
Math 742, Spring 2016
Homework 4
Due: February 19

1. Exercises

(1) Let R be an integral domain and let R[x] be the polynomial ring in one variable. Given
f ∈ R[x], the content of f , denoted cont(f), is the ideal ofR generated by the coefficients
of f .
(a) Given f, g ∈ R[x], show that

cont(fg) ⊆ cont(f)cont(g) ⊆
√

cont(fg).

(b) Pick a, b, c, d ∈ R[x] and assume that ab = cd. Show that if p ∈ R is a prime element
that divides a, then p divides either c or d.

(c) Now assume R is a unique factorization domain. Prove Gauss’ Lemma: Let K be
the fraction field of R. Show that if f ∈ R[x] is irreducible, then f is also irreducible
in the larger ring K[x].

(2) Let n be a square-free integer (i.e., every prime divides n at most once). Let Q be the
rational numbers. Define

Q(
√
n) = {a+ b

√
n | a, b ∈ Q}.

(a) Verify that Q(
√
n) is a field.

(b) If b 6= 0, show that a + b
√
n satisfies a unique monic degree 2 polynomial with

rational coefficients.
(c) Determine the integral closure of Z in Q(

√
n).

(d) What happens if we don’t assume n is square-free?

(3) Let M be an R-module. Define the support of M to be

Supp(M) = {P ∈ Spec(R) | MP 6= 0}.
(a) Show that Supp(M) ⊆ V (Ann(M)), and that equality holds if M is finitely gener-

ated.
(b) Give an example where Supp(M) is not a closed subset of Spec(R) (and in particular

is not equal to V (Ann(M))).
(c) Let N be another R-module. Show that Supp(M ⊗R N) ⊆ Supp(M) ∩ Supp(N),

and that equality holds if M and N are finitely generated.

(4) Let 0 → A → B → C → 0 be a sequence of R-modules. Show that the following are
equivalent:
(a) 0 → A → B → C → 0 is exact.
(b) 0 → AP → BP → CP → 0 is exact for all prime ideals P .
(c) 0 → AP → BP → CP → 0 is exact for all maximal ideals P .

(5) In this exercise, we’ll explore localization in the noncommutative setting. So, in this
exercise, R denotes a not necessarily commutative ring, i.e., we have all of the axioms
for a ring except ab = ba is no longer required.
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(a) Given a multiplicative subset S ⊆ R, call a ring homomorphism f : R → R′ S-

inverting if f(s) is a unit for all s ∈ S. Show that there exists a ring RS, along
with an S-inverting map φ : R → RS which is universal in the sense that for any
other S-inverting map f : R → R′, there exists a unique g : RS → R′ such that
f = g ◦ φ. If R is commutative, show that RS = S−1R.

(b) In the commutative setting, we can construct RS using “fractions”, but this might
not be possible in general: let k be a (commutative) field and let R = k〈X, Y 〉
be the ring of noncommutative polynomials1. Describe the ring RS where S is the
multiplicative subset generated by {X, Y }.

(c) Exercise 11.2 of Altman–Kleiman says that, if R is commutative, then S−1R = 0 if
and only if S contains a nilpotent element. This can also fail in the noncommutative
setting: Let k be a field and let n ≥ 2 be an integer. Set R = Mn(k) to be the ring
of n× n matrices with entries in k. For 1 ≤ i, j ≤ n, let Eij be the matrix2 with a
1 in the (i, j) position and 0’s elsewhere. Show that RS = 0 where S = {E1,1}.

2. Suggested exercises (don’t submit)

From Altman–Kleiman:

• Chapter 10: 22, 35
• Chapter 11: 2, 8, 18, 25, 32
• Chapter 12: 6, 8, 14, 28

3. Further reading

The issues that come up in Exercise 5 illustrate that localization for noncommutative
rings can be subtle. See Chapter 4 of T.-Y. Lam, Lectures on Modules and Rings for more
information on noncommutative localization.

1A noncommutative monomial is a sequence of X’s and Y ’s and we take the product by concatenating
them, e.g., (X3

Y X
2
Y

5)(Y X
2) = X

3
Y X

2
Y

6
X

2. X and Y do not commute, but they do commute with the
elements of k, and a noncommutative polynomial is a finite linear combination of noncommutative monomials
with coefficients in k.

2These are called matrix units.
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