
LAGRANGE’S FOUR SQUARE THEOREM VIA CONVEX GEOMETRY

STEVEN V SAM

This document was originally written February 10, 2009 and was based on some notes I
took of a presentation given by Christian Haase in the summer of 2007. I’ve edited it and
expanded it a bit to make it more self-contained. I don’t know the original source but I’m
sure it’s something standard.

Theorem 1 (Lagrange). Every nonnegative integer can be written as a sum of four squares,
i.e., the function Z4

≥0 → Z≥0 given by (x, y, z, w) 7→ x2 + y2 + z2 + w2 is surjective.

First thing out of the way, it suffices to prove that every prime can be written as a sum
of four squares:

Lemma 2. If each of m and n can be written as a sum of four squares, then so can mn.

Proof. The fancy way to say this is that a2
1 + a2

2 + a2
3 + a2

4 is the square of the norm of the
quaternion a1 + a2i + a3j + a4k, and the norm is multiplicative.

More concretely, this says that (this is Euler’s four-square identity):

(a2
1 + a2

2 + a2
3 + a2

4)(b2
1 + b2

2 + b2
3 + b2

4)

= ((a1b1 − a2b2 − a3b3 − a4b4)2 + (a1b2 + a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 + a3b1 + a4b2)2 + (a1b4 + a2b3 − a3b2 + a4b1)2. �

Lemma 3. Let p be a prime number. There exist integers α, β such that α2 + β2 ≡ −1
(mod p).

Proof. If p = 2, take α = 1, β = 0. So we may assume that p is odd. Define

S := {α2 + pZ | 0 ≤ α < p/2} ⊆ Z/p,

i.e., we’re taking the residues of 02, 12, . . . , ((p/2)− 1)2 modulo p.
I claim that |S| = (p+ 1)/2, i.e., all of the squares above are distinct modulo p. To prove

this, choose 0 ≤ α, α′ < p/2 such that α2 ≡ α′2 (mod p). Then

(α + α′)(α− α′) = α2 − α′2 ≡ 0 (mod p),

and α+ α′ 6≡ 0 (mod p) since α+ α′ < p, which implies that α− α′ ≡ 0 (mod p) since Z/p
has no nonzerodivisors. Hence α = α′, which proves the claim.

Similarly, define

S ′ := {−1− β2 + pZ | 0 ≤ β < p/2} ⊆ Z/p.

Then |S ′| = (p+ 1)/2 (either same argument or simply note that S ′ is naturally in bijection
with S). Hence S ∩ S ′ 6= ∅ by the pigeonhole principle, so we can find α and β such that
α2 ≡ −1− β2 (mod p). �
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For the final step, we need to invoke some convex geometry. I’ll start with some definitions.
A lattice Λ is a discrete subgroup of Rd which spans Rd in the sense of vector spaces.

A more direct way to describe these is as follows: let {v1, . . . , vd} be a collection of linearly
independent vectors in Rd. Then the subgroup spanned by them is a lattice, and they all
arise in this way; we consider {v1, . . . , vd} as a basis for Λ.

If {v1, . . . , vd} is a basis for Λ, define the corresponding fundamental parallelepiped to
be the set

Π = {a1v1 + · · ·+ advd | 0 ≤ ai < 1}.
Then we have

vol Π = | det(v1 · · · vd)|
where we’re taking the determinant of the d × d matrix whose columns are v1, . . . , vd and
vol just means usual volume. Furthermore, this quantity does not depend on the choice of a
basis: the group GLn(Z) acts transitively on bases and the determinant of every matrix in
GLn(Z) is ±1, so we can define vol Λ = vol Π.1

Lemma 4 (Blichfeldt). Let Λ ⊂ Rd be a lattice and X ⊆ Rd be a measurable set. If
volX > vol Λ, then there exist distinct x, y ∈ X such that x− y ∈ Λ.

Proof. Let Π be a fundamental parallelepiped of Λ. Then Rd =
∐

u∈Λ Π+u (disjoint union),
and hence X =

∐
u∈ΛX ∩ (Π + u). Define Xu := (X − u) ∩ Π. Then

vol Π = vol Λ < volX =
∑
u∈Λ

vol(Xu + u) =
∑
u∈Λ

volXu.

Since each Xu ⊆ Π, there must exist distinct u, u′ ∈ Λ such that Xu ∩ Xu′ 6= ∅. Take
v ∈ Xu ∩Xu′ and set x = v + u and y = v + u′. �

Theorem 5 (Minkowski). Let Λ ⊂ Rd be a lattice and K ⊆ Rd be a centrally symmetric
(i.e., x ∈ K implies −x ∈ K) convex measurable set such that volK > 2d vol Λ. Then K
contains a nonzero element of Λ.

Proof. Set K ′ := 1
2
K = {1

2
x | x ∈ K}, so volK ′ = 1

2d
volK > vol Λ. Using Blichfeldt’s

lemma, there exist distinct x, y ∈ K ′ such that x−y ∈ Λ. Since K ′ is centrally symmetric, we
also have−y ∈ K ′, and so 2x,−2y ∈ K. Finally, by convexity, this means that x−y ∈ K. �

Now we can finish the proof.

Proof of Lagrange’s theorem. By Lemma 2, it suffices to prove that every prime p can be
written as a sum of four squares. Next, by Lemma 3, there exist integers α, β such that
α2 + β2 ≡ −1 (mod p). Define

Λ := {a ∈ Z4 | a1 ≡ αa3 + βa4 (mod p), a2 ≡ βa3 − αa4 (mod p)}.
Being a subgroup of Z4, it is clear that Λ is discrete. Also, the set {0, . . . , p− 1}2 × {(0, 0)}
surjects onto Z4/Λ under the projection, so Λ is a finite index subgroup of Z4, and hence is
lattice with vol Λ = |Z4/Λ| ≤ p2. Next, define the ball

B := {a ∈ R4 | ‖a‖ <
√

2p}.
This is convex, measurable, and centrally symmetric. Since

volB =
π2

2
(
√

2p)4 = 2π2p2 > 16p2 ≥ 24 vol Λ,

1I don’t think this is standard notation but it makes it easier for me to remember what it means.
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we can apply Minkowski’s theorem to find a ∈ Λ such that 0 < ‖a‖2 < 2p. Since ‖a‖2 =
a2

1 + a2
2 + a2

3 + a2
4, we conclude that (working modulo p):

‖a‖2 ≡ (αa3 + βa4)2 + (βa3 − αa4)2 + a2
3 + a2

4

≡ (α2 + β2 − 1)a2
3 + (α2 + β2 − 1)a2

4

≡ 0 (mod p),

and hence a2
1 + a2

2 + a2
3 + a2

4 is a positive integer multiple of p. Since 0 < ‖a‖2 < 2p, this
multiple must be 1. �


