)(g) =
(

ρ1(g) 0
0 ρ2(g)

)

and

char(ρ1 ⊕ ρ2)(x1, . . . , xn) = char(ρ1)(x1, . . . , xn) + char(ρ2)(x1, . . . , xn).

• There’s also a multiplicative version using tensor product. If ρi : GLn(C)→ GL(Vi)
are polynomial representations for i = 1, 2, we can form the tensor product represen-
tation ρ1 ⊗ ρ2 : GLn(C)→ GL(V1 ⊗ V2) via (assuming ρ1(g) is N ×N):

(ρ1 ⊗ ρ2)(g) =









ρ1(g)1,1ρ2(g) ρ1(g)1,2ρ2(g) · · · ρ1(g)1,Nρ2(g)
ρ1(g)2,1ρ2(g) ρ1(g)2,2ρ2(g) · · · ρ1(g)2,Nρ2(g)

...
ρ1(g)N,1ρ2(g) ρ1(g)N,2ρ2(g) · · · ρ1(g)N,Nρ2(g)









(here we are multiplying ρ2(g) by each entry of ρ1(g) and creating a giant block
matrix) and

char(ρ1 ⊗ ρ2)(x1, . . . , xn) = char(ρ1)(x1, . . . , xn) · char(ρ2)(x1, . . . , xn).

Note that subtraction will not have any natural interpretation, and in general, the differ-
ence of two characters need not be a character. In general, the elements of Λ(n) or Λ can be
thought of as virtual characters since every element is the difference of two characters.

2.4. Partitions. A partition of a nonnegative integer n is a sequence λ = (λ1, . . . , λk) such
that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and λ1 + · · · + λk = n. We will consider two partitions the
same if their nonzero entries are the same. And for shorthand, we may omit the commas, so
the partition (1, 1, 1, 1) of 4 can be written as 1111. As a further shorthand, the exponential
notation is used for repetition, so for example, 14 is the partition (1, 1, 1, 1). We let Par(n)
be the set of partitions of n, and denote the size by p(n) = |Par(n)|. By convention, Par(0)
consists of exactly one partition, the empty one.
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Example 2.4.1.

Par(1) = {1},
Par(2) = {2, 12},
Par(3) = {3, 21, 13},
Par(4) = {4, 31, 22, 212, 14},
Par(5) = {5, 41, 32, 312, 221, 213, 15}. �

If λ is a partition of n, we write |λ| = n (size). Also, ℓ(λ) is the number of nonzero entries
of λ (length). For each i, mi(λ) is the number of entries of λ that are equal to i.

It will often be convenient to represent partitions graphically. This is done via Young
diagrams, which is a collection of left-justified boxes with λi boxes in row i.1 For example,
the Young diagram

corresponds to the partition (5, 3, 2). Flipping across the main diagonal gives another parti-
tion λ†, called the transpose. In our example, flipping gives

So (5, 3, 2)† = (3, 3, 2, 1, 1). In other words, the role of columns and rows has been inter-
changed. This is an important involution of Par(n) which we will use later.
We will use several different partial orderings of partitions:

• λ ⊆ µ if λi ≤ µi for all i.
• The dominance order: λ ≤ µ if λ1 + · · · + λi ≤ µ1 + · · · + µi for all i. Note that
if |λ| = |µ|, then λ ≤ µ if and only if λ† ≥ µ†. So transpose is an order-reversing
involution on the set of partitions of a fixed size.
• The lexicographic order: for partitions of the same size, λ ≤R µ if λ = µ, or
otherwise, there exists i such that λ1 = µ1, . . . , λi−1 = µi−1, and λi < µi. This is a
total ordering.

2.5. Bases for Λ.

2.5.1. Monomial symmetric functions. Given a partition λ = (λ1, λ2, . . . ), define the mono-
mial symmetric function by

mλ =
∑

α

xα

where the sum is over all distinct permutations α of λ. This is symmetric by definition. So
for example, m1 =

∑

i≥1 xi since all of the distinct permutations of (1, 0, 0, . . . ) are integer

1In the English convention, row i sits above row i + 1, in the French convention, it is reversed. There
is also the Russian convention, which is obtained from the French convention by rotating by 45 degrees
counter-clockwise.
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sequences with a single 1 somewhere and 0 elsewhere. By convention, m0 = 1. Some other
examples:

m1,1 =
∑

i<j

xixj

m3,2,1 =
∑

i,j,k
i 6=j, j 6=k, i 6=k

xixjxk.

In general, m1k = ek and mk = pk.

Theorem 2.5.1. As we range over all partitions, the mλ form a basis for Λ.

Proof. They are linearly independent since no two mλ have any monomials in common.
Clearly they also span: given f ∈ Λ, we can write f =

∑

α cαx
α and cα = cβ if both are

permutations of each other, so this can be rewritten as f =
∑

λ cλmλ where the sum is now
over just the partitions. �

Corollary 2.5.2. Λd has a basis given by {mλ | |λ| = d}, and hence is a free abelian group
of rank p(d) = |Par(d)|.
Theorem 2.5.3. Λ(n)d has a basis given by {mλ(x1, . . . , xn) | |λ| = d, ℓ(λ) ≤ n}.
2.5.2. Elementary symmetric functions. Recall that we defined

ek =
∑

i1<i2<···<ik

xi1xi2 · · · xik .

For a partition λ = (λ1, . . . , λk), define the elementary symmetric function by

eλ = eλ1
eλ2
· · · eλk

.

Note eλ ∈ Λ|λ|.

Theorem 2.5.4. The eλ form a basis of Λ.

Theorem 2.5.5. The set {eλ(x1, . . . , xn) | λ1 ≤ n, |λ| = d} is a basis of Λ(n)d.

Proof. If λ1 > n, then eλ1
(x1, . . . , xn) = 0, so eλ(x1, . . . , xn) = 0. Hence under the map

πn : Λ → Λ(n), the proposed eλ span the image. The number of such eλ in degree d is
|{λ | λ1 ≤ n, |λ| = d}|, which is the same as |{λ | ℓ(λ) ≤ n, |λ| = d}| via the transpose †,
and this is the rank of Λ(n)d, so the eλ form a basis. �

Remark 2.5.6. The previous two theorems say that the elements e1, e2, e3, . . . are alge-
braically independent in Λ, and that the elements e1, . . . , en are algebraically independent
in Λ(n). This is also known as the “fundamental theorem of symmetric functions”. �

2.5.3. Complete homogeneous symmetric functions. For a partition λ = (λ1, . . . , λk), define
the complete homogeneous symmetric functions by

hλ = hλ1
· · ·hλk

.

Theorem 2.5.7. The hλ form a basis for Λ.

Theorem 2.5.8. h1, . . . , hn are algebraically independent generators of Λ(n), and the set
{hλ(x1, . . . , xn) | λ1 ≤ n, |λ| = d} is a basis of Λ(n)d.
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2.5.4. Power sum symmetric functions. Recall we defined

pk =
∑

n≥1

xkn.

For a partition λ = (λ1, . . . , λk), the power sum symmetric functions are defined by

pλ = pλ1
· · · pλk

.

Theorem 2.5.9. The pλ are linearly independent.

Remark 2.5.10. The pλ do not form a basis for Λ. For example, in degree 2, we have

p2 = m2

p1,1 = m2 + 2m1,1

and the change of basis matrix has determinant 2, so is not invertible over Z. However, they
do form a basis for ΛQ. �

Theorem 2.5.11. p1, . . . , pn are algebraically independent generators of Λ(n)Q and the set
{pλ(x1, . . . , xn) | λ1 ≤ n, |λ| = d} is a basis for Λ(n)Q,d.

2.5.5. The involution ω. Since the ei are algebraically independent, we can define a ring
homomorphism f : Λ→ Λ by specifying f(ei) arbitrarily.

2 Define

ω : Λ→ Λ

by ω(ei) = hi, where recall that hk =
∑

i1≤···≤ik
xi1 · · · xik .

Theorem 2.5.12. ω is an involution, i.e., ω2 = 1. Equivalently, ω(hi) = ei.

Furthermore, we can define a finite analogue of ω, the ring homomorphism ωn : Λ(n) →
Λ(n), given by ωn(ei) = hi for i = 1, . . . , n.

Theorem 2.5.13. ω2
n = 1, and ωn is invertible. Equivalently, ωn(hi) = ei for i = 1, . . . , n.

2.5.6. A scalar product. Define a bilinear form 〈, 〉 : Λ⊗ Λ→ Z by setting

〈mλ, hµ〉 = δλ,µ

where δ is the Kronecker delta (1 if λ = µ and 0 otherwise). In other words, if f =
∑

λ aλmλ

and g =
∑

µ bµhµ, then 〈f, g〉 =
∑

λ aλbλ (well-defined since both m and h are bases).
At this point, the definition looks completely unmotivated. However, this inner product
is natural from the representation-theoretic perspective, which we’ll mention in the next
section (without proof).

In our setup, m and h are dual bases with respect to the pairing. We will want a general
criteria for two bases to be dual to each other. To state this criterion, we need to work in
two sets of variables x and y and in the ring Λ ⊗ Λ where the x’s and y’s are separately
symmetric.

Lemma 2.5.14. Let uλ and vµ be bases of Λ (or ΛQ). Then 〈uλ, vµ〉 = δλ,µ if and only if
∑

λ

uλ(x)vλ(y) =
∏

i,j

(1− xiyj)−1.

2Every element is uniquely of the form
∑

λ cλeλ; since f is a ring homomorphism, it sends this to
∑

λ cλf(eλ1
)f(eλ2

) · · · f(eλℓ(λ)
).
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Corollary 2.5.15. The pairing is symmetric, i.e., 〈f, g〉 = 〈g, f〉.
Proof. The condition above is the same if we interchange x and y, so 〈mλ, hµ〉 = 〈hµ,mλ〉.
Now use bilinearity. �

Proposition 2.5.16.
∏

i,j

(1− xiyj)−1 =
∑

λ

mλ(x)hλ(y)

=
∑

λ

z−1
λ pλ(x)pλ(y).

Proposition 2.5.17. ω is an isometry, i.e., 〈f, g〉 = 〈ω(f), ω(g)〉.
The bilinear form 〈, 〉 is positive definite, i.e., 〈f, f〉 > 0 for f 6= 0.

2.5.7. Schur functions. Let λ be a partition. A semistandard Young tableaux (SSYT) T
is an assignment of natural numbers to the Young diagram of λ so that the numbers are
weakly increasing going left to right in each row, and the numbers are strictly increasing
going top to bottom in each column.

Example 2.5.18. If λ = (4, 3, 1), and we have the assignment

a b c d
e f g
h

then, in order for this to be a SSYT, we need to have

• a ≤ b ≤ c ≤ d,
• e ≤ f ≤ g,
• a < e < h,
• b < f , and
• c < g.

An example of a SSYT is 1 1 3 5
2 3 4
7

. �

The type of a SSYT T is the sequence type(T ) = (α1, α2, . . . ) where αi is the number of
times that i appears in T . We set

xT = xα1

1 x
α2

2 · · · .
Given a pair of partitions µ ⊆ λ, the Young diagram of λ/µ is the Young diagram of λ

with the Young diagram of µ removed. We define a SSYT of shape λ/µ to be an assignment
of natural numbers of this Young diagram which is weakly increasing in rows and strictly
increasing in columns.

Example 2.5.19. If λ = (5, 3, 1) and µ = (2, 1), then

a b c
d e

f

is a SSYT if

• a ≤ b ≤ c,
• d ≤ e, and
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• a < e. �

We define the type of T and xT in the same way.
Given a partition λ, the Schur function sλ is defined by

sλ =
∑

T

xT

where the sum is over all SSYT of shape λ. Similarly, given µ ⊆ λ, the skew Schur function
sλ/µ is defined by

sλ/µ =
∑

T

xT

where the sum is over all SSYT of shape λ/µ. Note that this is a strict generalization of the
first definition since we can take µ = ∅, the unique partition of 0.
We can make the same definitions in finitely many variables x1, . . . , xn if we restrict the

sums to be only over SSYT that only use the numbers 1, . . . , n.

Example 2.5.20. s1,1(x1, x2, . . . , xn) is the sum over SSYT of shape (1, 1). This is the same
as a choice of 1 ≤ i < j ≤ n, so s1,1(x1, . . . , xn) =

∑

1≤i<j≤n xixj = e2(x1, . . . , xn), and by
the same reasoning, s1,1 = e2 in infinitely many variables. More generally, s1k = ek for any
k.

Also, sk = hk since a SSYT of shape (k) is a choice of i1 ≤ i2 ≤ · · · ≤ ik.
For something different, consider s2,1(x1, x2, x3). There are 8 SSYT that of shape (2, 1)

that only use 1, 2, 3:

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

From this, we can read off that s2,1(x1, x2, x3) is a symmetric polynomial. Furthermore, it is
m2,1(x1, x2, x3) + 2m1,1,1(x1, x2, x3). �

Theorem 2.5.21. For any µ ⊆ λ, the skew Schur function sλ/µ is a symmetric function.

We now focus on Schur functions. Suppose λ is a partition of n. Let Kλ,α be the number
of SSYT of shape λ and type α, this is called a Kostka number. The previous theorem says
Kλ,α = Kλ,σ(α) for any permutation σ, so it’s enough to study the case when α is a partition.
By the definition of Schur function, we have

sλ =
∑

µ⊢n

Kλ,µmµ.

An important special case is when µ = 1n. Then Kλ,1n is the number of SSYT that use each
of the numbers 1, . . . , n exactly once. Such a SSYT is called a standard Young tableau,
and Kλ,1n is denoted fλ.

Theorem 2.5.22. If Kλ,µ 6= 0, then µ ≤ λ (dominance order). Also, Kλ,λ = 1. In
particular, the sλ form a basis for Λ.

Corollary 2.5.23. {sλ | |λ| = d} is a basis for Λd.

Corollary 2.5.24. {sλ(x1, . . . , xn) | |λ| = d, ℓ(λ) ≤ n} is a basis for Λ(n)d.

Proof. Note that if ℓ(λ) > n, there are no SSYT only using 1, . . . , n, so sλ(x1, . . . , xn) = 0.
Hence the set in question spans Λ(n)d. Since Λ(n)d is free of rank equal to the size of this
set, it must also be a basis. �



14 STEVEN V SAM

2.6. Schur functors. For the material in this section, see [Wey, Chapter 2]. What we call
Sλ is denoted by Lλ′ there.

Definition 2.6.1. Let R be a commutative ring and E a free R-module. Let λ be a partition
with n parts and write m = λ1. We use SnE to denote the nth symmetric power of E. The
Schur functor Sλ(E) is the image of the map

λ†
1
∧

E ⊗ · · · ⊗
λ†
m
∧

E
∆−→ E⊗λ†

1 ⊗ · · · ⊗ E⊗λ†
m = E⊗λ1 ⊗ · · · ⊗ E⊗λn

µ−→ Sλ1E ⊗ · · · ⊗ SλnE,

where the maps are defined as follows. First, ∆ is the product of the comultiplication maps
∧iE → E⊗i given by

e1 ∧ · · · ∧ ei 7→
∑

w∈Σi

sgn(w)ew(1) ⊗ · · · ⊗ ew(i).

The equals sign is interpreted as follows: pure tensors in E⊗λ†
1⊗· · ·⊗E⊗λ†

m can be interpreted
as filling the Young diagram of λ with vectors along the columns, which can be thought of
as pure tensors in E⊗λ1 ⊗ · · · ⊗ E⊗λn by reading via rows. Finally, µ is the multiplication
map E⊗i → SiE given by e1 ⊗ · · · ⊗ ei 7→ e1 · · · ei.
In particular, note that SλE = 0 if the number of parts of λ exceeds rankE. �

Example 2.6.2. Take λ = (3, 2). Then the map is given by

(e1 ∧ e2)⊗ (e3 ∧ e4)⊗ e5 7→ e1 e3 e5
e2 e4

− e2 e3 e5
e1 e4

− e1 e4 e5
e2 e3

+ e2 e4 e5
e1 e3

7→ (e1e3e5 ⊗ e2e4)− (e2e3e5 ⊗ e1e4)
−(e1e4e5 ⊗ e2e3) + (e2e4e5 ⊗ e1e3)

�

The construction of SλE is functorial with respect to E: given an R-linear map f : E → F ,
we get an R-linear map Sλ(f) : SλE → SλF such that Sλ(f ◦ g) = Sλ(f) ◦ Sλ(g). This has
two consequences: SλE is naturally a representation of GL(E) (in fact, it is more special
because the action is defined for all linear operators of E, not just the invertible ones), and
we can also construct SλE when E is a vector bundle.

Fix a basis e1, . . . , en for E. Given a tableau T , we get an element eT in
∧λ†

1 E⊗· · ·⊗
∧λ†

m E
by taking the tensor product of the wedge products of the standard basis vectors coming from

the entries in each column. For example, if T = 1 3 5
2 4

then eT = (e1 ∧ e2)⊗ (e3 ∧ e4)⊗ e5.

Definition 2.6.3. Given a box b = (i, j) ∈ λ, its content is c(b) = j − i and its hook

length is h(b) = λi − i+ λ†j − j + 1. �

Example 2.6.4. Let λ = (4, 3, 1). Then λ† = (3, 2, 2, 1). The contents and hook lengths
are given as follows:

c : 0 1 2 3
−10 1
−2

h : 6 4 3 1
4 2 1
1

�

Theorem 2.6.5. The Schur functor SλE is a free R-module. If rankE = n, then

rankSλE =
∏

b∈λ

n+ c(b)

h(b)
.
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A basis for SλE is given by the images of the eT as T ranges over all SSYT of shape λ using
the numbers 1, . . . , n.

If R is a field, then the weight of eT is xT , and hence the character of SλE is the Schur
function sλ(x1, . . . , xn).

The point is that to calculate things like tensor products of Schur functors, it suffices
to understand how to multiply Schur functions. This is most useful in characteristic 0,
where we have mentioned that the character completely encodes all information about the
representation. We will discuss this in more detail later.

Remark 2.6.6. The construction we gave is unmotivated, but we can at least explain the
indexing using generalities on irreducible representations of complex reductive groups, such as
GLn(C). A Borel subgroup B is a maximal (Zariski) closed, connected, solvable (algebraic)
subgroup. For GLn(C), one can take the subgroup of upper-triangular matrices. Fixing B
and an irreducible representation V , there is a unique, up to scalar, nonzero vector v ∈ V
(highest weight vector) and an (algebraic) group homomorphism λ : B → C× (highest
weight) such that b · v = λ(b)v for all b ∈ B.

For the upper-triangular matrices, an algebraic group homomorphism λ : B → C× takes
the form λ(b) = bλ1

1 · · · bλn
n where b1, . . . , bn are the diagonal entries and λi ∈ Z, so we can

identify them with elements of Zn. It turns out that highest weights satisfy an additional
constraint λ1 ≥ λ2 ≥ · · · ≥ λn. The indexing for the Schur functors SλE is chosen so that it
has highest weight λ. �

2.7. Pieri’s rule. Since the sλ are a basis, we have unique expressions

sµsν =
∑

λ

cλµ,νsλ,(2.7.1)

and the cλµ,ν are called Littlewood–Richardson coefficients. We will see some special cases
soon and study this in more depth later. From the definition, we have

cλµ,ν = cλν,µ.

Applying ω to (2.7.1), we get

(2.7.2) cλµ,ν = cλ
†

ν†,µ† .

We can give an interpretation for the Littlewood–Richardson coefficients in the special
case where µ (or ν) has a single part or all parts equal to 1. Say that λ/ν is a horizontal
strip if no column in the skew Young diagram of λ/ν contains 2 or more boxes. Similarly,
say that λ/ν is a vertical strip if no row in the skew Young diagram of λ/ν contains 2 or
more boxes.

Theorem 2.7.3 (Pieri rule). • If µ = (1k), then

cλ(1k),ν =

{

1 if |λ| = |ν|+ k and λ/ν is a vertical strip

0 otherwise
.

In other words,

sνs1k =
∑

λ

sλ

where the sum is over all λ such that λ/ν is a vertical strip of size k.
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• If µ = (k), then

cλ(k),ν =

{

1 if |λ| = |ν|+ k and λ/ν is a horizontal strip

0 otherwise
.

In other words,

sνsk =
∑

λ

sλ

where the sum is over all λ such that λ/ν is a horizontal strip of size k.

Example 2.7.4. To multiply sλ by sk, it suffices to enumerate all partitions that we can
get by adding k boxes to the Young diagram of λ, no two of which are in the same column.
For example, here we have drawn all of the ways to add 2 boxes to (4, 2):

× × , ×
×

, ×

×
,

× ×
,

×
×

,

× ×
.

So
s4,2s2 = s6,2 + s5,3 + s5,2,1 + s4,4 + s4,3,1 + s4,2,2. �

Corollary 2.7.5. sνeµ =
∑

λKλ†/ν†,µsλ.

Corollary 2.7.6. sνhµ =
∑

λKλ/ν,µsλ.

Recall that for |λ| = n, fλ = Kλ,1n is the number of standard Young tableaux of shape λ.

Corollary 2.7.7. sn1 =
∑

λ⊢n f
λsλ.

Proof. The Pieri rule says that to multiply sn1 , we first enumerate all sequences λ(1) ⊂ λ(2) ⊂
· · · ⊂ λ(n) where |λ(i)| = i. Then the result is the sum of sλ with multiplicity given by the
number of sequences with λ(n) = λ. But such sequences are in bijection with standard Young
tableaux: label the unique box in λ(i)/λ(i−1) with i. �

Remark 2.7.8. From the interpretation of sλ as the character of an irreducible represen-
tation Sλ, and the fact that polynomial representations are direct sums of irreducible ones,
we can reinterpret the Littlewood–Richardson coefficient as the multiplicity of Sλ in the
decomposition of the tensor product of Sµ ⊗ Sν . From this, it is immediate that cλµ,ν ≥ 0.

The Pieri rule describes the decomposition of the tensor product of Sλ with an exterior
power

∧k, respectively, a symmetric power Symk. �

2.8. Tensor categories.

2.8.1. Definitions. We will make use of tensor categories. We won’t really need the precise
definition, but we’ll go over the main points. Let A be an abelian category. Roughly, this
means that the objects can be thought of as the category of modules over some ring. In
particular, the category of modules over a fixed ring is an example. Practically, it means
that notions such as kernels, cokernels, exactness, etc. can be defined, and analogues of the
isomorphism theorems for modules hold. Also, the morphisms between two fixed objects
form an abelian group.

Even though we haven’t made the definition precise, here is one easy construction that
we will make a lot of use of. First, given two categories C and A, the functor category
Fun(C,A) is the category whose objects are functors C→ A and whose morphisms are natural
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transformations. If A is abelian, then so is Fun(C,A): things such as kernels, cokernels, etc.
are computed pointwise, meaning that ker(F → G)(X) = ker(F (X) → G(X)), etc. We’ll
usually apply this when A is the category of modules over a ring, or usually just the category
of vector spaces over a field.

A monoidal structure, or tensor product, on A is a functor ⊗ : A × A → A, written
X ⊗ Y rather than ⊗(X, Y ), which satisfies associativity in the sense that we are given an
isomorphism (X ⊗ Y )⊗Z ∼= X ⊗ (Y ⊗Z) which satisfies some axioms, together with a unit
object 1A (or just 1) which satisfies 1⊗X ∼= X ⊗X ⊗ 1. Again, we won’t make so much use
of the fine details of the definition, rather we’ll work with a few concrete examples. Given a
tensor product, a symmetry is a natural isomorphism τX,Y : X ⊗ Y ∼= Y ⊗ X given for all
objects X, Y such that τX,Y = τ−1

Y,X that satisfy the braid relations. To expand on the last

point: we can apply the τX,X to a 3-fold tensor product X⊗3 by either working on first two
factors (call it τ1,2) or the last two factors (call it τ2,3). The braid relation is:

τ1,2τ2,3τ1,2 = τ2,3τ1,2τ2,3.

This is the relation that the transpositions (1, 2) and (2, 3) in Σ3 satisfy. In particular, this
implies that the symmetric group Σn naturally acts on any n-fold tensor product X⊗n.

Example 2.8.1. The usual tensor product gives a monoidal structure on the category of
modules over a commutative ring. �

Given two tensor categories A,B, a tensor functor is a functor F : A→ B together with
natural isomorphisms F (X ⊗ Y ) ∼= F (X) ⊗ F (Y ) and F (1A) ∼= 1B satisfying some axioms.
Again, we will not go into the details.

An important feature is that we can redo a lot of multilinear algebra in the setting of a
symmetric tensor category. For example, the symmetric square of an object S2(X) is the
cokernel of the map

τX,X − 1X⊗X : X ⊗X → X ⊗X,
and similarly one can define higher symmetric powers by taking the quotient of these maps
for all adjacent positions. We define the exterior power

∧n(X) as the image of the map
∑

σ∈Σn

sgn(σ)σ.

The multiplication maps Sn(X)⊗Sm(X)→ Sn+m(X) are defined as well. We can also define

the comultiplication maps
∧n(X)→ ∧i(X)⊗∧n−i(X) as follows. Pick coset representatives

σ1, . . . , σN for Σn/Σi × Σn−i and consider the map

N
∑

i=1

sgn(σi)σi

on X⊗n. This maps
∧n(X) into

∧i(X) ⊗
∧n−i(X) and is the desired map. Once we have

these maps, we can also define arbitrary Schur functors Sλ(X) using the definition from the
previous section.

2.8.2. Example: chain complexes. Given a commutative ring R, a chain complex V• is a
sequence of R-modules and R-linear maps (differentials):

· · · di−→ Vi
di−1−−→ Vi−1

di−2−−→ · · ·
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such that di−1di = 0 for all i. A map of chain complexes f : V• → W• is a sequence of linear
maps fi : Vi → Wi such that fid

V
i = dWi fi+1 for all i. The notions of image complex, kernel,

cokernel, etc. can be computed term by term. Given chain complexes V• and W•, their
tensor product is the chain complex with spaces

(V ⊗W )n =
⊕

i+j=n

Vi ⊗Wj

and the differentials are the sums of the maps

Vi ⊗Wj → (Vi−1 ⊗Wj)⊕ (Vi ⊗Wj−1)

where the map is dVi−1 ⊗ 1 + (−1)i1⊗ dWj−1.
The symmetry isomorphism V•⊗W•

∼= W•⊗V• is defined as the sum of the isomorphisms

Vi ⊗Wj → Wj ⊗ Vi
∑

x⊗ y 7→ (−1)ij
∑

y ⊗ x.

Remark 2.8.2. We can think of the category of R-modules as a subcategory of the category
of chain complexes V• where Vi = 0 for i 6= 0. Then the symmetry just defined restricts to
the usual one. However, we could also think of R-modules as complexes where Vi = 0 for
i 6= 1. Then the symmetry restricts to a twisted version of the usual symmetry which will
come up later. �

2.8.3. Example: symmetric sequences. Let FB be the category of finite sets and bijections.
Let k be a field and let Veck the category of k-vector spaces.
Set Vk := Fun(FB,Veck). Given an object F ∈ Vk and a finite set S, we get a vector

space with an action of Aut(S), which is isomorphic to a symmetric group. This information
is already encoded by just considering the objects of the form [n], but it will be convenient
for various constructions to consider all finite sets. So the data of an object of Vk is the
same as a sequence of representations Vn of symmetric groups Σn, one for each n.

Given a vector space M , define M [i] ∈ Vk by

S 7→
{

M if |S| = i

0 if |S| 6= i

and all morphisms act by the identity.
Put a monoidal structure on Vk as follows. Given V,W ∈ Vk, we define their tensor

product to be

(V ⊗W )(S) =
⊕

T⊆S

V (T )⊗k W (S \ T ).

This has a symmetry τ given by interchanging factors. The unit is k[0].

Remark 2.8.3. This is one instance where it can be convenient to use all finite sets, not
just those of the form [n]. However, we can also phrase things from this perspective: given
sequences (Vn) and (Wn), their tensor product is the sequence defined by

(V ⊗W )n =
n
⊕

i=0

IndΣn

Σi×Σn−i
(Vi ⊗Wn−i)
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where for finite groups H ⊂ G, and an H-representation V , the induction is defined by
IndG

HV = k[G] ⊗k[H] V and Σi × Σn−i is a subgroup of Σn that only permutes 1, . . . , i and
i+ 1, . . . , n separately. �

So we can define tensor powers V ⊗n, and τ allows one to define symmetric powers Symn(V )
and exterior powers

∧n(V ) as quotients of V ⊗n.

Example 2.8.4.

U [1]⊗n(S) =

{

⊕

σ∈Aut(S) U
⊗S ∼= (U⊗n)⊕n! if |S| = n

0 else

Symn(U [1])(S) =

{

U⊗S if |S| = n

0 else

The action of Aut(S) on U⊗S is by permuting tensor factors. �

Vk has a subcategory V
f
k of “locally finite” objects: those functors such that dimV (S) <∞

for all S.

2.8.4. Example: polynomial functors. Now assume that k is an infinite field. Write Veck for
the category of finite dimensional vector spaces over k.

Definition 2.8.5. A functor F : Veck → Veck is polynomial if for all V, V ′, the map

HomVeck(V, V
′)→ HomVeck(F (V ), F (V ′))

is defined by polynomial functions. If these polynomials are homogeneous of degree d, we say
that F is a degree d polynomial functor. Let Polk be the category of polynomial functors,
and let Polk,d be the subcategory of degree d polynomial functors. �

Note that a polynomial functor is naturally a direct sum of its homogeneous parts, so we
have Polk =

⊕

d≥0 Polk,d.
The Schur functors Sλ are examples of polynomial functors. They are homogeneous of

degree |λ|.
Theorem 2.8.6. If k is a field of characteristic 0, then every irreducible polynomial functor
is a Schur functor.

Polk has a tensor product:

(F ⊗ F ′)(V ) = F (V )⊗k F
′(V )

and a symmetry τ which interchanges the factors.
Polk has a subcategory Polfk of locally finite objects: those functors such that the degree

d piece is a finite length functor for all d, i.e., there are only finitely many subfunctors.

2.8.5. Algebras and modules. Let (A,⊗) be a monoidal category with unit 1. An algebra is
an object A together with maps

µ : A⊗ A→ A, e : 1→ A

which should satisfy the axioms of being an associative, unital algebra (thinking of µ as
multiplication and e as inclusion of the unit). More precisely, it means that the following
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diagram should commute:

A⊗ A⊗ A µ⊗id
//

id⊗µ
��

A⊗ A
µ

��

A⊗ A µ
// A

and µ ◦ (e ⊗ id) : 1 ⊗ A → A ⊗ A → A is the same as the natural isomorphism 1 ⊗ A ∼= A
and similarly with µ ◦ (id⊗ e).
Given an algebra A, a (left) A-module is an objectM together with a map µ : A⊗M →M

such that the following diagram commutes:

A⊗ A⊗M µ⊗id
//

id⊗µ
��

A⊗M
µ

��

A⊗M µ
// M

and axioms similar to the unit axioms for A are satisfied.
If A is also equipped with a symmetry τ , then we can also define the notion of a commu-

tative algebra. This is an algebra as above such that µ = µ ◦ τ as maps A ⊗ A → A. The
definition of a module over a commutative algebra remains unchanged.

2.9. Categorical version of Schur–Weyl duality. The decomposition of sn1 can be in-
terpreted as a decomposition of the tensor power of a vector space

(Cd)⊗n =
⊕

λ⊢n
ℓ(λ)≤d

Sλ(C
d)⊕fλ

.

Hence the multiplicity space of Sλ(C
d) has dimension fλ. By Schur–Weyl duality, we see

that fλ is the dimension of an irreducible representation of Σn, which we will call Mλ. In the
next section, we will discuss a construction for Mλ. For now, one can take the multiplicity
space of SλC

d in (Cd)⊗n.
Hence, the indexing set in Schur–Weyl duality can be taken to be the set of partitions of

size n with at most d parts. If d ≥ n, this latter condition is unnecessary.
Define a functor Φ: Fun(FB,Veck)→ Polk by V 7→ ΦV where ΦV is defined by:

ΦV (W ) =
⊕

n≥0

(Vn ⊗k W
⊗n)Σn ,

and we write Vi for V ([i]). Here Σn acts on W⊗n by permuting factors, and the superscript
denotes invariants.

Proposition 2.9.1. Φ is a tensor functor between Vf
k and Polfk.

If k has characteristic 0, then Φ is an equivalence between Vf
k and Polfk.
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Proof. Pick V, V ′ ∈ Fun(FB,Veck). Then we have

(ΦV ⊗ ΦV ′)(W ) = ΦV (W )⊗ ΦV ′(W )

= (
⊕

n≥0

(Vn ⊗W⊗n)Σn)⊗ (
⊕

n≥0

(V ′
n ⊗W⊗n)Σn)

=
⊕

n≥0

n
⊕

i=0

(Vi ⊗W⊗i)Σi ⊗ (V ′
n−i ⊗W⊗(n−i))Σn−i

=
⊕

n≥0

n
⊕

i=0

(IndΣn

Σi×Σn−i
(Vi ⊗ V ′

n−i)⊗W⊗n)Σn

= ΦV⊗V ′(W ).

The fourth equality comes from hom-tensor adjunction (Frobenius reciprocity). To elaborate:
since everything is finite-dimensional, we can write (below Res denotes the restriction of a
representation to a subgroup)

(IndΣn

Σi×Σn−i
(Vi ⊗ V ′

n−i)⊗W⊗n)Σn = HomΣn
((W⊗n)∗, IndΣn

Σi×Σn−i
(Vi ⊗ V ′

n−i))

= HomΣi×Σn−i
(ResΣn

Σi×Σn−i
(W⊗n)∗, Vi ⊗ V ′

n−i)

= HomΣi
((W⊗i)∗, Vi)⊗ HomΣn−i

((W⊗(n−i))∗, V ′
n−i)

= (Vi ⊗W⊗i)Σi ⊗ (V ′
n−i ⊗W⊗(n−i))Σn−i .

For the last statement, first note that every locally finite object of Vk is a direct sum of
Mλ, where we think of Mλ as a functor that has nonzero values only for sets of size |λ| and
only finitely many copies are used for each λ. By Schur–Weyl duality, the image of Mλ is Sλ.
In particular, Φ induces a bijection between the sets of irreducible objects of both categories,
and every object is a direct sum of irreducible objects (note that Φ preserves direct sums),
so we are done. �

Remark 2.9.2. For a direct construction of Mλ, see [F, §7.2]. �

Corollary 2.9.3. Given partitions λ, µ of size n and m, we have

Ind
Σn+m

Σn×Σm
Mλ ⊠Mµ =

⊕

ν

M
⊕cνλ,µ
ν .

Furthermore, for any partition ν of size p, have

Res
Σp

Σi×Σp−i
Mν =

⊕

λ,µ

(Mλ ⊠Mµ)
⊕cνλ,µ .

Proof. The first part comes from the fact that the Littlewood–Richardson coefficients de-
scribe multiplication for GL-representations. The second part follows from the first by
Frobenius reciprocity. �

2.10. Infinite number of variables. There is a third symmetric monoidal category which
will be convenient to use. We have inclusions

GLn(C)→ GLn+1(C)

X 7→
(

X 0
0 1

)

,
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and we define
GL∞(C) =

⋃

n≥1

GLn(C).

This group consists of infinite invertible matrices which differ from the identity matrix only
in finitely many entries. Let T denote the subgroup of diagonal matrices. Say that a
polynomial representation of GL∞(C) is T -semisimple if its restriction to T decomposes as
a direct sum of 1-dimensional representations. These will be polynomial representations of
T , which are classified by non-negative integer sequences (α1, α2, . . . ). Furthermore, since
it comes a polynomial representation of GL∞(C), these sequences can only have a finite
number of nonzero entries. The representation Cα = C indexed by α is described by

diag(x1, x2, . . . ) · 1 =
∏

i≥1

xαi

i .

We let Rep(GL) be the category of polynomial T -semisimple representations of GL∞(C)
such that each representation Cα appears with finite multiplicity. Given V ∈ Rep(GL), let
Vn be the sum of the Cα such that

∑

i αi = n. Then V =
⊕

n≥0 Vn is a decomposition of V
into a direct sum of subrepresentations. Say that V is locally finite if each Vn has a finite
composition series. We let Repf(GL) be the full subcategory of Rep(GL) consisting of the
locally finite representations. Let Vα be the direct sum of the Cα that appear in V .
Given an object V of Rep(GL), let V (n) denote the direct sum of those Vα such that

αi = 0 for i > n. Then V (n) can also be thought of as the invariant subspace of diagonal
matrices whose first n entries are 1. Since the subgroup GLn(C) commutes with these
diagonal matrices, it acts on V (n). Furthermore, we have V =

⋃

n≥1 V (n). Note that there
is a natural tensor product on objects of Rep(GL) (the conditions we imposed are closed
under tensor products).

Lemma 2.10.1. The assignment Cn 7→ V (n) is a polynomial functor.

Proof. Since V is a polynomial representation, the function ρ : GL∞(C) → GL(V ) can
be extended to End(C∞) → End(V ) (the entries of ρ are polynomials and don’t require
invertibility of the input matrix). Given any linear map f : Cn → Cm, we can extend this
to an element f ∈ End(C∞) and this gives a linear map V (n)→ V (m) given by polynomial
functions. Since each Cα appears with finite multiplicity, V (n) is finite-dimensional. �

Call the polynomial functor Cn 7→ V (n) by FV .

Theorem 2.10.2. The assignment V 7→ FV defines an equivalence between Rep(GL) and
Pol of symmetric monoidal categories.

Proof. To define the inverse, let F be a polynomial functor. The inclusion maps Cn → Cn+1

give maps F (Cn) → F (Cn+1) (also inclusions because the projection Cn+1 → Cn induce
a left inverse after applying F ). Then we get a polynomial representation of GL∞(C) by
taking

⋃

n≥1 F (C
n). The fact that the symmetric monoidal structures is preserved just comes

from the fact that it is defined by a tensor product of vector spaces in both cases. �

Given V ∈ Rep(GL), we can define its character by

char(V ) =
∑

α

dim(Vα)
∏

i≥1

xαi

i .

Lemma 2.10.3. char(V ) ∈ Λ.
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Proof. Proof is similar to the case of polynomial representations of GLn(C). �

This is one natural context for symmetric functions, and the assignment V 7→ V (n) on
the level of characters corresponds to setting xi = 0 for i > n.

Given a polynomial functor F which is a direct sum of Schur functors (i.e., any element
in Polf), we define ℓ(F ) to the supremum of ℓ(λ) such that Sλ appears in F . Note that
Sλ(C

n) 6= 0 if and only if n ≥ ℓ(λ), so ℓ(F ) tells us how big n must be so that F (Cn) doesn’t
lose any information (i.e., kill any submodules). An advantage to working with Rep(GL) is
that we are essentially working with the case n = ∞, and the equivalence above is stating
that we never lose information in this case.

2.11. Littlewood–Richardson rule. We now want to understand the decomposition

Ind
Σn+m

Σn×Σm
(Mλ ⊗Mµ) =

⊕

ν

M
⊕cνλ,µ
ν ,

or equivalently, the decomposition

Sλ ⊗ Sµ =
⊕

ν

S
⊕cνλ,µ
ν ,

where the sum is over all partitions ν of n + m and cνλ,µ is a non-negative integer. The
numbers cνλ,µ are called the Littlewood–Richardson coefficients, and the eponymous rule
gives a combinatorial description of them.

There are many descriptions for this rule, and we will formulate it via lattice words. First
consider the skew-diagram ν/λ. We fill the boxes with positive integers so that i appears
exactly µi times. Then cνλ,µ counts the number of such fillings which satisfy the properties
(Littlewood–Richardson tableaux):

• semistandard: the entries are weakly increasing from left to right in each row, and
the entries are strictly increasing from top to bottom in each column
• lattice word: Read the entries right to left in each row, starting with the top row to
get a sequence of positive integers (reading word). Then each initial segment of this
sequence has the property that for each i, i occurs at least as many times as i+ 1.

See [F, §5, §7.3] or [Mac, §I.9]. See also [Sta, Appendix 7.A.1.3] for some other formulations
of the rule. Here are some simple consequences of the Littlewood–Richardson rule:

• If cνλ,µ 6= 0, then λ ⊆ ν and µ ⊆ ν.

• For all partitions λ, µ, cλ+µ
λ,µ = 1, and cλ∪µλ,µ = 1 where λ ∪ µ denotes the partition

obtained by sorting the sequence (λ, µ). To prove these, fill the Young diagram of µ
with the number i in each box in the ith row. Append the ith row to the ith row of
λ to see cλ+µ

λ,µ ≥ 1. Append the ith column to the ith column of λ to see cλ∪µλ,µ ≥ 1.
The reverse inequalities follow by the extremality of these shapes.
• For all integers N > 0, we have cNν

Nλ,Nµ ≥ cνλ,µ, which can be seen by “stretching”

the Littlewood–Richardson tableau. As a consequence, if cνλ,µ > 0, then cNν
Nλ,Nµ > 0

for any N > 0. The converse of this statement is also true, i.e., if cNν
Nλ,Nµ > 0 for

some N > 0, then cνλ,µ > 0. This is a highly non-trivial fact known as the saturation
theorem, see [KT1, DW1, KM] for different proofs of it. Furthermore, the function
N 7→ CNν

Nλ,Nµ is a polynomial in N ≥ 0 for any fixed choice of λ, µ, ν [DW2, Corollary
3].
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And here are some properties which are not obvious from the Littlewood–Richardson rule,
but follow easily from the representation-theoretic interpretation:

• Symmetry: cνλ,µ = cνµ,λ. One way to give a symmetric combinatorial rule for cνλ,µ is to
use the plactic monoid and jeu de taquin [F, §2, §5.1].
• Transpose symmetry: cν

†

λ†,µ† = cνλ,µ.

Example 2.11.1. We calculate c
(5,3,2,1)
(3,1),(4,2,1) = 3. The Littlewood–Richardson tableaux are

1 1
1 1

2 2
3

1 1
1 2

1 2
3

1 1
1 2

1 3
2

The reading words are 1111223, 1121213, and 1121312, respectively. It is easier to calculate
this number after swapping the roles of (3, 1) and (4, 2, 1):

1
2

1
1

1
1

2
1

1
1

1
2

�

2.12. A few more formulas. By the equivalences above, the induction product on sym-
metric group representations corresponds to the tensor product of polynomial functors, or
tensor product of representations in Rep(GL).

Proposition 2.12.1. We have a GLn ×GLm-equivariant decomposition

Sν(C
n ⊕Cm) =

⊕

λ,µ

(Sλ(C
n)⊠ Sµ(C

m))⊕cνλ,µ .

Proof. Set k = |ν|. We have

Sν(C
n ⊕Cm) = HomΣk

(Mν , (C
n+m)⊗k).

Now (Cn+m)⊗k can be written as
⊕

I

⊗k
j=1Aj,I where the sum is over all subsets of {1, . . . , k}

and Aj,I = Cn if j ∈ I and Aj,I = Cm if j /∈ I. For every N , the symmetric group Σk

preserves the sum
⊕

|I|=N

⊗

j Aj,I , and this representation is the induced representation

IndΣk

ΣN×Σk−N
((Cn)⊗N ⊗ (Cm)⊗(k−n)).

Hence by Frobenius reciprocity, we can write

Sν(C
n ⊕Cm) =

k
⊕

N=0

HomΣN×Σk−N
(Mν |Σk

ΣN×Σk−N
, (Cn)⊗N ⊗ (Cm)⊗(k−N))

=
k
⊕

N=0

⊕

λ,µ

HomΣN×Σk−N
(Mλ ⊗Mµ, (C

n)⊗N ⊗ (Cm)⊗(k−N))⊕cνλ,µ

=
⊕

λ,µ

(Sλ(C
n)⊠ Sµ(C

m))⊕cνλ,µ .

This gives a GLn(C)×GLm(C)-equivariant decomposition of Sν(C
n⊕Cm), and we see that

the multiplicities are described by Littlewood–Richardson coefficients. �
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The induction product of symmetric group representations is natural from the perspective
of our equivalence with polynomial functors, but one can also consider tensor products of
symmetric group representations. Again, we will have certain decompositions

Mλ ⊗Mµ =
⊕

ν

M
gνλ,µ
ν .

In fact, the Mλ are isomorphic to their own duals since they can be defined over the rational
numbers (it is enough to be defined over the real numbers), so we have

gνλ,µ = dimC(Mλ ⊗Mµ ⊗Mν)
Σn

from which it is clear that the coefficient is symmetric in λ, µ, ν, so we denote them by
gλ,µ,ν . These are the Kronecker coefficients and it is a notoriously difficult problem to give
subtraction-free combinatorial rules for them. A special case is when λ = (n), since then
Mλ is the trivial representation, in which case we get

g(n),µ,ν = δµ,ν .

Another easy case is when λ = (1n) since the M(1n) is the sign representation. It turns
out that Mλ ⊗ sgn = Mλ† , and hence

g(1n),µ,ν = δµ,ν† .

Proposition 2.12.2. We have a GLn ×GLm-equivariant decomposition

Sν(C
n ⊗Cm) =

⊕

λ,µ

(Sλ(C
n)⊠ Sµ(C

m))⊕gλ,µ,ν .

Proof. First, we have

(Cn ⊗Cm)⊗k =
⊕

|ν|=k

Sν(C
n ⊗Cm)⊠Mν

as representations of GLnm(C)×Σk. Alternatively, as GL(n)×GL(m)×Σk representations,
we have

(Cn)⊗k ⊗ (Cm)⊗k = (
⊕

|λ|=k

Sλ(C
n)⊠Mλ)⊗ (

⊕

|µ|=k

Sµ(C
m)⊠Mµ)

=
⊕

|λ|=|µ|=|ν|=k

(Sλ(C
n)⊠ Sµ(C

m)⊠Mν)
⊕gλ,µ,ν .

The result follows by taking the Mν-isotypic component of both expressions. �

Corollary 2.12.3 (Cauchy identities). For each k, we have GLn(C)×GLm(C)-equivariant
decompositions

Symk(Cn ⊗Cm) =
⊕

|λ|=k

Sλ(C
n)⊗ Sλ(C

m),

k
∧

(Cn ⊗Cm) =
⊕

|λ|=k

Sλ(C
n)⊗ Sλ†(Cm).

Of course, when n,m are small relative to k, we don’t need to sum over all partitions:
recall that Sλ(C

n) = 0 if n < ℓ(λ).
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3. Representations of combinatorial categories

3.1. Twisted commutative algebras. Let k be a commutative ring. A twisted commu-
tative algebra (tca) is a commutative algebra in the tensor category of symmetric sequences
over k. Let’s unpack this definition.

Let A =
⊕

n≥0An be a Z≥0-graded, associative, unital k-algebra such that each An has a
linear action of the symmetric group Σn. Embed Σn×Σm as a subgroup of Σn+m by having
Σn act on 1, . . . , n and Σm act on n+ 1, . . . , n+m in the natural way. Then A is a twisted
commutative algebra (tca) if, for all n and m,

• the multiplication map
An ⊗ Am → An+m

is Σn × Σm-equivariant with respect to the embedding just specified, and
• τ(xy) = yx where x ∈ An, y ∈ Am, and τ ∈ Σn+m is the permutation that swaps
{1, . . . , n} and {n + 1, . . . , n + m} in order, i.e., τ(i) = m + i if 1 ≤ i ≤ n and
τ(n+ j) = j for 1 ≤ j ≤ m.

Example 3.1.1. Let E be a free k-module, and An = E⊗n (by convention, A0 = k).
The action of Σn is by permuting tensor factors, and multiplication is concatenation of
tensors. This is the free tca (i.e., a symmetric algebra in the category of symmetric sequences)
generated in degree 1 by E, in the sense that An = Symn(A1) for all n and A0 = k. We will
denote it by Sym(E〈1〉).

When using all sets, we have A(S) = E⊗S, where we can think of E⊗S as the space of
tensors indexed by the set S (more precisely, this should be the colimit of E⊗n over all
bijections S ∼= [n], where n = |S|). �

We say that A is finitely generated if it is a quotient of Sym(V ) for some finite length
symmetric sequence V .

We can also define modules over tca’s. In fact, we have a general definition using the
monoidal language. We can unpack it as follows. Let A be a tca. An A-module M is a
graded abelian group M =

⊕

n≥0Mn such that each Mn is a linear Σn-representation, M is
a graded A-module in the usual sense, and such that the multiplication map

An ⊗Mm →Mn+m

is Σn×Σm-equivariant. A module is finitely generated if it can be generated by finitely many
elements m1, . . . ,mn under the action of A and the symmetric groups. We are interested
in the category of A-modules, and specifically, in formal properties of finitely generated
A-modules.

In the language of symmetric sequences, a module M over a tca A is finitely generated if
it is a quotient of A⊗ V for some finite length symmetric sequence V (i.e.,

∑

dimVn <∞).
An important notion for us is noetherianity. A module is noetherian if all of its submod-

ules are finitely generated. A tca is noetherian if all of its finitely generated modules are
noetherian. The next facts follow from some standard algebra, and we leave it to the reader:

Proposition 3.1.2. Let k[Σn] be the symmetric sequence which is the regular representation
of Σn (i.e., Σn acting on its group algebra by multiplication on the left) in degree n and 0
elsewhere. A tca A is noetherian if and only if A⊗ k[Σn] is noetherian for all n.

Proposition 3.1.3. Let M be a module over a tca. The following are equivalent:

(1) M is noetherian.
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(2) Submodules of M satisfy the ascending chain condition, i.e., given a chain of submod-
ules N1 ⊆ N2 ⊆ · · · of M , we must have Mi =Mi+1 = · · · for some i.

(3) Every collection of submodules of M has a maximal element with respect to inclusion.

3.2. Alternative models for tca’s generated in degree 1. The tca Sym(E〈1〉) and its
modules are an important example, especially when dimE = 1. We can give a different model
for Sym(E〈1〉)-modules in terms of functor categories. To do this, pick a basis e1, . . . , ed for
E.
Let FId be the category such that:

• the objects are finite sets S,
• a morphism S → T is a pair (f, g) where f : S → T is an injective function and
g : T \ f(S)→ [d] is an arbitrary function (“coloring”).

Given two morphisms (f, g) : S → T and (f ′, g′) : T → U , we define the composition to be
(f ′′, g′′) : S → U where f ′′ = f ′ ◦ f , and g′′ : U \ f ′′(S)→ [d] is given by g′′(u) = g′(u) if u is
not in the image of f ′, and g′′(u) = g′(v) if u = f ′(v) and v is not in the image of f .

Proposition 3.2.1. The category Fun(FId,Modk) is equivalent to the category of Sym(E〈1〉)-
modules.

Proof. Set A = Sym(E〈1〉). Let M be an A-module. Define a functor FM : FId → Modk

on objects by setting FM(S) =M(S) for each finite set S. Consider the multiplication map
A⊗M →M evaluated on a set T (indexed slightly differently):

⊕

U⊆T

E⊗(T\U) ⊗M(U)→M(T ).

Given an FId-morphism (f, g) : S → T , we consider the map E⊗(T\U) ⊗ M(U) → M(T )
above with U = f(S). The coloring g : T \ U → [d] gives a tensor product x of basis
elements in E⊗(T\U), and hence we get a map M(S)→M(T ) by considering the restriction
to x⊗M(U)→M(T ) and identifying U with S via f .
Conversely, given a functor F : FId → Modk, we define an A-module MF on objects by

MF (S) = F (S). To define the multiplication map, we need to define the maps E⊗(T\U) ⊗
M(U) → M(T ) as above for every U ⊆ T and every tensor product x of basis elements.
Let f : U → T be the inclusion map and let g : T \ U → [d] be the map corresponding to x.
Then we get a map F (U)→ F (T ) which we use to define the desired map.

The two constructions are inverse to each other, so we get the desired equivalence. �

The special case d = 1 will be studied in more depth later. In that case, we write FI
instead of FI1. This is an abbreviation for Finite Injections.
It will also be useful to have descriptions of Sym(E〈1〉) and its modules in the polyno-

mial functor and GL∞-models. In that case, we assume that our field is of characteristic
0. Chasing through the equivalence Φ from §2.9, the polynomial functor corresponding to
Sym(E〈1〉) in degree n is

W 7→ (E⊗n ⊗W⊗n)Σn ∼= Symn(E ⊗W ),

so we get the functor which assignsW to the symmetric algebra on E⊗W . Given a linear map
W → W ′, we get an induced linear map E⊗W → E⊗W ′ and hence a ring homomorphism
Sym(E ⊗W )→ Sym(E ⊗W ′). Recall the Cauchy identity (Corollary 2.12.3) that

Sym(E ⊗W ) =
⊕

λ

SλE ⊗ SλW.
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This is a GL(E)×GL(W )-equivariant decomposition, and hence gives a decomposition into
polynomial functors if we ignore the GL(E)-action. Note that the action of GL(E) is not
present in any of the definitions for Sym(E〈1〉)-modules. In this language, Proposition 3.1.2
translates to saying that the module W 7→ Sym(E ⊗W )⊗W⊗n is noetherian for all n.
In the model of representations of GL∞(C) (see §2.10), Sym(E〈1〉) is the algebra

Sym(E ⊗C∞)

with the action of GL∞(C) which acts on C∞ in the usual way. The latter is a very
useful model to keep in mind. A module over this tca is then a GL∞(C) representation
(satisfying the conditions in §2.10 with a compatible action of Sym(E ⊗C∞). In this case,
Proposition 3.1.2 translates to saying that the module Sym(E⊗C∞)⊗ (C∞)n is noetherian
for all n.

3.3. Bounded tca’s. In this section, we continue to work over a field of characteristic 0.
Given a sum of Schur functors F =

⊕

λ S
⊕cλ
λ , we defined ℓ(F ) to be the supremum of ℓ(λ)

such that cλ 6= 0. We say that F is bounded if ℓ(F ) <∞. Given a tca A in the polynomial
functor model, we say that A is bounded if it is bounded as a polynomial functor.
Given any vector spaceCn, we can evaluate a tca A (and an A-moduleM) to get an algebra

A(Cn) with a GLn(C)-action together with a moduleM(Cn) with a compatible action. This
gives a function from the lattice of submodules of M to the lattice of submodules of M(Cn)
which sends N ⊂M to N(Cn) ⊂M(Cn).

Proposition 3.3.1. Let A be a finitely generated tca. If M is a bounded A-module and
n ≥ ℓ(M), then the map of lattices above is injective. In particular, M is noetherian.

Proof. Recall that N(Cn) = 0 if and only if n < ℓ(N). But ℓ(N) ≤ ℓ(M), so N(Cn) 6= 0
as long as N 6= 0. This proves the injectivity statement. For the noetherianity statement,
write A as a quotient of Sym(V ) with V a finite length symmetric sequence. Then A(Cn)
is generated as an algebra (in the usual sense) by V (Cn), a finite dimensional vector space,
and M(Cn) is a finitely generated A(Cn) in the usual sense. Hence A(Cn) is a noetherian
algebra, and the submodules of M(Cn) satisfy the ascending chain condition. �

Proposition 3.3.2. If A is a bounded tca, then every finitely generated A-module is bounded.
In particular, A is noetherian.

Proof. Let M be a finitely generated A-module and write M as a quotient of A⊗ V with V
a finite length symmetric sequence. By §2.11, ℓ(A ⊗ V ) = ℓ(A) + ℓ(V ) < ∞. Furthermore,
ℓ(M) ≤ ℓ(A⊗ V ), so M is bounded. �

Proposition 3.3.3. The tca Sym(E〈1〉) is bounded. In particular, it is noetherian.

Proof. It follows immediately from the Cauchy identity that ℓ(Sym(E〈1〉)) = dimE. �

3.4. Noetherianity in general. Via our equivalence of definitions, we see that Fun(FId,Modk)
satisfies some noetherian property when k is a field of characteristic 0. One can ask whether
this holds for general fields. The answer is yes, and we discuss this now and consider when
FId is replaced by a more general category. This follows the strategy in [SS1].
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We now shift our language slightly. Let C be a category.3 A representation of C (or a
C-module) over k is a functor C → Modk. A map of C-modules is a natural transforma-
tion. We write Repk(C) for the category of representations, which is abelian. Let M be a
representation of C. A subrepresentation is a functor N such that N(x) is a subspace of
M(x) for all x and which is closed under all operations M(f) for all morphisms f . By an
element of M we mean an element of M(x) for some object x of C. Given any set S of
elements of M , there is a smallest subrepresentation of M containing S; we call this the
subrepresentation generated by S. We say that M is finitely generated if it is generated
by a finite set of elements. For a morphism f : x → y in C, we typically write f∗ for the
given map of k-modules M(x)→M(y).
Let x be an object of C. Define a representation Px of C by Px(y) = k[HomC(x, y)], i.e.,

Px(y) is the free left k-module with basis HomC(x, y), the set of morphisms x → y. For a
morphism f : x → y, we write ef for the corresponding element of Px(y). If M is another
representation then Hom(Px,M) =M(x). This shows that Hom(Px,−) is an exact functor,
and so Px is a projective object of Repk(C). We call it the principal projective at x. A
C-module is finitely generated if and only if it is a quotient of a finite direct sum of principal
projective objects.

An object of Repk(C) is noetherian if every ascending chain of subobjects stabilizes; this
is equivalent to every subrepresentation being finitely generated. The category Repk(C) is
locally noetherian if every finitely generated object in it is.

Proposition 3.4.1. The category Repk(C) is locally noetherian if and only if every principal
projective is noetherian.

Proof. By definition, if Repk(C) is locally noetherian then so is every principal projective.
Conversely, suppose every principal projective is noetherian. Let M be a finitely generated
object. Then M is a quotient of a finite direct sum P of principal projectives. Since
noetherianity is preserved under finite direct sums, P is noetherian. And since noetherianity
descends to quotients, M is noetherian. This completes the proof. �

Let Φ: C→ C′ be a functor. There is then a pullback functor on representations Φ∗ : Repk(C
′)→

Repk(C) given by M 7→ M ◦ Φ. We study how Φ∗ interacts with finiteness conditions. The
following definition is of central importance:

Definition 3.4.2. We say that Φ satisfies property (F) (F for finite) if the following
condition holds: given any object x of C′ there exist finitely many objects y1, . . . , yn of C
and morphisms fi : x → Φ(yi) in C′ such that for any object y of C and any morphism
f : x→ Φ(y) in C′, there exists a morphism g : yi → y in C such that f = Φ(g) ◦ fi. �

The following proposition is the motivation for introducing property (F).

Proposition 3.4.3. A functor Φ: C → C′ satisfies property (F) if and only if Φ∗ takes
finitely generated objects of Repk(C

′) to finitely generated objects of Repk(C).

Proof. Assume that Φ satisfies property (F). It suffices to show that Φ∗ takes principal
projectives to finitely generated representations. Thus let Px be the principal projective
of Repk(C

′) at an object x. Note that Φ∗(Px)(y) has for a basis the elements ef for f ∈
HomC′(x,Φ(y)). Let fi : x → Φ(yi) be as in the definition of property (F). Then the efi
generate Φ∗(Px). The converse is left to the reader (and not used in this paper). �

3We assume C is essentially small, that is, the isomorphism classes of objects in C form a set. In almost
all cases, this set is the natural numbers or some slight variant so it won’t be an issue for us.
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Proposition 3.4.4. Suppose that Φ: C→ C′ is an essentially surjective functor. Let M be
an object of Repk(C

′) such that Φ∗(M) is finitely generated (resp. noetherian). Then M is
finitely generated (resp. noetherian).

Proof. Let S be a set of elements of Φ∗(M). Let S ′ be the corresponding set of elements
of M . (Thus if S contains m ∈ Φ∗(M)(y) then S ′ contains m ∈ M(Φ(y)).) If N is a
subrepresentation ofM containing S ′ then Φ∗(N) is a subrepresentation of Φ∗(M) containing
S. It follows that if N (resp. N ′) is the subrepresentation of M (resp. Φ∗(M)) generated by
S ′ (resp. S), then N ′ ⊂ Φ∗(N). Thus if S generates Φ∗(M) then Φ∗(N) = Φ∗(M), which
implies N =M since Φ is essentially surjective, i.e., S generates M . In particular, if Φ∗(M)
is finitely generated then so is M .
Now suppose that Φ∗(M) is noetherian. Given a subrepresentation N of M , we obtain

a subrepresentation Φ∗(N) of Φ∗(M). Since Φ∗(M) is noetherian, it follows that Φ∗(N) is
finitely generated. Thus N is finitely generated, and so M is noetherian. �

Corollary 3.4.5. Let Φ: C→ C′ be an essentially surjective functor satisfying property (F)
and suppose Repk(C) is noetherian. Then Repk(C

′) is noetherian.

Proof. LetM be a finitely generated C′-module. Then Φ∗(M) is finitely generated by Propo-
sition 3.4.3, and therefore noetherian, and so M is noetherian by Proposition 3.4.4. �

3.5. Noetherian posets. Let X be a partially ordered set (poset). Then X satisfies the
ascending chain condition (ACC) if every ascending chain in X stabilizes, i.e., given x1 ≤
x2 ≤ · · · in X we have xi = xi+1 for i ≫ 0. The descending chain condition (DCC) is
defined similarly. An anti-chain in X is a sequence x1, x2, . . . such that xi ≤| xj for all i 6= j.
An ideal in X is a subset I of X such that x ∈ I and x ≤ y implies y ∈ I. We write I(X)
for the poset of ideals of X, ordered by inclusion. For x ∈ X, the principal ideal generated
by x is {y | y ≥ x}. An ideal is finitely generated if it is a finite union of principal ideals.
The following result is left to the reader as an exercise.

Proposition 3.5.1. The following conditions on X are equivalent:

(a) The poset X satisfies DCC and has no infinite anti-chains.
(b) Given a sequence x1, x2, . . . in X, there exists i < j such that xi ≤ xj.
(c) The poset I(X) satisfies ACC.
(d) Every ideal of X is finitely generated.

The poset X is noetherian if the above conditions are satisfied. Where we say “X is
noetherian,” one often sees “≤ is a well-quasi-order” in the literature. Similarly, where we
say “X satisfies DCC” one sees “≤ is well-founded.”

Proposition 3.5.2. Let X be a noetherian poset and let x1, x2, . . . be a sequence in X. Then
there exists an infinite sequence of indices i1 < i2 < · · · such that xi1 ≤ xi2 ≤ · · · .

Proof. Let I be the set of indices such that i ∈ I and j > i implies that xi ≤| xj. If I is
infinite, then there is i < i′ with i, i′ ∈ I such that xi ≤ xi′ by definition of noetherian and
hence contradicts the definition of I. So I is finite; let i1 be any number larger than all
elements of I. Then by definition of I, we can find xi1 ≤ xi2 ≤ · · · . �

Proposition 3.5.3. Let X and Y be noetherian posets. Then X × Y is noetherian.
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Proof. Let (x1, y1), (x2, y2), . . . be an infinite sequence in X×Y . Since X is noetherian, there
exists i1 < i2 < · · · such that xi1 ≤ xi2 ≤ · · · (Proposition 3.5.2). Since Y is noetherian,
there exists ij < ij′ such that yij ≤ yij′ , and hence (xij , yij) ≤ (xij′ , yij′ ). �

Given a poset X, let X⋆ be the set of finite words x1 · · · xn with xi ∈ X. We define
x1 · · · xn ≤ x′1 · · · x′m if there exist 1 ≤ i1 < · · · < in ≤ m such that xj ≤ x′ij for j = 1, . . . , n.

Theorem 3.5.4 (Higman’s lemma [Hi]). If X is a noetherian poset, then so is X⋆.

Proof. Suppose that X⋆ is not noetherian. We use Nash-Williams’ theory of minimal bad
sequences [NW] to get a contradiction. A sequence w1, w2, . . . of elements in X⋆ is bad if
wi ≤| wj for all i < j. We pick a bad sequence minimal in the following sense: for all
i ≥ 1, among all bad sequences beginning with w1, . . . , wi−1 (this is the empty sequence for
i = 1), ℓ(wi) is as small as possible. Let xi ∈ X be the first element of wi and let vi be the
subword of wi obtained by removing xi. By Proposition 3.5.2, there is an infinite sequence
i1 < i2 < · · · such that xi1 ≤ xi2 ≤ · · · . Then w1, w2, . . . , wi1−1, vi1 , vi2 , . . . is a bad sequence
because vij ≤ wij for all j, and vij ≤ vij′ would imply that wij ≤ wij′

. It is smaller than our
minimal bad sequence, so we have reached a contradiction. Hence X⋆ is noetherian. �

3.6. Monomial representations and Gröbner bases. Let C be an essentially small cat-
egory and let Set be the category of sets. Fix a functor S : C→ Set, and let P = k[S], i.e.,
P (x) is the free k-module on the set S(x).

Given f ∈ S(x), we write ef for the corresponding element of P (x). An element of P is a
monomial if it is of the form λef for some λ ∈ k and f ∈ S(x). A subrepresentation M of
P is monomial if M(x) is spanned by the monomials it contains, for all objects x.

To connect arbitrary subrepresentations of P to monomial subrepresentations, we need a
theory of monomial orders. Let WO be the category of well-ordered sets and strictly order-
preserving functions. There is a forgetful functor WO→ Set. An ordering on S is a lifting
of S to WO. More concretely, an ordering on S is a choice of well-order on S(x), for each
x ∈ C, such that for every morphism x → y in C the induced map S(x) → S(y) is strictly
order-preserving. We write � for an ordering; S is orderable if it admits an ordering.

