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The exposition here follows [K].

Definition 1. Let A be a ring. A derivation of A is a linear operator d : A→ A such that
d(xy) = d(x)y + xd(y) for all x, y ∈ A. A differential ring is a pair (A, d) where A is a
commutative ring and d is a derivation of A. An ideal I of A is called a differential ideal
if it is closed under d, i.e., for all x ∈ I, we have d(x) ∈ I. �

We will the following shorthand from calculus: d(x) is denoted x′ and for any positive
integer n, dn(x) is denoted x(n).

If I is an ideal of a ring A and S is any subset, recall that the quotient ideal is defined
as

(I : S) = {x ∈ A | xS ⊆ I},
which is in fact an ideal.

Proposition 2. If I is a radical differential ideal and S is any subset, then (I : S) is a
radical differential ideal.

Proof. If xnS ⊆ I for some positive integer n, then for any s ∈ S, we have (xs)n =
sn−1(xns) ∈ I and hence xs ∈ I since I is radical, and so x ∈ (I : S).

Next, suppose that x ∈ (I : S). Then for any s ∈ S, we have xs ∈ I by definition,
(xs)′ ∈ I since I is differential, and hence x′s(xs)′ ∈ I. On the other hand, we have
x′s(xs)′ = (x′s)2+(x′s′)(xs). The second term belongs to I since xs ∈ I and hence (x′s)2 ∈ I.
Since I is radical, we see that x′s ∈ I and hence x′ ∈ (I : S). �

If {Iα} is a collection of radical differential ideals, then the intersection
⋂
α Iα is again

radical and differential. Hence for any subset S, we can define 〈S〉1 to be the smallest radical
and differential ideal that contains S.

A radical differential ideal I is of finite type if there exists a finite subset S ⊆ A such
that I is the smallest radical differential ideal containing S.

Corollary 3. For any subsets S, T of A, we have 〈S〉〈T 〉 ⊆ 〈ST 〉 where ST = {xy | x ∈
S, y ∈ T}.

Proof. Given s ∈ S, we have T ⊆ (〈sT 〉 : {s}) by definition. By Proposition 2, (〈sT 〉 : {s})
is a radical differential ideal, and so it contains 〈T 〉 by definition. Also given s ∈ S, we have
〈sT 〉 ⊆ 〈ST 〉, so that s ∈ (〈ST 〉 : 〈T 〉). Again, (〈ST 〉 : 〈T 〉) is a radical differential ideal, so
it contains 〈S〉. �

Lemma 4. If I is a differential ideal and x is any element such that 〈x, I〉 is of finite type,
then there exist a1, . . . , ar ∈ I such that 〈x, I〉 = 〈x, a1, . . . , ar〉.
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1Kaplansky uses the notation {S} but this seems too confusing to me.
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Proof. Pick a finite generating set for 〈I, x〉. Then by definition, some power of each generator
can be built using finitely many operations of addition, multiplication, derivatives from the
elements x and some finite set of elements of I. Taking the union of these finitely many
elements of I gives a1, . . . , ar. �

Proposition 5. Let A be a differential ring containing the ring of rational numbers Q. If I
is a differential ideal, then its radical

√
I is also a differential ideal.

Proof. Suppose that x ∈
√
I, so that there exists a positive integer n such that xn ∈ I. We

will prove by induction that for all k = 1, . . . , n that xn−k(x′)2k−1 ∈ I. For the base case
k = 1, note that (xn)′ ∈ I since I is differential, and that we have (xn)′ = nxn−1x′. Since
Q ⊆ A, we see that xn−1x′ ∈ I as desired.

Next, suppose that xn−k(x′)2k−1 ∈ I for some 1 ≤ k < n. Then

I 3 d(xn−k(x′)2k−1) = (n− k)xn−k−1(x′)2k + (2k − 1)xn−k(x′)2k−2x′′.

Multiply the result by x′/(n − k); the second term belongs to I by assumption, and so
xn−k−1(x′)2k+1 ∈ I, which proves the induction step. Finally, taking k = n shows that

(x′)2n−1 ∈ I, i.e., x′ ∈
√
I. �

Remark 6. The statement can fail if we do not assume that Q ⊆ A. For example, consider
F2[x] with the usual derivative. Then the ideal (x2) is differential but its radical is (x), which
is not differential. �

In light of the above facts, we make the following definition.

Definition 7. A Ritt algebra is a differential ring which contains the ring of rational
numbers Q. �

The above results tell us that for a subset S of a Ritt algebra, 〈S〉 is the radical of
the smallest differential ideal containing S, i.e., we can first consider the differential ideal
generated by S and then take its radical.

