Math 742, Spring 2016
Homework 4
Due: February 19

1. EXERCISES

(1) Let R be an integral domain and let R[z] be the polynomial ring in one variable. Given
f € R[z], the content of f, denoted cont(f), is the ideal of R generated by the coefficients
of f.
(a) Given f,g € R[z], show that

cont(fg) C cont(f)cont(g) C /cont(fg).

(b) Pick a, b, c,d € R[z] and assume that ab = cd. Show that if p € R is a prime element
that divides a, then p divides either ¢ or d.

(c) Now assume R is a unique factorization domain. Prove Gauss’ Lemma: Let K be
the fraction field of R. Show that if f € R[z] is irreducible, then f is also irreducible
in the larger ring K{z].

(2) Let n be a square-free integer (i.e., every prime divides n at most once). Let Q be the
rational numbers. Define

Q(vn) ={a+bvnlabeQ}.

(a) Verify that Q(y/n) is a field.

(b) If b # 0, show that a 4+ by/n satisfies a unique monic degree 2 polynomial with
rational coefficients.

(¢) Determine the integral closure of Z in Q(y/n).

(d) What happens if we don’t assume n is square-free?

(3) Let M be an R-module. Define the support of M to be
Supp(M) = {P € Spec(R) | Mp # 0}.

(a) Show that Supp(M) C V(Ann(M)), and that equality holds if M is finitely gener-
ated.

(b) Give an example where Supp(M) is not a closed subset of Spec(R) (and in particular
is not equal to V(Ann(M))).

(c) Let N be another R-module. Show that Supp(M ®gr N) C Supp(M) N Supp(NV),
and that equality holds if M and N are finitely generated.

(4) Let 0 = A — B — C — 0 be a sequence of R-modules. Show that the following are
equivalent:
(a) 0 > A— B — C — 0 is exact.
(b) 0 - Ap — Bp — Cp — 0 is exact for all prime ideals P.
(¢) 0 - Ap — Bp — Cp — 0 is exact for all maximal ideals P.

(5) In this exercise, we’ll explore localization in the noncommutative setting. So, in this
exercise, R denotes a not necessarily commutative ring, i.e., we have all of the axioms

for a ring except ab = ba is no longer required.
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(a) Given a multiplicative subset S C R, call a ring homomorphism f: R — R’ S-
inverting if f(s) is a unit for all s € S. Show that there exists a ring Rg, along
with an S-inverting map ¢: R — Rg which is universal in the sense that for any
other S-inverting map f: R — R/, there exists a unique g: Rs — R’ such that
f =go¢. If Ris commutative, show that Rg = S7'R.

(b) In the commutative setting, we can construct Rg using “fractions”, but this might
not be possible in general: let k be a (commutative) field and let R = k(X,Y)
be the ring of noncommutative polynomialsﬂ Describe the ring Rg where S is the
multiplicative subset generated by {X,Y}.

(c) Exercise 11.2 of Altman-Kleiman says that, if R is commutative, then S™*R = 0 if
and only if S contains a nilpotent element. This can also fail in the noncommutative
setting: Let k be a field and let n > 2 be an integer. Set R = M, (k) to be the ring
of n x m matrices with entries in k. For 1 <4,5 < n, let E;; be the matrixﬂ with a
1 in the (¢, ) position and 0’s elsewhere. Show that Rg = 0 where S = {Ej1}.

2. SUGGESTED EXERCISES (DON’T SUBMIT)

From Altman—Kleiman:

e Chapter 10: 22, 35
e Chapter 11: 2, 8, 18, 25, 32
e Chapter 12: 6, 8, 14, 28

3. FURTHER READING

The issues that come up in Exercise 5 illustrate that localization for noncommutative
rings can be subtle. See Chapter 4 of T.-Y. Lam, Lectures on Modules and Rings for more
information on noncommutative localization.

TA noncommutative monomial is a sequence of X’s and Y’s and we take the product by concatenating
them, e.g., (X3Y X2Y%)(YX?) = X3Y X?2Y®X?2 X and Y do not commute, but they do commute with the
elements of k, and a noncommutative polynomial is a finite linear combination of noncommutative monomials
with coefficients in k.

2These are called matrix units.
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