Suppose � is an ordering on S. Given non-zero α =
∑

f∈S(x) λfef in P (x), we define the

initial term of α, denoted init(α), to be λgeg, where g = max�{f | λf 6= 0}. The initial
variable of α, denoted init0(α), is g. Now let M be a subrepresentation of P . We define the
initial representation of M , denoted init(M), as follows: init(M)(x) is the k-span of the
elements init(α) for non-zero α ∈M(x). The name is justified by the following result.

Proposition 3.6.1. Notation as above, init(M) is a monomial subrepresentation of P .

Proof. Let α =
∑n

i=1 λiefi be an element of M(x) with each λi non-zero, ordered so that
fi ≺ f1 for all i > 1. Thus init(α) = λ1ef1 . Let g : x → y be a morphism. Then g∗(α) =
∑n

i=1 λieg∗(fi). Since g∗ : S(x) → S(y) is strictly order-preserving, we have g∗(fi) ≺ g∗(f1)
for all i > 1. Thus init(g∗(α)) = λ1egf1 , or, in other words, init(g∗(α)) = g∗(init(α)). This
shows that g∗ maps init(M)(x) into init(M)(y), and so init(M) is a subrepresentation of P .
That it is monomial follows immediately from its definition. �

Proposition 3.6.2. If N ⊆ M are subrepresentations of P and init(N) = init(M), then
M = N .

Proof. Assume that M(x) 6= N(x) for x ∈ C. Let K ⊂ S(x) be the set of all elements
which appear as the initial variable of some element of M(x) \ N(x). Then K 6= ∅, so has
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a minimal element f with respect to �. Pick α ∈ M(x) \ N(x) with init0(α) = f . By
assumption, there exists β ∈ N(x) with init(α) = init(β). But then α − β ∈ M(x) \ N(x),
and init0(α− β) ≺ init0(α), a contradiction. Thus M = N . �

Let M be a subrepresentation of P . A set G of elements of M is a Gröbner basis of M if
{init(α) | α ∈ G} generates init(M). Note that M has a finite Gröbner basis if and only if
init(M) is finitely generated. As usual, we have:

Proposition 3.6.3. Let G be a Gröbner basis of M . Then G generates M .

Proof. Let N ⊆M be the subrepresentation generated by G. Then init(N) contains init(α)
for all α ∈ G, and so init(N) = init(M). Thus M = N by Proposition 3.6.2. �

We now come to our main result.

Theorem 3.6.4. Suppose k is noetherian, S is orderable, and |S| is noetherian. Then every
subrepresentation of P has a finite Gröbner basis. In particular, P is a noetherian object of
Repk(C).

Proof. It suffices to show that every monomial subrepresentation is finitely generated. Let Q
be the direct product of the poset of ideals in k with |S|. Suppose we have a strictly increasing
chain of monomial subrepresentations M1 ⊂ M2 ⊂ · · · ⊂ P . For each i, pick a monomial
λiefi = mi ∈Mi \Mi−1 and let Ii be the ideal in k generated by all λi which are coefficients
of efi appearing in any monomial in Mi. Then we get a sequence (I1, f1), (I2, f2), . . . in Q
which are incomparable, contradicting the fact that |S|, and hence Q (by Proposition 3.5.3),
is noetherian. �

3.7. Gröbner categories. Let C be an essentially small category. For an object x, let
Sx : C→ Set be the functor given by Sx(y) = HomC(x, y). Note that Px = k[Sx].

Definition 3.7.1. We say that C is Gröbner if, for all objects x, the functor Sx is orderable
and the poset |Sx| is noetherian. We say that C is quasi-Gröbner if there exists a Gröbner
category C′ and an essentially surjective functor C′ → C satisfying property (F). �

Theorem 3.7.2. Let C be a quasi-Gröbner category. Then for any noetherian ring k, the
category Repk(C) is noetherian.

Proof. First suppose that C is a Gröbner category. Then every principal projective of Repk(C)
is noetherian, by Theorem 3.6.4, and so Repk(C) is noetherian by Proposition 3.4.1.
Now suppose that C is quasi-Gröbner, and let Φ: C′ → C be an essentially surjective

functor satisfying property (F), with C′ Gröbner. Then Repk(C
′) is noetherian, by the

previous paragraph, and so Repk(C) is noetherian by Corollary 3.4.5. �

Remark 3.7.3. If the functor Sx is orderable, then the group Aut(x) admits a well-order
compatible with the group operation, and is therefore trivial. Thus, in a Gröbner category,
there are no non-trivial automorphisms. �

Proposition 3.7.4. The cartesian product of finitely many (quasi-)Gröbner categories is
(quasi-)Gröbner.

We leave the details to the reader.
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3.8. Example: FId-modules. Let d be a positive integer. Define OId to be the ordered
version of FId: its objects are totally ordered finite sets and a morphisms between S and T is
a pair (f, g) with f an order-preserving injection, and g is an arbitrary function g : T \f(S)→
[d]. When d = 1, we will write FI and OI instead of FI1 and OI1.
Let Σ = {0, . . . , d}, and let L be the subset of Σ⋆ consisting of words w1 · · ·wr in which

exactly n of the wi are equal to 0. Partially order L using the subsequence order, i.e., if
s : [i]→ Σ and t : [j]→ Σ are words then s ≤ t if there exists I ⊆ [j] such that s = t|I .
Lemma 3.8.1. The poset L is noetherian.

Proof. Noetherianity is an immediate consequence of Higman’s lemma (Theorem 3.5.4). �

Our main result about OId is the following theorem.

Theorem 3.8.2. The category OId is Gröbner.

Proof. Let n be a non-negative integer, and regard x = [n] as an object of C. Pick (f, g) ∈
HomC([n], [m]). Define h : [m]→ Σ to be the function which is 0 on the image of f , and equal
to g on the complement of the image of f . One can recover (f, g) from h since f is required
to be order-preserving and injective. This construction therefore defines an isomorphism of
posets i : Sx → L. It follows that |Cx| is noetherian. Furthermore, putting the lexicographic
order on L (using the standard order on Σ) gives a lift of the functor Sx to a well-ordering.
Thus C is Gröbner. �

Remark 3.8.3. The results about OI can be made more transparent with the following
observation: the set of order-increasing injections f : [n]→ [m] is naturally in bijection with

monomials in x0, . . . , xn of degree m−n by assigning the monomial mf =
∏n

i=0 x
f(i+1)−f(i)−1
i

using the convention f(0) = 0 and f(n + 1) = m + 1. Given g : [n] → [m′], there is a
morphism h : [m] → [m′] with g = hf if and only if mf divides mg. Thus the mono-
mial subrepresentations of Pn are in bijection with monomial ideals in the polynomial ring
k[x0, . . . , xn].
In fact, this also shows that finitely generated OI-modules (and hence finitely generated

FI-modules) have eventually polynomial growth when k is a field, i.e., the function d 7→
dimkM([d]) is a polynomial for d ≫ 0. This can also be put in the general framework of
“lingual categories” as in [SS1], but we will omit that discussion. �

Theorem 3.8.4. The forgetful functor Φ: OId → FId satisfies property (F). In particular,
FId is quasi-Gröbner.

Proof. Let x = [n] be a given object of FId. If y is any totally ordered set, then any morphism

f : x→ y can be factored as x
σ→ x

f ′

→ y, where σ is a permutation and f ′ is order-preserving.
It follows that we can take y1, . . . , yn! to all be [n], and fi : x→ Φ(yi) to be the ith element
of the symmetric group Sn (under any enumeration). This establishes the claim. Since OId
is Gröbner, this shows that FId is quasi-Gröbner. �

Corollary 3.8.5. If k is left-noetherian then Repk(FId) is noetherian.

4. Homological stability for symmetric groups

Some of the applications of representation stability and the theory we’ve been developing
was motivated by generalizations of homological stability. So we’ll pause to prove homological
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stability for the symmetric groups to get a feeling for what sort of result this is and to
illustrate the use of spectral sequences in this subject.

See §A.3 for basic definitions and properties of group homology. We have inclusions of
symmetric groups Σ1 → Σ2 → · · · which induce maps on homology

Hi(Σ1)→ Hi(Σ2)→ · · ·
for each i, and Nakaoka’s stability theorem says that the map Hi(Σn−1) → Hi(Σn) is an
isomorphism for n > 2i. We will follow Kerz’s proof [Ke] of this fact.

4.1. The complex of injective words. Let m be a fixed positive integer. An injective
word in the alphabet [m] is a sequence (i1, . . . , in) of elements in [m], such that ij 6= ik for
j 6= k. Let Cn(m) be the free abelian group with basis indexed by the injective words of
length n in the alphabet [m]. By convention, C0(m) = Z with 1 basis element given by the
empty sequence. We will abuse notation and use (i1, . . . , in) to denote the basis vector in
Cn(m). Define a map

d : Cn(m)→ Cn−1(m)

(i1, . . . , in) 7→
n
∑

j=1

(−1)j+1(i1, . . . , îj, . . . , in)

where the hat denotes that we are omitting that term. A quick check shows that d2 = 0, so
we have a chain complex C∗(m).
A scalar multiple of a sequence is called a term. If x ∈ Cn(m) is a sum of sequences,

then a number i ∈ [m] is said to appear in x if it is an element in one of the sequences.
Finally, we define a partially defined product on Cn(m) as follows. If x ∈ Cn(m) and
x′ ∈ Cℓ(m) are terms with x = N(i1, . . . , in) and x′ = M(i′1, . . . , i

′
ℓ), then we define the

product xx′ = NM(i1, . . . , in, i
′
1, . . . , i

′
ℓ) assuming that this is still an injective word. We

extend this to sums whenever all of the corresponding products make sense. When the
product is defined for x ∈ Cn(m) and x′ ∈ Cℓ(m), it satisfies the Leibniz rule in the sense
that

d(xx′) = d(x)x′ + (−1)nxd(x′).
Lemma 4.1.1. If x ∈ Cn(m) is a cycle and there is a number i not appearing in x, then x
is a boundary.

Proof. By the Leibniz rule, we have d((i)x) = x − (i)d(x). The second quantity is x since
d(x) = 0. �

Theorem 4.1.2 (Farmer). Hi(C∗(m)) = 0 for i < m.

Proof. This is clear for i = 0. To prove the rest of the result, we do induction on m, starting
with m = 2. In that case, we have

C2(2)→ C1(2)→ C0(2).

The kernel of the second map is generated by (1)− (2) = d(1, 2), so H1(C∗(2)) = 0.
Now let c ∈ Cn(m) be a cycle with n < m. If there is some letter not appearing in c, then

we can apply Lemma 4.1.1 and conclude c is a boundary. It will suffice to show that there
is some letter not appearing in c − d(w) for some w ∈ Cn+1(m), so we now show how to
construct such a w.
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Suppose there is a letter α that appears as the first entry in some basis element in c. Then
write

c =
∑

j

(α)cj + c′

where the cj are terms and α does not appear as the first entry in c′. Since n < m, for each
j there is a letter αj 6= α that does not appear in cj. Then we have

c− d
(

∑

j

(αj, α)cj

)

= c−
∑

j

((α)cj − (αj)d((α)cj))

= c′ +
∑

j

((αj)cj − (αj, α)d(cj)),

and α does not appear as the first entry in the last expression. By induction on i, we will
now show that we can add a boundary to the above expression so that α does not appear in
the first i entries.
So suppose α does not appear in the first i entries of the cycle c. Write

c =
∑

j

sj(α)cj + c′

where ℓ(sj) = i, sj and cj do not contain α, the cj are distinct for different j, and c′ does
not contain α in the first i+ 1 entries. Then we have

0 = d(c) =
∑

j

(d(sj)(α)cj + (−1)isjd((α)cj)) + d(c′)

=
∑

j

(d(sj)(α)cj + (−1)isjcj + (−1)i+1sj(α)d(cj)) + d(c′).

By our assumption, the only summands where α appears in the ith entry are d(sj)(α)cj, so
∑

j d(sj)(α)cj = 0. Furthermore, the cj are distinct, so we conclude that d(sj) = 0 for all

j. Now, ℓ(sj) = i < m− 1− ℓ(cj) and sj uses only at most m− 1− ℓ(cj) letters, so by our
induction hypothesis, we conclude there exists s′j using these same m− 1− ℓ(cj) letters such
that d(s′j) = sj. In particular, the element

z =
∑

j

s′j(α)cj

is well-defined, and we have

c− d(z) = c−
∑

j

(sj(α)cj + (−1)i+1s′jcj + (−1)i+2s′j(α)d(cj))

= c′ −
∑

j

((−1)i+1s′jcj + (−1)is′j(α)d(cj)).

Again, α does not appear in the first i + 1 entries of the last expression. Finally, once we
have i = n, we have found the desired element c− d(w). �
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4.2. Nakaoka’s theorem.

Theorem 4.2.1 (Nakaoka). The map Hi(Σn−1)→ Hi(Σn) is an isomorphism for n > 2i.

Proof. We go by induction on n. For n = 3, we only consider i = 1, in which case we have

H1(Σ2) = H1(Σ3) = Z/2

is the abelianization of the group, and the induced map is the identity.
For n ≥ 4, define a new complex C ′

∗(n) by C ′
i(n) = Ci+1(n) for i ≥ 0. Then we have

removed the term C0(n), so H0(C
′
∗(n)) = Z and Hi(C

′
∗(n)) = 0 for 0 < i < n− 1.

Note that Σn acts on the C ′
i(n) by permuting the letters and that the differential d is

equivariant for these actions. We can define the homology of a group with coefficients in
a chain complex (this is a special case of hyperhomology), but we won’t need the precise
definition. We just need to know that there are two spectral sequences which both converge
to this value [Br, §VII.5]:

E2
p,q = Hp(Σn; Hq(C

′
∗(n))) =⇒ Hp+q(Σn;C

′
∗(n))

E1
p,q = Hq(Σn;C

′
p(n)) =⇒ Hp+q(Σn;C

′
∗(n)).

Consider the first spectral sequence. As mentioned before, Hq(C
′
∗(n)) = 0 for 0 < q < n− 1.

Hence the only terms of degree d with 0 ≤ d < n − 1 is Hd(Σn; H0(C
′
∗(n))) = Hd(Σn).

Furthermore, on each page, there is no nonzero differential to these terms, so

Hd(Σn;C
′
∗(n)) = E∞

d,0 = Hd(Σn) (0 ≤ d < n− 1).

Now consider the second spectral sequence. The Σn-representation C
′
p(n) is the permuta-

tion representation on the set of injective words of length p+1. This has a transitive action
of Σn with stabilizer subgroup Σn−p−1, so it is isomorphic to the induced module IndΣn

Σn−p−1
Z,

so
Hq(Σn;C

′
p(n)) = Hq(Σn−p−1)

by Shapiro’s lemma. The map C ′
p(n) → C ′

p−1(n) corresponding to forgetting the jth entry
becomes the map

Hq(Σn−p−1)→ Hq(Σn−p)

induced by the inclusion of Σn−p−1 into Σn−p as the permutations that fix j. These all differ
by conjugation by an element of Σn−p, so are the same for all j. Hence the differential
induces a map on homology which is an alternating sum of the same map, and we see that
it is 0 if p is odd and the inclusion map if p is even. Hence the spectral sequence looks like

H2(Σn−1) H2(Σn−2)
0

oo H2(Σn−3)oo · · ·0
oo H2(Σ2) H2(Σ1) 0

H1(Σn−1) H1(Σn−2)
0

oo H1(Σn−3)oo · · ·0
oo H1(Σ2) H1(Σ1) 0

H0(Σn−1) H0(Σn−2)
0

oo H0(Σn−3)oo · · ·0
oo H0(Σ2) H0(Σ1) Z

where the maps alternate between being 0 and coming from the standard inclusion.
In the second page, the leftmost column stays the same, i.e., E2

0,i = Hi(Σn−1) for all i ≥ 0.
Now suppose that n > 2i. The terms with the same degree i are of the form Hi−k(Σn−k−1)
and so by induction, the maps from the previous symmetric group or to the next symmetric
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group are isomorphisms on homology. This implies that the only term of degree i on the E2

page is E2
i,0. Finally, we claim that E∞

0,i = E2
0,i since the only term that can map to it on the

Er page is Er
r,i−r+1, and this is also 0 by the induction hypothesis. In particular, this implies

that we have an identification Hi(Σn−1) = Hi(Σn).
It remains to show that this is induced by the inclusion map, but we will omit this detail

since it involves a more detailed analysis of the spectral sequence. �

Remark 4.2.2. Nakaoka’s theorem remains true if we replace Z by any coefficient ring k
(as long as Σn acts by the identity on k). For example, the proof above is not sensitive to the
coefficients we have chosen except in the calculation of H1(Σn), but the general statement is
that it is Z/2⊗Z k for n ≥ 2. �

4.3. Twisted homological stability. Let M be an FI-module over some coefficient ring
k. Let M(n) denote the value of M on the set [n]. This carries an action of the symmetric
group Σn. Let ι : [n] → [n + 1] be the standard inclusion, i.e., ι(i) = i for all i and let
f : Σn → Σn+1 also be the standard inclusion. Then for all σ ∈ Σn and m ∈M(n), we have
ι∗(σm) = f(σ)ι∗(m) since ι ◦ σ = f(σ) as morphisms in FI. So by functoriality of group
homology, we have induced maps for all i:

Hi(Σn;M(n))→ Hi(Σn+1;M(n+ 1)).

When M is the constant functor, i.e., Mn = k and all morphisms map to the identity, then
we considered these maps above and Nakaoka’s theorem tells us that they are isomorphisms
for n≫ i (more precisely, n > 2i). We now extend this to any finitely generated FI-module
over a noetherian ring k.

We say that the modules M(n) with the maps ι∗ : M(n) → M(n + 1) satisfy twisted
homological stability if the maps on homology are isomorphisms for n≫ i.

So now assume that k is noetherian.

Lemma 4.3.1. The principal projective module Pd satisfies twisted homological stability.

Proof. For each n, Pd(n) is the permutation representation on the set of injective words of
length d in the alphabet [n]. As discussed in the proof of Nakaoka’s theorem, this is the
induced representation IndΣn

Σn−d
k and, via Shapiro’s lemma, the map

Hi(Σn;Pd(n))→ Hi(Σn+1;Pd(n+ 1))

can be rewritten as

Hi(Σn−d;k)→ Hi(Σn+1−d;k)

which is the map coming from the standard inclusion. Hence twisted homological stability
for Pd reduces to Nakaoka’s stability theorem. �

Corollary 4.3.2. Any finitely generated FI-module M satisfies twisted homological stability.

Proof. Consider the following two statements:
(Ai): For any finitely generated FI-module M , the map

Hi(Σn;M(n))→ Hi(Σn+1;M(n+ 1))

is surjective for n≫ i.
(Bi): For any finitely generated FI-module M , the map

Hi(Σn;M(n))→ Hi(Σn+1;M(n+ 1))
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is an isomorphism for n≫ i.
We will show that (Bi−1) implies (Ai) for all i, and that (Ai) and (Bi−1) together imply

(Bi) for all i. With the convention that H−1(Σn;M(n)) = 0 for all n, the statements (A−1)
and (B−1) are vacuously true.

Let M be a finitely generated FI-module generated by homogeneous elements x1, . . . , xr
and of degrees d1, . . . , dr. Let P = Pd1 ⊕ · · · ⊕ Pdr so that we have a canonical surjection
P → M , and let K be the kernel. Then K is finitely generated by the noetherian property
for FI-modules. Fix i and consider the long exact sequence on homology:

Hi(Σn;K(n)) //

α

��

Hi(Σn;P (n)) //

β

��

Hi(Σn;M(n)) //

γ

��

Hi−1(Σn;K(n)) //

δ

��

Hi−1(Σn;P (n))

ε

��

Hi(Σn+1;K(n+ 1)) // Hi(Σn+1;P (n+ 1)) // Hi(Σn+1;M(n+ 1)) // Hi−1(Σn+1;K(n+ 1)) // Hi−1(Σn+1;P (n+ 1))

By Lemma 4.3.1, β and ε are isomorphisms for n≫ i.
Suppose (Bi−1) is true. Then δ is an isomorphism for n ≫ i. Then the first part of the

four lemma implies that γ is surjective for n≫ i. Since M was arbitrary, (Ai) is true.
Now suppose that (Ai) and (Bi−1) are both true, then α and γ are surjective, and δ is an

isomorphism for n ≫ i. The second part of the four lemma then says that γ is injective.
Since M was arbitrary, (Bi) is true. �

5. Representation stability for configuration spaces

5.1. Definitions. Let X be a topological space. For an integer n ≥ 0, we set

Confn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj for i 6= j}.
Alternatively, this is the space of injective functions [n]→ X. It will be convenient to define
ConfS(X) to be the space of injective functions S → X for any finite set S.
Given an injection S → T , we get a continuous function ConfT (X) → ConfS(X) by pre-

composition. So we have define a functor from the opposite category of FI to the category
of topological spaces. To get something linear out of it, we just need to choose some (con-
travariant) functor from the category of topological spaces to the category of modules over
some ring. We will consider singular cohomology with coefficients in a commutative ring k,
denoted Hi(X;k) where i ≥ 0 is some integer. We won’t need to know the details of how
this is constructed, but here are two key properties:

(1) H∗(X;k) =
⊕

i≥0 H
i(X;k) has the structure of a graded ring: given homogeneous

elements in degrees i and j, their product has degree i+ j. Furthermore, it is graded-
commutative: if x ∈ Hi(X;k) and y ∈ Hj(X;k), then xy = (−1)ijyx.

(2) Given a continuous function f : X → Y , we get a corresponding k-linear map
f ∗ : Hi(Y ;k) → Hi(X;k), and these compose correctly: (f ◦ g)∗ = g∗ ◦ f ∗. Fur-
thermore, taking the sum of these maps over all i, f ∗ is a ring homomorphism.

(3) (Künneth formula) If k is a field, then we have an isomorphism of graded rings

H∗(X × Y ;k) ∼= H∗(X;k)⊗k H
∗(Y ;k).

In particular,

Hn(X × Y ;k) ∼=
n
⊕

i=0

Hi(X;k)⊗k H
n−i(Y ;k).
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In particular, every choice of topological space X and nonnegative integer i, we get an
FI-module with coefficients in k which sends a set S to Hi(ConfS(X);k) and an injection
f : S → T to the map f ∗ : Hi(ConfS(X);k) → Hi(ConfT (X);k) which is induced by the
continuous function ConfT (X)→ ConfS(X) obtained by precomposing with f . Denote this
FI-module by Hi(Conf∗(X);k).
From what we’ve discussed so far, a natural question to ask is: for which X and i is this

FI-module finitely generated? We won’t discuss the most general results known, but instead
content ourselves with an easy to analyze case.

Example 5.1.1. Let’s consider the case X = Rd. The cohomology ring of Confn(R
d) is the

graded-commutative k-algebra generated by variables wa,b of degree d−1 with 1 ≤ a 6= b ≤ n
and modulo the relations:

• wa,b = (−1)dwb,a,
• w2

a,b = 0,
• wa,bwa,c + wb,cwb,a + wc,awc,b = 0 for a, b, c distinct.

The wa,b are elements of Hd−1(Confn(R
d);k).

Given an injection f : {1, . . . , n} → {1, . . . ,m}, the action of f ∗ is to replace each wa,b with
wf(a),f(b). Note that this is well-defined: f ∗ sends each of the relations to another relation
for the cohomology ring of Confm(R

d).
Assume now that d > 1. We can see directly that Hd−1(Conf∗(R

d);k) is finitely generated:
it is either the permutation representation on the set of 2-element subsets of [n] or a twist
of this by the sign character, so is generated by w1,2 ∈ Hd−1(Conf2(R

d);k). In general,
Hi(d−1)(Conf∗(R

d);k) is a quotient of (Hd−1(Conf∗(R
d);k))⊠i and hence is finitely generated

(see Exercise 5.1.2).
If m = 1 and k is a field, one can show that H0(Confn(R);k) has dimension n!, and hence

cannot be a finitely generated FI-module. This can either be done using the relations above,
or noting that Confn(R) has n! connected components, each one indexed by the order in
which the points (x1, . . . , xn) appear on the line, and the dimension of H0 is the number of
connected components. �

Exercise 5.1.2. If M and N are FI-modules over k, then define an FI-module M ⊠ N ,
the pointwise (or Segre) tensor product as follows. On objects, we set (M ⊠ N)(S) =
M(S)⊗k N(S), and given an injection f : S → T , we set M(S)⊗k N(S)→M(T )⊗k N(T )
to be the tensor product of the maps M(f)⊗N(f).
If M and N are finitely generated, show that M ⊠N is also finitely generated.
Hint: Reduce to the case when M and N are principal projectives. �

5.2. A spectral sequence. For this part, see [To, §2]. LetX be a real orientable manifold of
dimension d and let k be a field. Fix a positive integer n. Given 1 ≤ a ≤ n, let pa : X

n → X
be the projection onto the ath factor, i.e., pa(x1, . . . , xn) = xa. Similarly, given a 6= b, let
pa,b : X

n → X2 be the map pa,b(x1, . . . , xn) = (xa, xb).
Define a bigraded algebra A(n) over H∗(Xn;k) with variables Ga,b (1 ≤ a 6= b ≤ n) modulo

the relations

• Ga,b = (−1)dGb,a,
• G2

a,b = 0,
• Ga,bGa,c +Gb,cGb,a +Gc,aGc,b = 0 for a, b, c distinct,
• p∗a(x)Ga,b = p∗b(x)Ga,b for a 6= b and x ∈ H∗(X;k).
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Here the bidegree of Hi(Xn;k) is (i, 0) and the bidegree of Ga,b is (0, d− 1).
Let A(n)i,j be the space of bidegree (i, j) elements in A(n). As in [To, Theorem 1], there

is a cohomology spectral sequence

Ep,q
d = A(n)p,q =⇒ Hp+q(Confn(X);k)

We won’t discuss the differentials in this spectral sequence. All we will need to know is that
the terms A(n)p,q, as n varies, form an FI-module, and that this spectral sequence can be
upgraded to a spectral sequence of FI-modules.
First, given an injection f : [n] → [m], we get a continuous function Xm → Xn given by

(x1, . . . , xm) 7→ (xf(1), . . . , xf(n)), and hence a corresponding map on cohomology f ∗ : H∗(Xn;k)→
H∗(Xm;k). Using the Künneth formula H∗(Xn;k) ∼= H∗(X;k)⊗n, this can be described as
follows. Let e ∈ H0(X;k) be the unit for multiplication. Then

∑

v1 ⊗ · · · ⊗ vn gets sent to
∑

w1 ⊗ · · · ⊗ wm where wi = e if i is not in the image of f , and wf(j) = vj otherwise.
Say that X is of finite type if H∗(X;k) is a finite-dimensional vector space. This holds if

X is compact, or Euclidean space, for instance.

Lemma 5.2.1. If X is a finite type and connected manifold, then for each i, the FI-module
[n] 7→ Hi(Xm;k) is finitely generated.

Proof. Since X is connected, H0(X;k) is 1-dimensional with basis e. By the Künneth for-
mula,

Hi(Xn;k) =
⊕

(j1,...,jn)∈Zn
≥0

i=j1+···+jn

Hj1(X;k)⊗ · · · ⊗ Hjn(X;k).

At most i of the jk can be positive, and we claim that the FI-module in question is generated
in degrees ≤ i. The point is that any element is a sum of simple tensors, and if there n > i,
then at least one of the factors must be a multiple of e. So it comes from applying an injection
from strictly smaller degree. By the finite type assumption, Hi(Xn;k) is finite-dimensional
for all n, so

∑

n≤i dimHi(Xn;k) <∞. �

Theorem 5.2.2 (Church). If X is a finite type, orientable, connected manifold of dimension
d ≥ 2, then for each i, the FI-module Hi(Conf∗(X);k) is finitely generated.

Proof. Combining the previous lemma with Example 5.1.1, we see that [n] 7→ A(n)p,q is a
finitely generated FI-module for all p, q. The spectral sequence above is compatible with
the FI-structure, and hence the FI-module Hi(Conf∗(X);k) has a finite filtration whose
quotients are computed by the spectral sequence. Namely, they are obtained from the
A(∗)p,q by taking homology. By the noetherian property for FI-modules, each time we
take homology (which is the quotient of a submodule), we get another finitely generated
FI-module, and so Hi(Conf∗(X);k) itself is a finitely generated FI-module. �

Next, the symmetric group Σn acts on Confn(X) by permuting the points, and this action
is free (no point has a nontrivial stabilizer). Let

UConfn(X) = Confn(X)/Σn

be the quotient space. Its points are unordered n-tuples of points in X. We have a Cartan–
Leray spectral sequence (dual of [Mc, §8bis.2]):

Ep,q
2 = Hp(Σn; H

q(Confn(X);k)) =⇒ Hp+q(UConfn(X);k).(5.2.3)
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If n! is invertible in k, then Hp(Σn; H
q(Confn(X);k)) = 0 whenever p > 0, and so there are

no nontrivial differentials in the spectral sequence, so we get the following result.

Proposition 5.2.4. If n! is invertible in k, then Hi(Confn(X);k)Σn = Hi(UConfn(X);k).

Proposition 5.2.5. Given any FI-module M , the direct sum
⊕

n≥0(Mn)Σn
has the structure

of a k[t]-module where multiplication by t on (Mn)Σn
is the action of any injection [n] →

[n+ 1]. If M is finitely generated, then so is this k[t]-module.

Corollary 5.2.6 (Church). If X is a finite type, orientable, connected manifold of dimension
≥ 2, then for each i, the function n 7→ dimQ Hi(UConfn(X);Q) is constant for n≫ 0.

Proof. We have Hi(Confn(X);Q)Σn = Hi(UConfn(X);Q) by Proposition 5.2.4. By semisim-
plicity, we also have

dimQ Hi(Confn(X);Q)Σn = dimQ Hi(Confn(X);Q)Σn
.

Now the result follows from Proposition 5.2.5 and the structure theorem for finitely generated
modules over k[t]. �

Naturally, one can ask what happens for fields of positive characteristic. Unfortunately, we
have only proven a result about the Σn-homology of an FI-module, and not its cohomology,
which behaves very differently. The situation can be analyzed, though it requires a finer
understanding of the structure of FI-modules. This might be discussed later in the semester,
time permitting. See [NS] for details.

6. Algebraic geometry from tensors

6.1. Review of Zariski topology. Let R be a commutative ring. Let Spec(R) be the set
of prime ideals in R. Given an ideal I ⊂ R, let V (I) = {p ∈ Spec(R) | p ⊇ I}. Spec(R) is
a topological space if we declare the subsets of the form V (I) to be closed, as follows from
this list of properties:

• ⋂s∈S V (Is) = V (
∑

s∈S Is),
• V (IJ) = V (I) ∪ V (J),
• V (0) = Spec(R),
• V (R) = ∅.

This is the Zariski topology on Spec(R).

Note that V (I) = V (
√
I) where

√
I = {f ∈ R | fn ∈ I for some n > 0} is the radical of I.

Also, the only primes such that {p} are closed sets are maximal ideals. We define a variant:
MSpec(R) is the set of maximal ideals with a similarly defined topology. This is usually not
well-behaved, though it will be useful in some things we do.

We will be primarily concerned with the case that R = k[x1, . . . , xn] where k is an alge-
braically closed field. In this case, Hilbert’s nullstellensatz tells us that the maximal ideals
of R are all of the form (x1 − α1, . . . , xn − αn) where αi ∈ k. So geometrically, we can think
of Spec(R) as the vector space kn with some additional points coming from non-maximal
prime ideals. The picture of kn usually gives good intuition, so if you haven’t seen algebraic
geometry before, it will usually be enough to rely on it. We call sets of the form V (I)
algebraic varieties, or just varieties.

Our main concern will be with recovering the ideal I that defines a closed subset V (I).

However, by the above remark, I cannot be recovered since V (I) = V (
√
I). Hence we will

be concerned with finding
√
I, which is well-defined.
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If f1, . . . , fr are polynomials generating I,4 then in the kn model, the closed points of V (I)
are those points (α1, . . . , αn) such that fi(α1, . . . , αn) = 0 for all i. Hence we will say that
f1, . . . , fr define V (I) set-theoretically (since they determine it as a subset), and we will say

they generate the full ideal of V (I) if I =
√
I is radical. The meaning of this is that any

function that vanishes on all closed points of V (I) must be in I.

Remark 6.1.1. In the case k = C is the field of complex numbers, we can also put the
Euclidean topology on Cn. Given polynomials f1, . . . , fr, we get a continuous function
Cn → Cr defined by (α1, . . . , αn) 7→ (f1(α), . . . , fr(α)), and so the preimage of 0 is closed
in the Euclidean topology. This implies that the Euclidean topology is a refinement of the
Zariski topology. In particular, the Zariski closure of a set always contains the Euclidean
closure, and in particular, is closed under limits. One can make the notion of being closed
under limits precise outside of the case k = C, though we won’t make much use of it. �

6.2. Border rank. Let V1, . . . , Vn be vector spaces over an algebraically closed field k and
V = V1⊗ · · ·⊗Vn. An element of V of the form v1⊗ · · ·⊗ vn with vi ∈ Vi is a simple tensor,
and a general element has rank ≤ r if it can be expressed as a sum of r simple tensors.
Finally, an element in the Zariski closure of rank ≤ r tensors has border rank ≤ r. They
form an algebraic variety.

Example 6.2.1. The following example illustrates why the notion of border rank is needed,
i.e., why tensor rank is not semicontinuous.

Let n = 3 and dimVi = 2, and for simplicity, take k = C. Pick bases {a1, a2}, {b1, b2}, {c1, c2}
of V1, V2, V3, respectively. The element

v = a1 ⊗ b1 ⊗ c1 + a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1
= a1 ⊗ b1 ⊗ (c1 + c2) + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1

has rank ≤ 3, and it can be shown that it does not have rank ≤ 2, so the rank is exactly 3.
However,

v = lim
ε→0

1

ε
((ε− 1)a1 ⊗ b1 ⊗ c1 + (a1 + εa2)⊗ (b1 + εb2)⊗ (c1 + εc2))

shows that v has border rank ≤ 2. �

Our first main goal is to prove the following theorem:

Theorem 6.2.2 (Draisma–Kuttler). For each r, there is a constant C(r) such that the
variety of border rank ≤ r tensors is cut out by polynomials of degree ≤ C(r). The constant
is independent of n and also the Vi.

Example 6.2.3. A familiar case is when n = 2. Then V can be thought of as the space of
a × b matrices where a = dimV1 and b = dimV2. In this case, a simple tensor is a rank 1
matrix, and rank r in the tensor sense corresponds to rank r in the matrix sense. Border
rank ≤ r is equivalent to rank ≤ r. The polynomials in this case are the determinants of all
(r + 1)× (r + 1) submatrices, and so they are of degree r + 1. When n ≥ 3, the situation is
more complicated. �

Remark 6.2.4. For concreteness, consider the case r = 1 and n = 3 (the case of general n
follows in the same way, though the indexing is more cumbersome). Let V1, V2, V3 be vector

4
k[x1, . . . , xn] is noetherian by the Hilbert basis theorem, so we can always take r finite
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spaces of dimensions d1, d2, d3 and pick a basis e1, . . . , edi for Vi. Let ei,j,k = ei ⊗ ej ⊗ ek,
which forms a basis as we vary i, j, k, and let xi,j,k be the dual basis. Suppose we’re given a
rank 1 tensor of the form

v = (
∑

i

λiei)⊗ (
∑

j

µjej)⊗ (
∑

k

νkek).

Then xi,j,k(v) = λiµjνk. In particular, we have the relations

xi,j,kxi′,j′,k′ = xa,b,cxa′,b′,c′

whenever {i, i′} = {a, a′}, {j, j′} = {b, b′}, and {k, k′} = {c, c′}. We single out a particular
class of these:

xi,j,kxi′,j′,k′ = xmin(i,i′),min(j,j′),min(k,k′)xmax(i,i′),max(j,j′),max(k,k′).(6.2.4a)

By replacing any product of two variables with the product on the right side, we conclude
that every polynomial of degree m on the rank 1 locus is the span of monomials of the form

xi1,j1,k1 · · · xim,jm,km (i1 ≤ · · · ≤ im, j1 ≤ · · · ≤ jm, k1 ≤ · · · ≤ km).

The conditions on the indices are independent of one another, so we see that this is the same
as the dimension of Symm(V ∗

1 )⊗ Symm(V ∗
2 )⊗ Symm(V ∗

3 ) (for a bijection, send the product
above to (e∗i1 · · · e∗im)⊗ (e∗j1 · · · e∗jm)⊗ (e∗k1 · · · e∗km)). One can show that these monomials are
linearly independent as functions on the rank 1 locus, so we see that the equations (6.2.4a)
generate the full ideal vanishing on the rank 1 locus.

Unfortunately, this reasoning does not readily extend to the r = 2 case, though the
equations are known in that case via other methods, see Remark 6.4.3. �

Remark 6.2.5. Part of the reason that the case n > 2 is so hard to study is because the
notions of border rank and rank behave so differently, and it is not even clear what the
precise relation of the two are (does a function of one bound the other for all tensors?). �

The general idea is to show that there is a way to take the limit as the parameters n
and dimVi go to ∞ and then to study the resulting limit space. Border rank is preserved
upon change of basis (with respect to each Vi) so there is a symmetry that can be used
in this problem. The existence of the constant can be then deduced from an equivariant
noetherianity property of the limit space.

6.3. Hillar–Sullivant theorem. We’ll make use of a theorem of Hillar and Sullivant from
[HS]. We’re going to use it as a tool for proving Theorem 6.2.2, but see their paper for some
other applications.

Let Inc(Z>0) be the set of strictly increasing functions Z>0 → Z>0 (Z>0 is the set of positive
integers). It is a monoid under composition. Fix a positive integer d and a commutative
ring k. Define

R = k[xi,j | 1 ≤ i ≤ d, j ∈ Z>0].

Remark 6.3.1. When k = C, we have studied this ring in the context of FId-modules.
Namely, FId-modules are equivalent, via Schur–Weyl duality, to R-modules with a compat-
ible action of GL∞(C). �

We study the action of Inc(Z>0) on R by f(xi,j) = xi,f(j).
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Theorem 6.3.2. Suppose k is a noetherian ring. Given an increasing chain of Inc(Z>0)-
invariant ideals I1 ⊆ I2 ⊆ · · ·R, we have Ij = Ij+1 for j ≫ 0.
Equivalently, any ideal of R that is closed under the action of Inc(Z>0) is finitely generated

under multiplication by R and the action of Inc(Z>0).

Proof. This can be proven using the techniques from §3, so we’ll just outline the steps and
leave the details to the reader.

(1) We define a term order on the variables by first setting

x1,1 < x2,1 < · · · < xd,1 < x1,2 < x2,2 < · · · < xd,2 < x1,3 < · · · .
Now order the monomials using lexicographic order. Then given two monomials
m < m′, we have nm < nm′ for any monomial n, and fm < fm′ for any f ∈ Inc(Z>0).
In particular, we may define an initial ideal for any ideal I closed under Inc(Z>0)
and it suffices to prove that it is finitely generated under the simultaneous action of
R and Inc(Z>0).

(2) Define a poset P from the monomials in R by m � m′ if the ideal generated by m
contains m′, i.e., there exists a monomial n and f ∈ Inc(Z>0) such that m′ = nf(m′).
We can give a model for P as follows. Given a monomial m, let p be the largest index
such that xi,p has nonzero exponent for some i, and define w(m) = (w1, . . . , wp)
where wi ∈ Zd

≥0 records the exponents of x1,i, . . . , wd,i. If we partially order Zd
≥0 by

(α1, . . . , αd) ≤ (β1, . . . , βd) if αi ≤ βi for all i, then the order on (Zd
≥0)

⋆ that we get
is exactly the Higman order, so it is a noetherian poset by Theorem 3.5.4.

(3) Combining the above two steps, we get the theorem for the case when k is a field.
For the general case, we can use the argument in the proof of Theorem 3.6.4. �

6.4. Proof of Theorem 6.2.2. The outline of the proof is as follows:

(1) Reduce to the case that dimVi = r + 1 for all i.
(2) Construct an infinite limit space V ⊗∞ together with an action of a group G∞. Also

construct a limit of the border rank ≤ r elements X≤r.
(3) Show that G-equivariant closed subsets of an auxiliary space Y ≤r, which contains

X≤r, satisfy the descending chain condition.
(4) Translate the above properties into the desired theorem.

6.4.1. Reduction to bounded number of variables. First, we need the notion of a flattening:
given a subset S ⊆ [n], set U =

⊗

i∈S Vi and U
′ =
⊗

i/∈S Vi. Then V = U ⊗ U ′, but now we
can identify it with the space of matrices. Given ω ∈ V, the corresponding matrix is called
a flattening of ω (it depends on S). If ω has rank r, then its flattening is a sum of r rank 1
matrices and hence has rank ≤ r.

Lemma 6.4.1. It suffices to prove Theorem 6.2.2 when dimVi = r + 1.

Proof. We claim that for any ω ∈ V, its rank is at most r if and only if for each set of linear
maps ϕi : Vi → kr+1, the rank of its image is also at most r. The “if” direction is clear: if ω
has rank ≤ r, then so are all of its images.

To prove the other direction, suppose that ω has rank ≥ r + 1. We show that for each i,
there exists a linear map ϕ : Vi → kr+1 such that the image of ω has rank ≥ r+ 1. Without
loss of generality, we may assume i = 1. We can reinterpret ω as a linear map

V ∗
2 ⊗ · · · ⊗ V ∗

n → V1,
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and we let W be the image. If dimW ≤ r + 1, let kr+1 be any subspace of V1 containing
W and let ϕ : V1 → kr+1 be a projection. Then the image of ω has the same rank as ω.
Otherwise, if dimW > r + 1, let ϕ : V → kr+1 be any linear map such that ϕ maps W
surjectively onto kr+1. The flattening of the image of ω is then V ∗

2 ⊗ · · · ⊗ V ∗
n → kr+1 and

has rank r + 1, so the rank of the image of ω is ≥ r + 1.
Given the claim, if there is a constant that works for Theorem 6.2.2, then it will work in

general: for any tensor product: we can pullback the equations that cut out the rank ≤ r
locus in (kr+1)⊗n along all possible choices of linear maps to get equations for the rank ≤ r
locus in V1 ⊗ · · · ⊗ Vn. �

Exercise 6.4.2. Consider the rank 1 case of flattenings. Show that the equations (6.2.4a)
are in the linear span of the 2 × 2 minors of the flattenings. Deduce that the flattening
equations generate the full ideal of the locus of rank 1 tensors. �

Remark 6.4.3. In fact for the rank 2 case, the 3× 3 minors of the flattenings generate the
full ideal of the locus of border rank ≤ 2 tensors, at least when the field is of characteristic
0. This is proven in [Ra]. �

6.4.2. Spaces of infinite tensors. In particular, we may as well fix a single space V of dimen-
sion r+1 to replace all Vi. Let X

≤r
p ⊂ V ⊗p be the variety of border rank ≤ r tensors, and let

Y ≤r
p ⊂ V ⊗p be the variety of tensors with flattening rank ≤ r under all possible flattenings.

Then X≤r
p ⊆ Y ≤r

p .
We also fix a linear functional x0 ∈ V ∗ and use this to define maps

V ⊗(p+1) → V ⊗p

v1 ⊗ · · · ⊗ vp ⊗ vp+1 7→ x0(vp+1)v1 ⊗ · · · ⊗ vp.

If ω ∈ V ⊗(p+1) has rank ≤ r, then so does its image in V ⊗p. A similar statement holds for
flattening rank. Now set

V ⊗∞ := lim←−
p

V ⊗p

X≤r := lim←−
p

X≤r
p

Y ≤r := lim←−
p

Y ≤r
p .

Call Y ≤r the flattening variety. If we let Tp denote the ring of polynomial functions on V ⊗p,
then the maps V ⊗(p+1) → V ⊗p induce maps Tp → Tp+1 via pullback of functions, and we set

T∞ =
⋃

p

Tp.

We will think of this as the ring of polynomial functions on V ⊗∞, or its coordinate ring. We
can describe this more concretely: Tp is the symmetric algebra on (V ∗)⊗p, so pick a basis
x0, . . . , xr for V ∗ (same x0 as above). Then this naturally gives a basis xI = xi1 ⊗ · · · ⊗ xip
for (V ∗)⊗p ranging over all I = (i1, . . . , ip) ∈ {0, . . . , r}p. We identify this with an infinite
word in {0, . . . , r} by appending infinitely many 0’s at the end. The support of this infinite
word is the set of indices with nonzero value. Then T∞ is the polynomial ring in the xI as
I ranges over all infinite words with finite support.
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The space V ⊗p carries an action of Σp by permuting tensor factors:

σ ·
∑

v1 ⊗ · · · ⊗ vp =
∑

vσ−1(1) ⊗ · · · ⊗ vσ−1(p).

It also has an action of GL(V )p by linear change of coordinates:

(g1, . . . , gp) ·
∑

v1 ⊗ · · · ⊗ vp =
∑

(g1v1)⊗ · · · ⊗ (gpvp).

So the semidirect product

Gp := Σp ⋉GL(V )p

acts on V ⊗p. We have inclusions Gp ⊂ Gp+1 compatible with the projection with respect to
x0, so the union

G∞ =
⋃

p

Gp

acts on V ⊗∞. Furthermore, X≤r is closed under the action of G∞.
Both Y ≤r andX≤r are closed under the action ofG∞. Furthermore, Y ≤r is (set-theoretically)

defined by taking the determinants of all (r+1)×(r+1) submatrices of all flattenings, which
are in particular polynomials of degree r + 1.

We will need a more precise version of this statement. Let w = (w1, . . . , wℓ) be an ℓ-tuple
of distinct infinite words in {0, . . . , p} with finite support, and let w′ = (w′

1, . . . , w
′
m) be

another one. Assume that the support of wi is disjoint from the support of w′
j for all i, j.

Let M [w;w′] be the ℓ×m matrix whose (i, j)-entry is xwi+w′
j
. This is a submatrix of some

flattening along subsets I, J where I contains the supports of all wi and J contains the
supports of all w′

j.

Remark 6.4.4. In Remark 6.2.4, we saw that the ideal of the locus of rank 1 tensors
is generated by polynomials of degree 2. Suppose we’re dealing with the tensor product
V = V1 ⊗ · · · ⊗ Vn. By iterating Cauchy’s identity (Corollary 2.12.3), we see that, in
characteristic 0, the space of quadratic polynomials on V has a GL(V1) × · · · × GL(Vn)-
equivariant decomposition

Sym2(V ∗
1 ⊗ · · · ⊗ V ∗

n ) =
⊕

F1(V
∗
1 )⊗ · · · ⊗ Fn(V

∗
n )

where each Fi is either Sym
2 or

∧2, and the sum is over all possible ways for an even number
of the Fi to be

∧2. The equations themselves span the subspace where a positive (and even)
number of the Fi are

∧2.
Hence, as n increases, the number of irreducible representations goes to infinity. Note

that the statement above is not saying anything about all equations forming finitely many
G∞-orbits, just that one can do this up to taking radical. In fact, one can show that it is
not possible to realize all of the equations using just finitely many G∞-orbits, see [Dr1, §7]
and also for a discussion of a possible fix. �

Theorem 6.4.5. For each r, there is a finite list of pairs (w,w′) of pairs of words as above
of length r+1 such that the flattening variety Y ≤r is set-theoretically defined by the G∞-orbits
of detM [w;w′].

We omit the proof since it is involved and uses some algebraic geometry which we will not
discuss. See [DrK, §4] for the details.
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6.4.3. Equivariant noetherianity of Y ≤r. A topological space X is noetherian if for every
descending chain of closed subsets Y1 ⊇ Y2 ⊇ · · · , we have Yi = Yi+1 for i≫ 0.

Example 6.4.6. Noetherianity is not a property of “typical” topological spaces, for example,
take Yi = {n ∈ Z | n ≥ i}, considered as subsets of R with the Euclidean topology. �

Noetherianity is ubiquitous in algebraic geometry. For example, kn is noetherian under
the Zariski topology since a descending chain of closed subsets is of the form

V (I1) ⊇ V (I2) ⊇ · · ·
for ideals I1 ⊆ I2 ⊆ · · · ⊆ k[x1, . . . , xn]. Hilbert’s basis theorem implies that every ideal is
finitely generated. In particular, I =

⋃

j Ij is finitely generated, and these generators must
live in some Ij, which implies that Ij = Ij+k for any k ≥ 0. Note, however, that noetherianity
of the space k[x1, . . . , xn] is strictly weaker than the statement of Hilbert’s basis theorem,
since (when k is algebraically closed) it only implies that

√

Ij =
√

Ij+1 for j ≫ 0.
If we have a monoid G acting continuously on X, then we say that X is G-noetherian if

for every descending chain of G-invariant closed subsets Y1 ⊇ Y2 ⊇ · · · , we have Yi = Yi+1

for i≫ 0.

Exercise 6.4.7. Let G be a monoid acting on a topological space X. Prove the following
statements:

(1) IfX isG-noetherian, and Y ⊂ X is a G-invariant subspace with the induced topology,
then Y is also G-noetherian.

(2) If Y, Y ′ ⊂ X are G-invariant subspaces and are both G-noetherian, then so is Y ∪Y ′.
(3) If X ′ is another space with a G-action and f : X → X ′ is G-equivariant and contin-

uous, then the image of f is G-noetherian.
(4) Suppose G is a group and let G′ ⊆ G be a subgroup. Let G′ act on G × X by

h · (g, x) = (gh−1, hx) for h ∈ G′. If X is G′-noetherian, then the space (G×X)/G′

is G-noetherian. �

Our goal is the following:

Theorem 6.4.8 (Draisma–Kuttler). The space Y ≤r is G∞-noetherian.

Proof. This is proven by induction on r. The case r = 0 is trivial since Y ≤0 is a single point.
Now assume that r > 0 and that Y ≤(r−1) is G∞-noetherian. By Theorem 6.4.5, we can

find finitely many pairs w1,w
′
1, . . . ,wN ,w

′
N such that

(1) Each wi has length r. If we write it as (v1, . . . , vr), then each vi has finite support.
(2) For each i, the components of wi and w′

i have disjoint support.
(3) Y ≤(r−1) is set-theoretically defined by the G∞-orbits of det(M [wi;w

′
i]).

For each i, define

Zi = Y ≤r \ V (G∞ detM [wi;w
′
i]).

Then Zi is an open subset of Y ≤r which is closed under G∞, and we have

Y ≤r = Y ≤(r−1) ∪ Z1 ∪ Z2 ∪ · · · ∪ ZN .

By Exercise 6.4.7(2), it will suffice to show that each Zi is G∞-noetherian. So fix one such i
and set Z = Zi, wi = (w1, . . . , wr), w

′
i = (w′

1, . . . , w
′
r). Let p be the maximum of the union

of the supports of all wi and w
′
i.
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Recall that we have a copy of Σ∞ ⊂ G∞ which permutes tensor factors. Let Σ ⊂ Σ∞ be
the subgroup of σ such that σ(i) = i for i = 1, . . . , p. Define

Z ′ = Y ≤r \ V (detM [w;w′]).

Then Z ′ is invariant under Σ. By the next lemma, Z ′ is Σ-noetherian. Now define a map

(G∞ × Z ′)/Σ→ Z

(g, z) 7→ g · z.

This is both G∞-equivariant and surjective, so by Exercise 6.4.7, Z is G∞-noetherian, and
we are done. �

Lemma 6.4.9. Z ′ is Σ-noetherian.

Proof. We continue to use the same notation from the previous proof.
Let Γ ⊂ Inc(Z>0) be the submonoid of increasing functions which are the identity on

1, . . . , p. Note that Γ acts on Y ≤r: given an increasing function f and a vector v ∈ Y ≤r,
there are only finitely many basis vectors eI needed to write v, and hence the union of the
I have finite support, let q be the maximal value. Then for any two permutations σ, σ′

whose inverses agree on 1, . . . , q, we have σ(v) = σ′(v). In particular, pick any σ ∈ Σ whose
inverse agrees with f on 1, . . . , q and define f(v) = σ(v). It will suffice to show that Z ′ is
Γ-noetherian, since the Γ-orbit of an equation is contained in its Σ-orbit.
Let J be the set of infinite words w in {0, . . . , r} such that the support of w contains at

most 1 element in positions beyond p. Let kJ be the vector space with basis indexed by J .
Setting R = k[xw | w ∈ J ], kJ is a subset of Spec(R). By setting the noetherian ring in
Theorem 6.3.2 to be the polynomial ring over k in the variables xw where w ranges over the
(finitely many) words with support contained in [p], we deduce that R is Γ-noetherian, and
hence the same is true for kJ .

Then detM [w;w′] can be interpreted as a function on kJ ; let Q be the open subset where
this function is nonzero. We define a function π : Z ′ → Q which sends a point to the values
of its coordinates xw where w ∈ J . This is continuous and Γ-equivariant. In fact, it is an
embedding. We omit the details and refer the reader to [Dr2, §7], but the point is that on
the subspace Z ′, one can rewrite any coordinate xw′ in terms of the coordinates xw with
w ∈ J . Assuming this embedding property, we see that Z ′ inherits Γ-noetherianity from Q,
so we are done. �

Remark 6.4.10. By Exercise 6.4.2, Y ≤1 = X≤1. So Y ≤1 consists of two G∞-orbits: the
points {0} and the set of nonzero rank 1 tensors. So the theorem is also trivial in this
case. �

Lemma 6.4.11. If Z ⊂ Y ≤r is a closed G∞-subset, then it is the common solution set
of finitely many G∞-orbits of polynomials. In particular, it is defined by bounded degree
polynomials.

Proof. If not, we can find an infinite sequence of polynomials f1, f2, . . . that all vanish on
Z, but such that Zi, the common solution set of G∞f1, . . . , G∞fi, satisfies Z1 % Z2 % · · · in
direct contradiction to (2). �

Taking Z = X≤r, we get that it is defined by bounded degree polynomials.
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6.4.4. Finishing the proof. To finish, pick e0 ∈ V such that x0(e0) = 1. Define

τ : V ⊗p → V ⊗(p+1)

ω 7→ ω ⊗ e0.

Given ω ∈ V ⊗p, we can define ω∞ = ω ⊗ e⊗∞
0 ∈ V ⊗∞, and their ranks are the same. So

pulling back all of the equations vanishing on X≤r gives equations that define the border
rank ≤ r locus in V ⊗p.

6.5. Variants. A similar situation can be considered with both exterior and symmetric
powers of vector spaces instead of tensor powers. Given V , an element of

∧n V of the form
v1∧ · · ·∧ vn is said to have rank 1. Rank and border rank are defined similarly. For Symn V ,
elements of the form vn are said to have rank 1 (technically we should be working with the
divided power instead of the symmetric power). We note some theorems:

Theorem 6.5.1 (Draisma–Eggermont [DE]). For each r, there is a constant C(r) such that
the variety of border rank ≤ r anti-symmetric tensors is cut out by polynomials of degree
≤ C(r). The constant is independent of n and also V .

Theorem 6.5.2 (Sam [Sa]). Fix a field of characteristic 0. For each r, there is a constant
C(r) such that the full ideal of polynomials vanishing on the variety of border rank ≤ r
symmetric tensors is generated by polynomials of degree ≤ C(r). The constant is independent
of n and also V .

The last theorem gives an ideal-theoretic statement which improves the set-theoretic state-
ment (though is limited by its restriction on characteristic).

7. More on FI-modules

7.1. Asymptotic combinatorial properties. In a homework problem, you were asked to
show that given a finitely generated FI-module M over a field k, the function n 7→ dimkMn

is a polynomial for n≫ 0. Each Mn is a representation of the symmetric group Σn. If k is a
field of characteristic 0, thenMn decomposes into a direct sum of irreducible representations,
which are indexed by partitions λ of n, say that Mλ appears with multiplicity mM,λ. We’d
like to understand how these multiplicities behave.

Recall that the principal projective module Pn satisfies Pn(m) = IndΣm

Σn×Σm−n
k[Σn] where

Σm−n acts trivially on k[Σn]. We have an action of Σn on Pn by pre-composition, which
commutes with post-composition by injections (this is just the associativity of composing
functions). In that sense, we can decompose Pn into a direct sum

Pn =
⊕

λ⊢n

P⊕ dimMλ

λ

which follows from the decomposition of the group algebra

k[Σn] =
⊕

λ⊢n

M⊕ dimMλ

λ .

In particular, we have

Pλ(m) = IndΣm

Σn×Σm−n
Mλ =

⊕

ν⊢m

Mν
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where, by Pieri’s rule (Theorem 2.7.3), the last sum is over all ν containing λ such that
ν/λ is a horizontal strip of size m − n. The submodule structure of Pλ can be determined
completely from the following result whose proof we will omit.

Proposition 7.1.1. Given ν such that ν/λ is a horizontal strip, the submodule of Pλ gen-
erated by Mν contains all Mν′ such that ν ⊆ ν ′.

Recall that Pn satisfies the universal property that a map of FI-modules Pn → M is the
same as an Σn-equivariant map k[Σn] → M(n), which is again equivalent to a choice of
arbitrary element in M(n). Similarly, a map of FI-modules Pλ → M is the same as an
Σn-equivariant map Mλ →M(n).
To add a horizontal strip to λ, we add some subset of boxes to the first λ1 columns, and the

rest must go in the first row. Let µ1, . . . , µc be all possible partitions that can be obtained
by adding a horizontal strip to λ by only adding boxes in the first λ1 columns. Then we see
that every partition in the decomposition of Pλ(m) must be of the form µi + (m− |µi|) for
some i and where addition for partitions is defined componentwise.

Example 7.1.2. If λ = (3, 1), then c = 6 with µ1 = λ = (3, 1), µ2 = (3, 1, 1), µ3 = (3, 2),
µ4 = (3, 2, 1), µ5 = (3, 3), and µ6 = (3, 3, 1). If we add a horizontal strip to λ to get a
partition of size m, then it must be one of

(m−1, 1), (m−2, 1, 1), (m−2, 2), (m−3, 2, 1), (m−3, 3), (m−4, 3, 1).
�

Let µ be the largest of the µi, i.e., it is obtained by adding all possible boxes in the first
λ1 columns to λ (in the previous example, it is (3, 2, 1)). Then we have a map Pµ → Pλ by
the above discussion by taking the identity map Mµ → Mµ ⊂ Pλ(|µ| − |λ|). If Mν is in
the image of this map, then both ν/λ and ν/µ must be horizontal strips, and this is only
possible for partitions of the form µ + (k). In fact, by Proposition 7.1.1, Mµ+(k) is in the
image for all k ≥ 0. In any case, one can argue that the sum of the subspaces Mµ+(k) is an
FI-submodule of Pλ, which we will temporarily denote by V +

µ .

Proposition 7.1.3. V +
µ is a finitely generated FI-module.

Proof. V +
µ is a submodule of Pλ, which is finitely generated, so the result follows from

noetherianity of FI-modules. �

Proposition 7.1.4. Let M be a finitely generated FI-module over a field of characteristic
0. For a partition λ, let mM,λ be the multiplicity of Mλ in M(|λ|). Then, for any λ, the
function i 7→ mM,λ+(i) is constant for i≫ 0.

Proof. By Exercise 5.1.2, the Segre product of two finitely generated FI-modules is again
finitely generated. In particular, we have a finitely generated FI-module of the form [n] 7→
M(n)⊗k V

+
λ (n) =M(n)⊗k Mλ+(n−|λ|). Note that

dimk(M(n)⊗k Mλ+(n−|λ|))
Σn = dimk(M(n)⊗k Mλ+(n−|λ|))Σn

= mM,λ+(n−|λ|)

where the first equality follows from semisimplicity, and the second follows from self-duality
of representations of Σn. In particular, Proposition 5.2.5 implies that there is a finitely
generated graded k[t]-module whose degree i piece has dimension mM,λ+(i), so this value is
constant for i≫ 0. �
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Recall that in §2.12, we defined the Kronecker coefficients by

gλ,µ,ν = dimC(Mλ ⊗Mµ ⊗Mν)
Σn ,

where λ, µ, ν are partitions of n. Alternatively, since Σn-representations are self-dual, this is
the multiplicity of Mλ in Mµ ⊗Mν .

Corollary 7.1.5 (Murnaghan). Let λ, µ, ν be partitions of the same size. Then the function

i 7→ gλ+(i),µ+(i),ν+(i)

is constant for i≫ 0.

Proof. In the above proposition, take M to be the Segre product of V +
µ and V +

ν . �

The value

gλ,µ,ν = lim
i→∞

gλ+(i),µ+(i),ν+(i)

is the stable Kronecker coefficient, and are in some sense, supposed to simpler than the
usual Kronecker coefficients. Our indexing is different from the standard indexing in the
literature: there one often replaces λ, µ, ν by the partitions obtained by removing the first
part.

Example 7.1.6. • When λ = µ = ν = ∅, then gi,i,i = 1 for all i since Mi is the trivial
representation of Σi.
• When λ = µ = ν = (1, 1), then g(i+1,1),(i+1,1),(i+1,1) is 1 if i > 0 and is 0 for i = 0.
The case i = 0 follows from the fact that M(1,1) is the sign representation of Σ2. In
general, for partitions of size n, gα,β,(n−1,1)+1 is the number of ways to remove a box
from α and then add a box to get β. �

More generally, one can add other sequences to λ, µ, ν. For example, fix 3 other partitions
α, β, γ of the same size and consider the sequence

i 7→ gλ+iα,µ+iβ,ν+iγ.

What kind of behavior does this exhibit? In fact, one has the following result (see [Ste, SS2]):

Theorem 7.1.7 (Stembridge, Sam–Snowden). If giα,iβ,iγ = 1 for all i, then the sequence
i 7→ gλ+iα,µ+iβ,ν+iγ is constant for i≫ 0. Conversely, if this sequence is eventually constant
for all λ, µ, ν, then giα,iβ,iγ = 1 for all i.

Murnaghan’s theorem is the special case when α = β = γ = (1) (cf. Example 7.1.6).
The techniques used here will not suffice to prove this generalization, which uses a little

bit of algebraic geometry, see [SS2] for more details.

7.2. Serre quotient categories. To understand the role of the V +
λ in the asymptotic be-

havior of finitely generated FI-modules, we use the notion of a Serre quotient of an abelian
category.

Definition 7.2.1. Let C be an abelian category. A Serre subcategory C′ of C is a full
subcategory (i.e., HomC′(x, y) = HomC(x, y) for all x, y ∈ C′) such that given a short exact
sequence of objects in C

0→ A→ B → C → 0,

we have B ∈ C′ if and only if A,C ∈ C′. �
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This comes up as follows. Suppose we are given an exact functor F : C → D between
abelian categories. Then the full subcategory on the objects {x ∈ C | F (x) = 0} is a Serre
subcategory. In this case, we can think of this subcategory as being the kernel of the functor
F . Then, mimicking more familiar constructions in algebra, we will also want to define the
quotient by a Serre subcategory.

Definition 7.2.2. Let C′ ⊂ C be a Serre subcategory and let x, y ∈ C be objects. Consider
the category D(x, y) whose objects are pairs (x′, y′) where x′ ⊆ x is a subobject such that
x/x′ ∈ C′ and y′ ⊆ y is a subobject such that y′ ∈ C′. We have a morphism (x′, y′)→ (x′′, y′′)
if x′′ ⊆ x′ and y′ ⊆ y′′. The assignment (x′, y′) 7→ HomC′(x′, y/y′) is a functor on the category
D(x, y).

The quotient category C/C′ has the same objects as C, and the hom set between x and
y is defined by

HomC/C′(x, y) = lim−→
(x′,y′)∈D(x,y)

HomC′(x′, y/y′). �

Recall that the colimit can be defined as the direct sum
⊕

(x′,y′)∈D(x,y) HomC′(x′, y/y′)

modulo the equivalence relation that identifies a morphism x′ → y/y′ with the corresponding
morphism x′′ → y/y′′ if we have a morphism (x′, y′)→ (x′′, y′′) in D(x, y).
To compose maps x → y and y → z in C/C′, first pick representatives f : x′ → y/y′ and

g : y′′ → z/z′. Let x′′ ⊆ x′ be the preimage of y′′/y′ under f and let z′′ be the sum of z′

and the image of g. Then we can restrict f and g to get representatives f ′ : x′′ → y/y′ and
g′ : y′′ → z/z′′, which are actually composable since the image of the first map is y′′. The
composition x→ y → z is then represented by g′ ◦ f ′.
In more detail, a morphism x → y in the quotient category can be represented by a

morphism x′ → y/y′ where x/x′ and y′ are both in C. Given a subobject y′′ ⊆ y′, we get a
natural map HomC(x

′, y/y′′) → HomC(x
′, y/y′), and any morphism in the source represents

the same morphism as its image. Similarly, given x′ ⊆ x′′ ⊆ x, x/x′′ is a quotient of x/x′

and hence belongs to C, and we get a natural map HomC(x
′′, y/y′) → HomC(x

′, y/y′) and
any morphism in the source represents the same morphism as its image.

