LAGRANGE'S FOUR SQUARE THEOREM VIA CONVEX GEOMETRY

STEVEN V SAM

This document was originally written February 10, 2009 and was based on some notes I took of a presentation given by Christian Haase in the summer of 2007. I've edited it and expanded it a bit to make it more self-contained. I don't know the original source but I'm sure it's something standard.

Theorem 1 (Lagrange). Every nonnegative integer can be written as a sum of four squares, i.e., the function $\mathbf{Z}_{\geq 0}^{4} \rightarrow \mathbf{Z}_{\geq 0}$ given by $(x, y, z, w) \mapsto x^{2}+y^{2}+z^{2}+w^{2}$ is surjective.

First thing out of the way, it suffices to prove that every prime can be written as a sum of four squares:

Lemma 2. If each of m and n can be written as a sum of four squares, then so can mn.
Proof. The fancy way to say this is that $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ is the square of the norm of the quaternion $a_{1}+a_{2} \mathbf{i}+a_{3} \mathbf{j}+a_{4} \mathbf{k}$, and the norm is multiplicative.

More concretely, this says that (this is Euler's four-square identity):

$$
\begin{aligned}
& \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right) \\
= & \left(\left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right)^{2}+\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2}\right. \\
& \quad+\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right)^{2}+\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right)^{2} .
\end{aligned}
$$

Lemma 3. Let p be a prime number. There exist integers α, β such that $\alpha^{2}+\beta^{2} \equiv-1$ $(\bmod p)$.
Proof. If $p=2$, take $\alpha=1, \beta=0$. So we may assume that p is odd. Define

$$
S:=\left\{\alpha^{2}+p \mathbf{Z} \mid 0 \leq \alpha<p / 2\right\} \subseteq \mathbf{Z} / p
$$

i.e., we're taking the residues of $0^{2}, 1^{2}, \ldots,((p / 2)-1)^{2}$ modulo p.

I claim that $|S|=(p+1) / 2$, i.e., all of the squares above are distinct modulo p. To prove this, choose $0 \leq \alpha, \alpha^{\prime}<p / 2$ such that $\alpha^{2} \equiv \alpha^{\prime 2}(\bmod p)$. Then

$$
\left(\alpha+\alpha^{\prime}\right)\left(\alpha-\alpha^{\prime}\right)=\alpha^{2}-\alpha^{\prime 2} \equiv 0 \quad(\bmod p)
$$

and $\alpha+\alpha^{\prime} \not \equiv 0(\bmod p)$ since $\alpha+\alpha^{\prime}<p$, which implies that $\alpha-\alpha^{\prime} \equiv 0(\bmod p)$ since \mathbf{Z} / p has no nonzerodivisors. Hence $\alpha=\alpha^{\prime}$, which proves the claim.

Similarly, define

$$
S^{\prime}:=\left\{-1-\beta^{2}+p \mathbf{Z} \mid 0 \leq \beta<p / 2\right\} \subseteq \mathbf{Z} / p
$$

Then $\left|S^{\prime}\right|=(p+1) / 2$ (either same argument or simply note that S^{\prime} is naturally in bijection with S). Hence $S \cap S^{\prime} \neq \varnothing$ by the pigeonhole principle, so we can find α and β such that $\alpha^{2} \equiv-1-\beta^{2}(\bmod p)$.

For the final step, we need to invoke some convex geometry. I'll start with some definitions.
A lattice Λ is a discrete subgroup of \mathbf{R}^{d} which spans \mathbf{R}^{d} in the sense of vector spaces. A more direct way to describe these is as follows: let $\left\{v_{1}, \ldots, v_{d}\right\}$ be a collection of linearly independent vectors in \mathbf{R}^{d}. Then the subgroup spanned by them is a lattice, and they all arise in this way; we consider $\left\{v_{1}, \ldots, v_{d}\right\}$ as a basis for Λ.

If $\left\{v_{1}, \ldots, v_{d}\right\}$ is a basis for Λ, define the corresponding fundamental parallelepiped to be the set

$$
\Pi=\left\{a_{1} v_{1}+\cdots+a_{d} v_{d} \mid 0 \leq a_{i}<1\right\} .
$$

Then we have

$$
\operatorname{vol} \Pi=\left|\operatorname{det}\left(v_{1} \cdots v_{d}\right)\right|
$$

where we're taking the determinant of the $d \times d$ matrix whose columns are v_{1}, \ldots, v_{d} and vol just means usual volume. Furthermore, this quantity does not depend on the choice of a basis: the group $\mathbf{G L}_{n}(\mathbf{Z})$ acts transitively on bases and the determinant of every matrix in $\mathbf{G L} L_{n}(\mathbf{Z})$ is ± 1, so we can define $\operatorname{vol} \Lambda=\operatorname{vol} \Pi .^{1}$
Lemma 4 (Blichfeldt). Let $\Lambda \subset \mathbf{R}^{d}$ be a lattice and $X \subseteq \mathbf{R}^{d}$ be a measurable set. If $\operatorname{vol} X>\operatorname{vol} \Lambda$, then there exist distinct $x, y \in X$ such that $x-y \in \Lambda$.
Proof. Let Π be a fundamental parallelepiped of Λ. Then $\mathbf{R}^{d}=\coprod_{u \in \Lambda} \Pi+u$ (disjoint union), and hence $X=\coprod_{u \in \Lambda} X \cap(\Pi+u)$. Define $X_{u}:=(X-u) \cap \Pi$. Then

$$
\operatorname{vol} \Pi=\operatorname{vol} \Lambda<\operatorname{vol} X=\sum_{u \in \Lambda} \operatorname{vol}\left(X_{u}+u\right)=\sum_{u \in \Lambda} \operatorname{vol} X_{u} .
$$

Since each $X_{u} \subseteq \Pi$, there must exist distinct $u, u^{\prime} \in \Lambda$ such that $X_{u} \cap X_{u^{\prime}} \neq \varnothing$. Take $v \in X_{u} \cap X_{u^{\prime}}$ and set $x=v+u$ and $y=v+u^{\prime}$.
Theorem 5 (Minkowski). Let $\Lambda \subset \mathbf{R}^{d}$ be a lattice and $K \subseteq \mathbf{R}^{d}$ be a centrally symmetric (i.e., $x \in K$ implies $-x \in K$) convex measurable set such that $\operatorname{vol} K>2^{d} \operatorname{vol} \Lambda$. Then K contains a nonzero element of Λ.
Proof. Set $K^{\prime}:=\frac{1}{2} K=\left\{\left.\frac{1}{2} x \right\rvert\, x \in K\right\}$, so vol $K^{\prime}=\frac{1}{2^{d}} \operatorname{vol} K>\operatorname{vol} \Lambda$. Using Blichfeldt's lemma, there exist distinct $x, y \in K^{\prime}$ such that $x-y \in \Lambda$. Since K^{\prime} is centrally symmetric, we also have $-y \in K^{\prime}$, and so $2 x,-2 y \in K$. Finally, by convexity, this means that $x-y \in K$.

Now we can finish the proof.
Proof of Lagrange's theorem. By Lemma 2, it suffices to prove that every prime p can be written as a sum of four squares. Next, by Lemma 3, there exist integers α, β such that $\alpha^{2}+\beta^{2} \equiv-1(\bmod p)$. Define

$$
\Lambda:=\left\{\mathbf{a} \in \mathbf{Z}^{4} \mid a_{1} \equiv \alpha a_{3}+\beta a_{4} \quad(\bmod p), \quad a_{2} \equiv \beta a_{3}-\alpha a_{4} \quad(\bmod p)\right\}
$$

Being a subgroup of \mathbf{Z}^{4}, it is clear that Λ is discrete. Also, the set $\{0, \ldots, p-1\}^{2} \times\{(0,0)\}$ surjects onto \mathbf{Z}^{4} / Λ under the projection, so Λ is a finite index subgroup of \mathbf{Z}^{4}, and hence is lattice with $\operatorname{vol} \Lambda=\left|\mathbf{Z}^{4} / \Lambda\right| \leq p^{2}$. Next, define the ball

$$
B:=\left\{\mathbf{a} \in \mathbf{R}^{4} \mid\|\mathbf{a}\|<\sqrt{2 p}\right\} .
$$

This is convex, measurable, and centrally symmetric. Since

$$
\operatorname{vol} B=\frac{\pi^{2}}{2}(\sqrt{2 p})^{4}=2 \pi^{2} p^{2}>16 p^{2} \geq 2^{4} \operatorname{vol} \Lambda
$$

[^0]we can apply Minkowski's theorem to find $\mathbf{a} \in \Lambda$ such that $0<\|\mathbf{a}\|^{2}<2 p$. Since $\|\mathbf{a}\|^{2}=$ $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$, we conclude that (working modulo p):
\[

$$
\begin{aligned}
\|\mathbf{a}\|^{2} & \equiv\left(\alpha a_{3}+\beta a_{4}\right)^{2}+\left(\beta a_{3}-\alpha a_{4}\right)^{2}+a_{3}^{2}+a_{4}^{2} \\
& \equiv\left(\alpha^{2}+\beta^{2}-1\right) a_{3}^{2}+\left(\alpha^{2}+\beta^{2}-1\right) a_{4}^{2} \\
& \equiv 0 \quad(\bmod p),
\end{aligned}
$$
\]

and hence $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ is a positive integer multiple of p. Since $0<\|\mathbf{a}\|^{2}<2 p$, this multiple must be 1 .

[^0]: ${ }^{1}$ I don't think this is standard notation but it makes it easier for me to remember what it means.