In particular, x and y are isomorphic in C/C′ if and only if there are maps x
f←− z

g−→ y
such that the kernel and cokernel of both f, g are in C′.
In fact, C/C′ is an abelian category, and the quotient functor T : C → C/C′ is exact, and

we call it the localization functor. It satisfies the following universal property: any exact
functor F : C→ D such that F (x) = 0 for all x ∈ C′ factors through T , i.e., there is a functor
F ′ : C/C′ → D such that F = F ′ ◦ T .
Example 7.2.3. Let C be the category of finitely generated R-modules for a PID R. Let C′

be the full subcategory on the torsion R-modules. Then C/C′ is equivalent to the category
of finite-dimensional K-vector spaces, where K is the fraction field of R. �

Example 7.2.4 (For those who know some algebraic geometry). Let k be a field and let C
be the category of finitely generated graded k[x1, . . . , xn]-modules (here deg xi = 1 for all i)
and let C′ be the full subcategory on the torsion modules. In this case, C/C′ is equivalent to
the category of coherent sheaves on projective space Pn−1

k . �

Inspired by these examples, an important case to consider is when C is the category of
modules of some kind, and C′ is the subcategory of “torsion” modules. Then C/C′ can be
thought of as the category of modules over the “fraction field”, even if such an object does



NOTES FOR MATH 847 (REPRESENTATION STABILITY) 53

not exist. Borrowing terminology from algebraic geometry, where the fraction field of an
integral domain corresponds to the “generic point” of the corresponding affine scheme, we
call C/C′ the generic category.

7.3. Generic FI-modules. An element x ∈ M(n) of an FI-module M is torsion if there
exists an integer m and a non-invertible morphism f : [n] → [m] such that f∗(x) = 0.
Since Σm acts transitively on all morphisms [n] → [m], this implies that f∗(x) = 0 for all
non-invertible morphisms f : [n] → [m]. In particular, the set of torsion elements of an FI-
module is a submodule, called the torsion submodule, and denoted M tors. An FI-module
M is torsion if M =M tors.

Lemma 7.3.1. If M is finitely generated and torsion, then M(m) = 0 for m≫ 0.

Proof. Say that M is generated by x1, . . . , xr, where xi ∈M(ni). Since each is torsion, there
exists mi such that f∗(xi) = 0 for all f : [ni] → [m] with m ≥ mi. In particular, M(m) = 0
for m ≥ max(m1, . . . ,mr). �

We consider the above situation with C being the category of finitely generated FI-
modules, and C′ being the full subcategory of torsion modules (it is easy to verify that
C′ is a Serre subcategory).
Given an integer n and an FI-module M , let M≥n be the FI-submodule of M generated

by all elements of degrees ≥ n. Call it the degree n truncation of M . In particular,

M≥n(m) =

{

M(m) if m ≥ n

0 else
.

Proposition 7.3.2. Two finitely generated FI-modules M and N are isomorphic in the
generic category C/C′ if and only if M≥n ∼= N≥n for some n.

Proof. Note that M/M≥n and N/N≥n are both objects in C′, so if M≥n ∼= N≥n, pick an
isomorphism ϕ. Then ϕ is an element in the colimit defining HomC/C′(M,N), and its inverse
ϕ−1 is also an element in the colimit defining HomC/C′(N,M), and their compositions in both
directions represent the identity.

Conversely, if M and N are isomorphic in C/C′, then pick an isomorphism ϕ with inverse
ϕ−1. Then there existsM ′ ⊆M and N ′ ⊆ N such thatM/M ′ and N ′ are torsion, and an FI-
module morphism f : M ′ → N/N ′ which represents ϕ in the colimit. Similarly, there exists
N ′′ ⊆ N and M ′′ ⊆ M such that N/N ′′ and M ′′ are torsion and an FI-module morphism
g : N ′′ → M/M ′′ which represents ϕ−1 in the colimit. Up to the equivalence relation on
the colimit, their composition is defined on some pair (M ′′′, N ′′′) such that M/M ′′′ and N ′′′

are torsion. By Lemma 7.3.1, these are 0 in large enough degrees, say larger than n. The
restrictions of f and g to the degree n truncations are then inverses of one another. �

A particular case of truncations: if |λ| = k, then (V +
λ )≥n = V +

λ+(n−k), as follows from

Proposition 7.1.1. In particular, these truncations are all isomorphic to each other in the
generic category C/C′. In fact, since the size of the first part is irrelevant, let µ = (λ2, λ3, . . . ),
and call the resulting object Lµ in C/C′.

In fact, Lµ is a simple object: any nonzero subobject would be represented by a subobject
V +
λ+(n+k) in Vλ, and the quotient is torsion, so the only nonzero subobject of Lµ is Lµ itself.

We can be more precise about the structure of the generic category (proof omitted):
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Theorem 7.3.3. (1) Every simple object of C/C′ is isomorphic to Lµ for some µ, and they
are all mutually non-isomorphic.

(2) Every object of C/C′ has a finite composition series.

This structural result implies that many asymptotic properties about finitely generated
FI-modules can be deduced from the corresponding properties of the V +

λ , which involve
“growing the first row to infinity”.

Remark 7.3.4. Given an abelian category C, say that an object is dimension 0 if every
finitely generated subobject has a finite composition series. Let C′ be the full subcategory
of dimension 0 objects. By induction, say that M has dimension d if T (M) ∈ C/C′ has
dimension d − 1. For any object where this definition is not applicable, i.e., it does not
become dimension 0 after any finite number of iterations of quotienting by dimension 0
objects, then define its dimension to be ∞.

The Gabriel–Krull dimension of C is defined to be the supremum of the dimension of all
objects. Our discussion above says that the category of FI-modules has dimension 1. This is
some measure of complexity of the category: when R is a noetherian commutative ring, the
Gabriel–Krull dimension of its module category agrees with its Krull dimension [⋆ Steven:
double-check assumptions ⋆]. �

7.4. Semi-induced FI-modules. The projective FI-modules Pλ in characteristic 0 are
“induced modules” in the sense that we have

Pλ(m) ∼= IndΣm

Σn×Σm−n
Mλ

for all m ≥ n, and where n = |λ|.
Now consider FI-modules over a general field k. Let V be a (finite-dimensional) represen-

tation of Σn for some n. If x1, . . . , xr generate V as a Σn-module, then we have a surjection
k[Σn]

⊕r → V via (α1, . . . , αr) 7→
∑

i αixi. Let K be the kernel. Then for each m ≥ n, we
have a short exact sequence

0→ IndΣm

Σn×Σm−n
K → IndΣm

Σn×Σm−n
k[Σn]

⊕r → IndΣm

Σn×Σm−n
V → 0.

The middle term is P⊕r
n (m), and since the Σn action on Pn commutes with the FI-module

structure, we have a submodule I(K) ⊂ P⊕r
n given by

I(K)(m) = IndΣm

Σn×Σm−n
K,

and a quotient module P⊕r
n → I(V ) given by

I(V )(m) = IndΣm

Σn×Σm−n
V.

Since V was arbitrary, the construction of I(V ) makes sense in general, though it may not
be clear that it is independent of the choice of generators. Alternatively, one can use the
twisted commutative algebra perspective and define V as A⊗ V where A is the free twisted
commutative algebra generated by a single element of degree 1 (see §§3.1 and 3.2).
In any case, we call I(V ) an induced FI-module.

Exercise 7.4.1. Show that I(V ) is a projective FI-module if and only if V is a projective
k[Σn]-module (which is automatic if k[Σn] is semisimple, for example in characteristic 0). �

Remark 7.4.2. In the language of relative homological algebra [Ho], I(V ) is a relatively
projective module with respect to the pair of “rings” (k[FI],k[Σn]). To define this in general,
consider a ring R with a subring S. Then an exact sequence of R-modules is (R, S)-exact if
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the kernel of each map is a direct summand of the source as an S-module. Then an R-module
P is (R, S)-projective if, for every (R, S)-exact sequence

0→M1
f−→M2

g−→M3 → 0

and every R-linear map h : P →M3, there is a lifting of this map h′ : P →M2 meaning that
h = g ◦ h′. �

An FI-module M is semi-induced if it has a finite filtration M = Mr ⊃ Mr−1 ⊃ · · · ⊃
M1 ⊃ M0 = 0 such that Mi/Mi−1 is an induced FI-module for i = 1, . . . , r. Consider the
functor FI→ FI which sends a finite set S to the disjoint union with a new element S∐{∗}
and an injection f : S → T to the corresponding injection f ′ : S ∐{∗} → T ∐{∗} which is f
on S and sends ∗ to ∗. Given an FI-module M , we let ΣM be the pullback of M along this
functor. Explicitly, this means that (ΣM)(S) =M(S ∐{∗}) and that the action of f comes
from the action of f ′. Then ΣM is called the shift of M since (ΣM)(n) =M(n+ 1).

There is a canonical map M → ΣM where the map M(S) → (ΣM)(S) comes from the
inclusion S → S ∐ {∗}. By composing, we also get a canonical map M → ΣnM for each n.

Exercise 7.4.3. Show that the kernel of M → ΣnM is a torsion module. �

Let ∆M be the cokernel of the canonical map M → ΣM and let hM(n) = dimkM(n).
By the previous exercise and Lemma 7.3.1, the kernel of M → ΣM is 0 in sufficiently large
degrees. In particular, for n≫ 0, we have

h∆M(n) = hΣM(n)− hM(n) = hM(n+ 1)− hM(n).

Exercise 7.4.4. If M is generated in degrees ≤ d, show that ∆M is generated in degrees
≤ d − 1. By induction on d, and using the above equation, show that hM(n) agrees with a
polynomial of degree ≤ d for n≫ 0. �

The polynomial in the previous exercise will be denoted pM(n) and is called the Hilbert
polynomial of M . Define the degree of M to be the degree of pM(n), and denote it δ(M).
The degree of the 0 polynomial is −1, by convention. So assuming δ(M) ≥ 0, we have

(7.4.5) δ(∆M) ≤ δ(M)− 1.

In fact, for the same reason, the same holds for the cokernel of the compositionM → ΣM →
ΣnM for any n.

We have the following important theorem about shifts and semi-induced modules [Na]:

Theorem 7.4.6 (Nagpal). IfM is a finitely generated FI-module, then ΣnM is semi-induced
for n≫ 0.

We omit the proof, but note the following corollary.

Corollary 7.4.7. Let M be a finitely generated FI-module and set k = δ(M). There exists
a complex of FI-modules

0→M → I0 → I1 → · · · → Ik → 0

such that Ij is semi-induced for all j, and the homology of the complex is torsion.

Proof. We prove this by induction on k. If k = −1, then there is nothing to show since M
is torsion and the complex 0→ M → 0 satisfies the above conditions. In general for k ≥ 0,
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take n large enough so that ΣnM is semi-induced and set I0 = ΣnM . Then the cokernel N
of the map M → ΣnM satisfies δ(N) ≤ δ(M)− 1 and so there exists a complex

0→ N → I1 → · · · → Ik → 0

such that each Ij is semi-induced and the homology is torsion. Define I0 → I1 to be the
composition I0 → N → I1. Then the image of I0 → I1 is the same as the image of N → I1

and the kernel is the preimage of the kernel of N → I1 under the surjection I0 → N . So the
homology remains torsion and we have the desired complex. �

7.5. Cohomology of FI-modules. In §4.3, we studied group homology with coefficients in
a finitely generated FI-moduleM . In particular, in each degree, the direct sum

⊕

n Hi(Σn;M(n))
has the structure of a finitely generated k[t]-module. Now we investigate the situation with
group cohomology, which will utilize Nagpal’s theorem above.

Example 7.5.1. Let k be a field of positive characteristic p > 0. Let kn be the standard
permutation representation of Σn, and let Vn be the subspace of kn consisting of vectors
whose coordinates sum to 0. If p divides n, then the line spanned by the all 1’s vector is in
Vn and hence V Σn

n is 1-dimensional. Otherwise, it is 0-dimensional. In other words,

dimk H
0(Σn;Vn) =

{

1 if p divides n

0 else
,

so the sequence of dimensions exhibits periodic behavior. Note that [n] 7→ kn is a finitely
generated FI-module and that [n] 7→ Vn is a submodule of it. We will see more generally
that periodic behavior occurs in the cohomology of finitely generated FI-modules. �

Let M be an FI-module and, for each i ≥ 0, define

H
i(M) =

⊕

n≥0

Hi(Σn;M(n)), H
∗(M) =

⊕

i≥0

H
i(M).

Then H∗(M) is bigraded where Hi(Σn;M(n)) has bidegree (i, n). Recall that in §3, we
discussed the equivalence between the category of FI-modules and the category of modules
over the twisted commutative algebra A which satisfies An = k for all n. To do this, we
defined a monoidal structure on the category of symmetric sequences, which in one form
becomes:

(V ⊗W )n =
n
⊕

i=0

IndΣn

Σi×Σn−i
(Vi ⊗Wn−i).

Given non-negatively bigraded vector spaces A and B (with finite-dimensional components),
their tensor product is a bigraded vector space satisfying

(A⊗ B)i,j =
⊕

i′+i′′=i
j′+j′′=j

Ai′,j′ ⊗ Bi′′,j′′ .

So we have a category of non-negatively bigraded vector spaces with this tensor product as
its monoidal structure, and H∗(M) is an object of it.

Proposition 7.5.2. The assignment M 7→ H∗(M) is a monoidal functor, i.e., H∗(M ⊗N)
is naturally isomorphic to H∗(M)⊗H∗(N).
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Proof. Fix (i, n). Then we have

H
∗(M ⊗N)i,n = Hi(Σn; (M ⊗N)(n))

= Hi(Σn;
n
⊕

k=0

IndΣn

Σk×Σn−k
(M(k)⊗N(n− k)))

=
n
⊕

k=0

Hi(Σk × Σn−k;M(k)⊗N(n− k))

=
n
⊕

k=0

⊕

i′+i′′=i

Hi′(Σk;M(k))⊗ Hi′′(Σn−k;N(n− k))

=
⊕

i′+i′′=i
n′+n′′=n

H
∗(M)i′,n′ ⊗H

∗(N)i′′,n′′ ,

where the first two equalities are by definition, the third equality is Shapiro’s lemma, and
the fourth equality is the Künneth isomorphism. �

In particular, since A is an algebra, applying H to the multiplication map A ⊗ A → A
yields a map

H(A)⊗H(A)→ H(A).

By degree considerations, this restricts to a map H0(A) ⊗ H0(A) → H0(A), and this is
a commutative, associative algebra satisfying H0(A) =

⊕

n H
0(Σn;k). Since we have a

canonical identification H0(Σn;k) = k, we let x[n] be the element corresponding to 1 ∈ k.

Lemma 7.5.3. For all n,m, we have

x[n]x[m] =

(

n+m

n

)

x[n+m].

Proof. Note that the map H0(Σn;k) ⊗ H0(Σm;k) → H0(Σn+m;k) is multiplication by some
scalar, and we just have to show that it is

(

n+m
m

)

. In fact, this follows from the fact that
the isomorphism coming from Shapiro’s lemma can be described as a transfer map [Wei,
Exercise 6.7.7]: in general, for a subgroup H of G and a representation M of G, the transfer
map is induced by the map MH → MG given by m 7→

∑

gm where the sum is over a set
of representatives of G/H. In our case, M = k is trivial and so this is multiplication by the
index of Σn × Σm in Σn+m, which is

(

n+m
n

)

. �

This algebra is the divided power algebra in 1 variable, and we will denote it D. Note
that if k is a field of characteristic 0, then D ∼= k[t] under the identification tn/n! = x[n].
Over a field of positive characteristic, D has many zerodivisors, and is not even finitely
generated or noetherian.

Exercise 7.5.4. Let k be a field of characteristic p > 0. Define a ring homomorphism
k[y0, y1, . . . ]→ D by yi 7→ x[p

i]. Show that this is surjective and that the kernel is the ideal
(yp0, y

p
1, y

p
2, . . . ). �

A commutative algebra R is coherent if every finitely generated ideal is a finitely presented
R-module.

Exercise 7.5.5. Let R be a coherent ring and letM and N be finitely presented R-modules.
Given a homomorphism f : M → N , show that ker f and coker f are finitely presented. �
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Proposition 7.5.6. D is a coherent ring.

Proof. If k is a field of characteristic 0, thenD ∼= k[t], so it is noetherian, and hence coherent.
Otherwise, suppose k is a field of positive characteristic p > 0. As in the previous exercise,

identify D with k[y0, y1, . . . ]/(y
p
0, y

p
1, . . . ). Any finite list of generators for an ideal only uses

finitely many of the yi, say the first r of them. Note that D is a free module over the subring
R = k[y0, . . . , yr]/(y

p
0, . . . , y

p
r ), and so its presentation over D can be obtained by taking a

free presentation over R and then applying −⊗R D. �

Proposition 7.5.7. Suppose k is a field of positive characteristic p > 0. Let M be a finitely
presented graded D-module. Then n 7→ dimkMn is a periodic function, whose period is a
power of p, for n≫ 0.

Proof. As in the previous proof, identify D with k[y0, y1, . . . ]/(y
p
0, y

p
1, . . . ). Pick a finite pre-

sentation ofM , i.e., write it as the cokernel of a finite matrix with homogeneous entries from
D. It involves only finitely many of the yi, say y1, . . . , yr, and letR = k[y0, . . . , yr]/(y

p
0, . . . , y

p
r ).

Let M ′ be the cokernel of the same matrix thought of now as a map of free modules over R.
Since R is finite-dimensional over k, the same is true for M ′. Furthermore, D is a free

module over R with basis given by the monomials in yr+1, yr+2, . . . with exponents between
0 and p− 1. In particular, M =M ′⊗R D, and as a vector space, M is the tensor product of
M ′ with the vector space whose basis is the set of monomials just listed. This implies that

∑

n≥0

(dimkMn)t
n =

∑

n≥0(dimkM
′
n)t

n

1− tpr+1
.

As just discussed, the numerator on the right hand side is a polynomial and hence the
function n 7→ dimkMn is periodic of period pr+1 beyond the degree of the numerator. �

The k-linear map d : D → D defined by d(x[n]) = x[n−1] is a derivation: for all f, g ∈ D,
we have d(fg) = d(f)g + fd(g). Let M be a graded D-module. A connection on M is a
linear map ∇ : M → M that sends a homogeneous element of degree n to a homogeneous
element of degree n− 1, and satisfies ∇(fm) = d(f)m+ f∇(m) for all f ∈ D and m ∈M .

Proposition 7.5.8. Suppose M has a connection ∇. Then the map

ψ : D⊗k ker∇ →M
∑

i

fi ⊗mi 7→
∑

i

fimi

is an isomorphism. In particular, M is a free D-module.

Proof. First, we show that ψ is injective. If not, then we have
∑

i fimi = 0 where the mi

are linearly independent elements of ker∇. Furthermore, we may choose this so that the
elements are homogeneous and so that deg(fi) + deg(mi) is constant, and minimal amongst
all relations that exist. In particular, deg(fi) > 0 for some i. Applying ∇ to this linear
combination, we get

0 =
∑

i

(d(fi)mi + fi∇(mi)) =
∑

i

d(fi)mi.

This gives a linear combination of smaller degree, which contradicts our choice from before,
so ψ is injective as claimed.
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Now we show that ψ is surjective. Let m ∈ M be an arbitrary element. Let r be the
minimal integer such that ∇rm = 0 (r exists since ∇ is degree decreasing). By induction
on r, we show that m is in the image of ψ. If r = 0, there is nothing to show, so suppose it
holds for all values strictly smaller than r. Note that

m+
r−1
∑

i=1

(−1)ix[i]∇i(m) ∈ ker∇.

By induction, each ∇i(m) for i > 0 is in the image of ψ. Since every element of ker∇ is in
the image of ψ, we conclude that m is in the image of ψ. �

By Proposition 7.5.2 and Lemma 7.5.3, for each i ≥ 0, Hi(M) =
⊕

n≥0 H
i(Σn;M(n)) has

the structure of a D-module.

Proposition 7.5.9. Let k be a field of positive characteristic. The restriction map Hi(Σn;k)→
Hi(Σn−1;k) gives a connection on Hi(P0). Furthermore, ker∇ is 0 in degrees > 2i and hence
is finite-dimensional.

Proof. We omit the proof of the first part, see [NS, §4.2] for the calculation. The second part
is the dual version of Nakaoka’s stability theorem (Theorem 4.2.1) and the general fact that
each of the (co)homology groups of a finite group with trivial coefficients is finite-dimensional
(as follows from example, from the existence of the bar resolution [Wei, §6.5]). �

Given a gradedD-moduleN and an integer n, we letN≥n be the submodule ofN generated
by all elements of degree ≥ n.

Theorem 7.5.10 (Nagpal–Snowden). Let k be a field of positive characteristic p > 0. Let
M be a finitely generated FI-module over k.

(1) There exists a finitely presented D-module N and an integer m such that N≥m ∼=
Hi(M)≥m.

(2) The function n 7→ dimk H
i(Σn;M(n)) is a periodic function, whose period is a power

of p, for n≫ 0.

Proof. We reduce (1) to the case of semi-induced modules using Corollary 7.4.7, Exer-
cise 7.5.5, and Proposition 7.5.6. Furthermore, using the long exact sequence on cohomology
and doing induction on the length of the filtration for a semi-induced module whose quotients
are induced, we can reduce to the case of an induced module I(V ) with V a representation
of Σn.

Recall that in the tca perspective, I(V ) is the tensor product A⊗V where A is the tca freely
generated by a single element of degree 1. The action of A is a map A⊗A⊗V → A⊗V , which
is in fact the multiplication map on A tensored with the identity on V . By Proposition 7.5.2,
after applying H∗, the corresponding map H∗(A)⊗H∗(A)⊗H∗(V )→ H∗(A)⊗H∗(V ) is the
tensor product of the multiplication map on H∗(A) with the identity on H∗(V ). So Hi(I(V ))

is the D-module
⊕i

j=0 H
i−j(A) ⊗ Hj(Σn;V ), and in particular, is a finitely generated free

D-module by Propositions 7.5.8 and 7.5.9.
(2) follows from (1) and Proposition 7.5.7. �
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Finally, we return to the discussion of the cohomology of unordered configuration spaces
of a topological space X in §5. Recall the definitions:

Confn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj for i 6= j},
UConfn(X) = Confn(X)/Σn.

Theorem 7.5.11. Let k be a field of positive characteristic p. Let X be a topological space
with the property that the FI-module [n] 7→ Hi(Confn(X);k) is finitely generated for all i.
Then for each i, the function n 7→ dimk H

i(UConfn(X);k) is periodic, with period a power
of p, for n≫ 0.

Proof. Recall from our discussion on cohomology of configuration spaces that we have a
Cartan–Leray spectral sequence (5.2.3):

Ep,q
2 = Hp(Σn; H

q(Confn(X);k)) =⇒ Hp+q(UConfn(X);k).

We take the direct sum of these spectral sequences over n. We focus on the case p+q = i. To
compute the E∞ page along this degree, we have to do computations with finitely many other
degrees. By Theorem 7.5.10, each of the terms agrees with a finitely presented D-module
after some truncation. Since there are finitely many terms, we can find a single truncation
that works for all of them. By Exercise 7.5.5 and Proposition 7.5.6, this implies that the E∞-
terms in degree i agree with a finitely presented D-module after some truncation. Finally,
the term we want to compute,

⊕

n H
i(UConfn(X);k), is then built out of these terms using a

finite number of extensions, so is itself a finitely presented D-module after some truncation.
Now we use Proposition 7.5.7. �

8. ∆-modules

In §6, we studied the notion of tensor rank. Here we will come back to the rank 1 case
from a different perspective and study its higher order syzygies.

8.1. Segre embeddings. First, we rephrase the setting. Given a vector space V , let P(V )
denote the set of lines in V . Then P(V ) is called the projectivization of V , and also projective
space. Given a homogeneous polynomial f ∈ Sym(V ∗), it does not make sense to ask for its
value on a line ℓ ∈ P(V ), but it is well-defined whether f(ℓ) = 0 or f(ℓ) 6= 0. In particular,
to any collection I of homogeneous polynomials, we can associate its vanishing locus V (I).
If we declare these to be closed subsets, then we get a topology on P(V ), which is a graded
variant of the Zariski topology on SpecR for a commutative ring R.
We focus on the Segre embedding:

P(V1)× · · · ×P(Vn)→ P(V1 ⊗ · · · ⊗ Vn)
(ℓ1, . . . , ℓn) 7→ ℓ1 ⊗ · · · ⊗ ℓn.

Exercise 8.1.1. Check that the Segre embedding is in fact injective. �

Note that if we take the union of the set of lines in the image of the Segre embedding, we
get exactly the rank 1 tensors (and 0). So the image is a closed subset cut out by the same
equations described in Remark 6.2.4.

Remark 8.1.2. The Segre embedding is not continuous if we put the product topology on
the left hand side. Instead, we give the product of projective spaces the subspace topology
coming from this embedding. �
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The Segre embeddings have a certain “factorization property”: for example, when n = 3,
we can break it up into two steps:

P(V1)×P(V2)×P(V3)→ P(V1 ⊗ V2)×P(V3)→ P(V1 ⊗ V2 ⊗ V3).

Using this, and a certain linearity property, all of the equations in Remark 6.2.4 can be built
out of the simplest instance of a Segre embedding when n = 2 and dimV1 = dimV2 = 2.

Let’s consider that case in depth, but we’ll use dual spaces to make the functions not
have a dual. Pick bases e0, e1 and f0, f1 for V ∗

1 and V ∗
2 and pick dual bases x0, x1 and

y0, y1 so that Sym(V1) = k[x0, x1] and Sym(V2) = k[y0, y1]. Let zi,j = xi ⊗ yj so that
Sym(V1 ⊗ V2) = k[z0,0, z0,1, z1,0, z1,1]. The image of the Segre embedding consists of all lines
spanned by rank 1 matrices, so it is the solution set of the equation

det

(

z0,0 z0,1
z1,0 z1,1

)

= z0,0z1,1 − z1,0z0,1.

The image in this case is also known as the quadric surface. As a representation of GL(V1)×
GL(V2), the subspace generated by this equation in the space of degree 2 polynomials is

2
∧

(V1)⊗
2
∧

(V2) ⊂ Sym2(V1 ⊗ V2).

In fact, this implies that for arbitrary V1, V2, the subspace
∧2(V1)⊗

∧2(V2) consists of equa-
tions that vanish on the image of the Segre embedding since it is true for every choice of
2-dimensional summands V ′

1 ⊂ V1 and V ′
2 ⊂ V2 and every element of

∧2(V1) ⊗
∧2(V2) is a

linear combination of elements living in summands of the form
∧2(V ′

1) ⊗
∧2(V ′

2). Alterna-
tively, we can argue that the space of degree 2-equations must be a polynomial subfunctor
of (V1, V2) 7→ Sym2(V1 ⊗ V2) in the following sense.

We recall the notion of polynomial functor from §2.8.4 and generalize it at the same time.
Let k be an infinite field and let Vec = Veck be the category of finite-dimensional vector
spaces. Let Vecnk = Vecn = Veck × · · · × Veck, the n-fold product of this category, so
objects are n-tuples of vector spaces and morphisms are n-tuples of linear maps. A functor
F : Vecn → Vec is a polynomial functor if, for every pair of n-tuples (V1, . . . , Vn) and
(W1, . . . ,Wn), the map

Homk(V1,W1)× · · · × Homk(Vn,Wn)→ Homk(F (V1, . . . , Vn), F (W1, . . . ,Wn))

is given by polynomial functions.
In particular, if we pick bases as above with the same convention, then all equations of

the form zi,jzi′,j′ − zi,j′zi′,j vanish on the image.
Now let’s consider the factorization property. For simplicity, assume n = 3 and dimVi = 2

for all i. We let zi,j be the coordinate functions on P(V ∗
1 ⊗ V ∗

2 ) and let zi,j,k denote the
coordinate functions on P(V ∗

1 ⊗ V ∗
2 ⊗ V ∗

3 ). By repeating the above with the two vector
spaces V ∗

1 ⊗ V ∗
2 and V ∗

3 , we conclude that the equations

zi,j,kzi′,j′,k′ − zi,j,k′zi′,j′,k′

vanish on the image of P(V ∗
1 ⊗V ∗

2 )×P(V ∗
3 ). Since the triple product P(V ∗

1 )×P(V ∗
2 )×P(V ∗

3 )
is in there, these equations also vanish there. However, we could have grouped together two
of the vector spaces in two other ways (V ∗

1 with V ∗
3 , but also V

∗
2 with V ∗

3 ). In particular, the
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following two types of equations also vanish on the triple product:

zi,j,kzi′,j′,k′ − zi,j′,kzi′,j,k′
zi,j,kzi′,j′,k′ − zi′,j,kzi,j′,k′ .

By taking sums of these 3 types of equations, we can get all of the equations described in
Remark 6.2.4. This argument extends to n-fold products of projective spaces for arbitrary
n.
In particular, we see that the equation for the quadric surface “generates” all other qua-

dratic equations for all Segre embeddings using this factorization property together with
linearity. As we discussed, the ideals of the Segre embeddings are generated in degree 2, so
this provides a complete description. Now we would like to axiomatize this structure and
make precise in what sense this generation is happening.

8.2. ∆-modules. Define a category Vec∆ as follows. Its objects are finite collections of
vector spaces {Vi}i∈I and a morphism {Ui}i∈I → {Vj}j∈J is a surjection f : J → I together
with, for each i ∈ I, a linear map εi : Ui →

⊗

j∈f−1(i) Vj. Given another morphism {Vj}j∈J →
{Wk}k∈K with surjection g : K → J and linear maps ζj : Vj →

⊗

k∈g−1(j)Wk, the composition

is given by the data h : K → I where h = f ◦ g and linear maps ηi : Ui →
⊗

k∈h−1(i)Wk

given by the composition of εi : Ui →
⊕

j∈f−1(i) Vj with the tensor product of the maps

ζj : Vj →
⊗

k∈g−1(j)Wk over all j ∈ f−1(i).

For each n, note that Vecn is a subcategory (not full) of Vec∆ consisting of the objects
(V1, . . . , Vn) and where the morphisms are the ones where f : [n]→ [n] is the identity. Hence,
given a functor F : Vec∆ → ∆, we get a sequence of functors Fn : Vecn → Vec by restricting
to this subcategory Vecn. We will say that a functor Vec∆ → Vec is polynomial if each of
the Fn is a polynomial functor in the sense described above. For short, polynomial functors
Vec∆ → Vec are called ∆-modules.
Unfolding this definition, we see that a ∆-module is a sequence of polynomial functors

Fn : Vecn → Vec together with some extra data that relates them. Since they are polynomial
functors, we get an action of

∏n
i=1 GL(Vi) on Fn(V1, . . . , Vn). Also, on the objects of the form

(V1, . . . , Vn) with all Vi equal to a single vector space V , there is an action of the symmetric
group Σn on Fn(V, . . . , V ). The other key structure is that we have transition maps between
the various Fn.

Example 8.2.1. The most basic example of a ∆-module is the functor

T : (Vi)i∈I 7→
⊗

i∈I

Vi.

To get other examples, we can compose this with a polynomial functor Vec→ Vec, such as
symmetric and exterior powers (or even tensor products of such functors). So other examples
of ∆-modules are,

(Vi)i∈I 7→ Symr(
⊗

i∈I

Vi),

(Vi)i∈I 7→
r
∧

(
⊗

i∈I

Vi),

where r is some fixed nonnegative integer. We call them Symr(T ) and
∧r(T ). Let Sym(T ) =

⊕

r≥0 Sym
r(T ) and

∧

(T ) =
⊕

r≥0

∧r(T ). �
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An element of a ∆-module F is an element of some F ({Vi}i∈I). Given any collection
of elements, there is a smallest ∆-submodule containing it, which we call the submodule
generated by these elements. We say that F is finitely generated if it can be generated by
a finite collection of elements.

The basic functor T is finitely generated by a nonzero element in F (k) where k is the
1-dimensional vector space indexed by a singleton set.

Exercise 8.2.2. Show that the tensor power T r defined by

T r({Vi}i∈I) =
⊗

i∈I

V ⊗r
i

is a finitely generated ∆-module. In particular, finite tensor powers of symmetric and exterior
powers (being quotients of T r) are also finitely generated. �

A key property is that the finite generation property is inherited by submodules (see [SS1,
Theorem 9.2.3]):

Theorem 8.2.3. Let F be a finitely generated ∆-module. Then F is noetherian, i.e., all
∆-submodules of F are again finitely generated.

A key example of a submodule of Symr(T ) is to take the space of degree r equations which
vanish on the Segre embedding of

∏

i∈I P(V ∗
i ). The previous section explains that for r = 2,

this is generated by a single element. The general theorem says that this is finitely generated
for any r.

As a final example, we note that one can define a Koszul complex:

· · · → Sym(T )⊗
r
∧

(T )→ · · · → Sym(T )⊗
2
∧

(T )→ Sym(T )⊗ T → Sym(T ).

This is the standard Koszul complex for Sym(
⊗

i∈I Vi) when evaluated on {Vi}i∈I , and one
just has to check that it is compatible with all transition maps (this follows from naturality
of the Koszul complex). Taking the quotient of Sym(T ) by the submodule of equations van-
ishing on the Segre embeddings, we get a ∆-module that sends {Vi}i∈I to the homogeneous
coordinate ring of the Segre embedding of

∏

i∈I P(V ∗
i ), call it Seg, and its degree d piece

Segd.
The rth homology of the tensor product of the Koszul complex with Seg (this computes

Tor with the residue field k) gives the space of r-syzygies of the Segre embedding. If we
restrict to a single degree, then each of the terms involved is finitely generated, so the
noetherianity result above implies:

Proposition 8.2.4. For each r, d, the ∆-module given by

{Vi}i∈I 7→ Tor
Sym(

⊗
i∈I Vi)

r (Seg(
⊗

i∈I

Vi),k)d

is finitely generated. Here the subscript d denotes the space of r-syzygies of degree d.

For r = 1, this is computing the space of minimal degree d equations of the Segre embed-
ding, so this space is only nonzero for d = 2 by our previous discussions. In general, one
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can show that the space of r-syzygies is 0 in degrees > 2r,5 so it is actually superfluous to
include the degree d in the above result.

Our original heuristic is that the equations of the Segre embedding are all generated, in
some sense, by a single one (the 2 × 2 determinant). This result says that a similar thing
is true if one considers the higher-order syzygies that these equations satisfy: they all come
from finitely many basic syzygies. In general, one does not know how to write them all down.

Appendix A. Review of homological algebra

For a thorough treatment of homological algebra, see Weibel’s text [Wei].

A.1. Exact sequences and exact functors. Let A be an abelian category (the category
of R-modules if you like). Suppose we are given a chain complex of objects in A

V : · · · → Vi+1
fi+1−−→ Vi

fi−→ Vi−1 → · · · .
The ith homology of V, denoted Hi(V), is

Hi(V) = ker(fi)/ image(fi+1).

The complex V is exact if Hi(V) = 0 for all i. If our complex has finitely many terms, then
we only require exactness everywhere except the end points. In general, elements of ker(fi)
for some i are cycles and elements of image(fi) for some i are boundaries.

Sequences of the form

0→ A
f−→ B

g−→ C → 0

are called short exact sequences. If B is another abelian category and F : A → B is a
functor (with F (0) = 0), we get a corresponding sequence 0→ F (A)→ F (B)→ F (C)→ 0.
Then F is

• exact if 0→ F (A)→ F (B)→ F (C)→ 0 is an exact sequence for all exact sequences
0→ A→ B → C → 0,
• left exact if 0→ F (A)→ F (B)→ F (C) is an exact sequence for all exact sequences
0→ A→ B → C → 0,
• right exact if F (A)→ F (B)→ F (C)→ 0 is an exact sequence for all exact sequences
0→ A→ B → C → 0.

Let k be a commutative ring and let R be a k-algebra. Let A be the category of left
R-modules and let B be the category of k-modules. Given a left R-module M , we have a
functor HomR(M,−) given by N 7→ HomR(M,N). Given a right R-moduleM , we also have
a functor M ⊗R − given by N 7→M ⊗R N .

Proposition A.1.1. • The functor HomR(M,−) is left-exact.
• The functor M ⊗R − is right-exact.

Finally, we state the “four lemmas” (for simplicity, just when we’re dealing with the
category of R-modules).

5This uses the existence of the Taylor complex of a monomial ideal, a semicontinuity argument with
Gröbner bases, and the fact that the degree 2 equations for the Segre embedding form a Gröbner basis with
respect to some term ordering of the variables.
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Lemma A.1.2 (Four lemmas). Consider the following diagram of R-modules:

A //

α
��

B //

β
��

C //

γ
��

D //

δ
��

E

ε
��

A′ // B′ // C ′ // D′ // E ′

Assume that rows are both exact.

(a) If β and δ surjective and ε is injective, then γ is surjective.
(b) If β and δ injective and α is surjective, then γ is injective.

A.2. Derived functors. Let F : A → B be a left-exact functor. When A has “enough
injectives” (satisfied if A is the category of left R-modules for some ring R) then there is a
sequence of functors RiF for i ≥ 0, called the right derived functors of F such that

• RiF (M) = 0 whenever M is an injective object,
• R0F = F ,
• For every short exact sequence 0 → A → B → C → 0 in A, we get a long exact
sequence

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ R2F (A)→ · · · .
When F = HomR(M,−), we use the notation RiF = ExtiR(M,−) and RiF (N) =

ExtiR(M,N). These functors commute with taking finite direct sums, i.e., ExtiR(M,N⊕N ′) =
ExtiR(M,N)⊕ ExtiR(M,N ′).
There is also a dual situation. Let G : A → B be a right-exact functor. When A has

“enough projectives” (satisfied if A is the category of left R-modules for some ring R) then
there is a sequence of functors LiG for i ≥ 0, called the left derived functors of G such that

• LiG(M) = 0 whenever M is a projective object,
• L0G = G,
• For every short exact sequence 0 → A → B → C → 0 in A, we get a long exact
sequence

· · · → L2G(C)→ L1G(A)→ L1G(B)→ L1G(C)→ G(A)→ G(B)→ G(C)→ 0.

When G =M ⊗R −, we use the notation LiG = TorRi (M,−) and LiG(N) = TorRi (M,N).
These functors commute with arbitrary direct sums, i.e., TorRi (M,

⊕

αNα) =
⊕

α Tor
R
i (M,Nα).

A.3. (Co)homology of groups. Let Γ be a group. As discussed before, representations of
Γ over k are the same as left k[Γ]-modules. We have the trivial module k with all elements of
Γ acting as the identity, which is both a left and right k[Γ]-module. Given a representation
N , we define group homology and cohomology with coefficients in N by

Hi(Γ;N) = Tor
k[Γ]
i (k, N),

Hi(Γ;N) = Extik[Γ](k, N).

Consider the special case i = 0. Then

H0(Γ;N) = k⊗k[Γ] N ∼= NΓ = N/{n− γn | n ∈ N, γ ∈ Γ}
is the coinvariants of N with respect to Γ, and

H0(Γ;N) = Homk[Γ](k, N) = NΓ = {n ∈ N | γn = n for all γ ∈ Γ}
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is the invariants. If N = Z with the trivial action, then we usually omit it from the notation.
By what we said above, group homology commutes with taking arbitrary direct sums while
group cohomology commutes with taking finite direct sums.

If k[Γ] is semisimple, then N is both injective and projective for any representation N , so
Hi(Γ;N) = 0 and Hi(Γ;N) = 0 for i > 0. So this is interesting in the non-semisimple case,
e.g., Γ is finite and k is a field of positive characteristic p where p divides the order of Γ.

As mentioned, Hi(Γ;−) and Hi(Γ;−) are functors. Suppose we have a group homomor-
phism f : Γ′ → Γ. IfM is a Γ-module, then it is also a Γ′-module by the action γ′m = f(γ′)m
and we have induced maps

Hi(Γ
′;M)→ Hi(Γ;M), Hi(Γ;M)→ Hi(Γ′;M),

which are compatible with composition of group homomorphisms (but note that cohomology
swaps the order of the groups). Given a Γ-equivariant map ϕ : M → N , we also have a map
Hi(Γ;M)→ Hi(Γ;N), so we can compose with the above to get

Hi(Γ
′;M)→ Hi(Γ;N).

In particular, this comes from a pair of maps f : Γ′ → Γ and ϕ : M → N such that ϕ(γ′m) =
f(γ′)ϕ(m) for all m ∈M and γ′ ∈ Γ′. We can do something similar with cohomology.
In the case when the action of Γ = Γ′ and f is conjugation by an element, and M = k is

trivial, the induced map is the identity.
Let Ω ⊂ Γ be a subgroup. Given an Ω-module M , we have the induction IndΓ

ΩM =
k[Γ]⊗k[Ω]M as well as the coinduction CoindΓ

ΩM = Homk[Ω](k[Γ],M). If Ω is a finite-index
subgroup in Γ, then these two are isomorphic.

Lemma A.3.1 (Shapiro’s lemma). With the notation above, we have

Hi(Γ; Ind
Γ
ΩM) = Hi(Ω;M), Hi(Γ; CoindΓ

ΩM) = Hi(Ω;M).

A.4. Spectral sequences. While spectral sequences are rather involved structures, we will
only emphasize enough to know how they can be applied to our examples of interest. Let A
be an abelian category.

A homology spectral sequence (starting with Ea) is the following data:

• An object Er
p,q of A for every integer r ≥ a and pair of integers p, q.

• Morphisms drp,q : E
r
p,q → Er

p−r,q+r−1 which are differentials in the sense that (dr)2 = 0.

• Isomorphisms Er+1
p,q
∼= ker(drp,q)/ image(drp+r,q−r+1).

The degree of an object Er
p,q is the quantity p+ q, note that dr always lowers degree by 1.

The spectral sequence is bounded if for each n, there are only finitely many terms of degree
n in Ea.
The sequence of objects with fixed superscript r is the “rth page” of the spectral sequence,

and the last item says that taking homology with respect to the differentials dr gives the
next page. The process of taking homology is called “turning the page”. In our cases of
interest, the spectral sequences will be “first quadrant”, meaning that Er

p,q = 0 if p < 0 or
q < 0.
For given p, q, if we have Er

p,q = Er+1
p,q for r ≫ 0 (which happens in the bounded case), then

we write E∞
p,q for this limiting value. A bounded spectral sequence converges to a collection

{Hn}n of objects of A if each Hn has a finite filtration

0 = FsHn ⊆ Fs+1Hn ⊆ · · · ⊆ Ft−1Hn ⊆ FtHn = Hn
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such that
E∞
p,q
∼= FpHp+q/Fp−1Hp+q.

The notation to indicate a convergent spectral sequence is

Ea
p,q =⇒ Hp+q.

A cohomology spectral sequence is similar except we swap superscripts and subscripts
and the indices increase instead of decrease and vice versa.

Morally, the purpose of a spectral sequence is to compute the desired quantity Hn from
the initial data Ea

p,q. In practice this is often difficult to carry out, but can be used to
gain approximate information. For example, if A is the category of vector spaces, then in a
convergent spectral sequence, we always have an inequality

∑

p+q=n

dimk E
a
p,q ≥ dimk Hn.

However, there are other interesting ways to use the existence of a spectral sequence to
deduce information. For example, if Hn = 0, then it forces maps between various Er

p,q to be
isomorphisms.

A general and powerful spectral sequence is the Grothendieck spectral sequence. Sup-
pose we have abelian categories A,B,C and right-exact functors F : A→ B and G : B→ C.
Then G ◦ F is also a right-exact functor. Suppose that A,B have enough projectives (auto-
matic if they are categories of modules) and suppose that (LiG)(F (M)) = 0 whenever M is
projective. Then we have a spectral sequence for any object M :

E2
p,q = (LpG)(LqF )(M) =⇒ (Lp+q(GF ))(M).
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