Definition 8. Let (A, d) be a differential ring, and let x be an indeterminate. We define
A{x} to be polynomial ring A[x0, x1, . . . ] in countably many variables equipped with the
unique derivation (again called d) which agrees with d on A and satisfies d(xi) = xi+1 for all
i ≥ 0. This is the ring of differential polynomials in x and we will also use the following
notation: x0 = x and xn = x(n) for n > 0. �

Our goal now is to prove a differential analogue of the Hilbert basis theorem. Say that a
differential ring is d-noetherian if it satisfies the ascending chain condition on differential
ideals; equivalently, every differential ideal can be generated by a finite subset. The obvious
variant of the Hilbert basis theorem with d-noetherian rings turns out to fail, as the next
example shows.

Example 9. Let k be any field with the 0 derivation and let A = k{x}. Then k is certainly
d-noetherian. For each nonnegative integer n, let In be the differential ideal of A generated
by x2, (x′)2, . . . , (x(n))2. We claim that (x(n))2 /∈ In−1. To see this, note that applying the
derivation or multiplying by elements of A cannot decrease the degree of an element when
considered as a polynomial in x, x′, . . . , and so it suffices to show that (x(n))2 is not obtained
by taking k-linear combinations of derivatives of x2, (x′)2, . . . , (x(n−1))2. If we define the
“derivative degree” of x(i)x(j) to be i + j, then all elements of derivative degree 2n in In−1
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must be obtained by taking k-linear combinations of derivatives of x(a)x(b) with a+b = 2n−1.
We omit the routine check that this space does not contain (x(n))2. This implies that In is
properly contained in In+1 and hence A is not d-noetherian. �

Interestingly though, there is a workaround. Say that a differential ring A is topologically
d-noetherian if it satisfies the ascending chain condition on radical differential ideals.2 Then
the following variant can be proven.

Theorem 10 (Ritt-Raudenbush basis theorem). If A is a Ritt algebra which is topologically
d-noetherian, then A{x} is also topologically d-noetherian.

To prove the basis theorem, it is equivalent to show that every radical differential ideal in
a Ritt algebra is finite type.

Proposition 11. Consider a differential ring which is not topologically d-noetherian. Then
any maximal element I in the poset of radical differential ideals that are not finite type must
be a prime ideal.

Proof. If I is not prime, then there exist x, y /∈ I such that xy ∈ I. But then 〈I, x〉 and
〈I, y〉 both strictly contain I and hence must be finite type. By Lemma 4, there exist
e1, . . . , er ∈ I such that 〈I, x〉 = 〈x, e1, . . . , er〉 and similarly, there exist f1, . . . , fs ∈ I such
that 〈I, y〉 = 〈y, f1, . . . , fs〉. By Corollary 3, we have

I2 ⊆ 〈I, x〉〈I, y〉 ⊆ 〈{x, e1, . . . , er}{y, f1, . . . , fs}〉 ⊆ I.

Now apply radicals to each ideal and keep in mind that I is radical:

I ⊆
√
〈I, x〉〈I, y〉 ⊆ 〈{x, e1, . . . , er}{y, f1, . . . , fs}〉 ⊆ I.

This implies that all of these ideals are equal. Since the third ideal is finite type, we conclude
that I is as well. This is a contradiction, so we conclude that I must be a prime ideal. �

We develop a few things before proceeding to the proof of this theorem. Given α ∈ A{x},
there is an integer r so that we can write α as a polynomial in x, x′, . . . , x(r) with coefficients
in A. The order of α, written ord(α), is the largest r so that x(r) is actually used; if we
think of all other x, x′, . . . , x(r−1) as constants, then the degree of α, written deg(α), is
just its degree as a polynomial in x(r). If ord(α) = r and deg(α) = d, then we can write

α =
∑d

i=0 αi(x
(r))i where αi ∈ A[x, x′, . . . , x(r−1)]. Then αd is the leading coefficient of α,

denoted lc(α), and sep(α) =
∑d

i=1 iαi(x
(r))i−1 is the separant of α, i.e., the derivative of α

with respect to x(r) when thought of as a variable.

Example 12. If α = xx′+ (x(2))4 + x(2)(x(3))2 + x(3), then its order is 3, its degree is 2, and
its leading coefficient is lc(α) = x(2); its separant is sep(α) = 2x(2)x(3) + 1. �

Given α, β ∈ A{x} with α 6= 0, we say that β is below α if (ord(β), deg(β)) < (ord(α), deg(α))
with respect to lexicographic ordering. For any nonzero α, sep(α) and lc(α) are always below
α.

Lemma 13. Let A be a Ritt algebra and let α ∈ A{x} and let I be the differential ideal
in A{x} generated by α. Given any f ∈ A{x}, there exist nonnegative integers m,n and
g ∈ A{x} which is below α such that

lc(α)msep(α)nf − g ∈ I.
2“Topologically” refers to the fact that two ideals with the same radical define the same closed subset of

usual prime spectrum Spec(A).



4 STEVEN V SAM

Proof. Let r = ord(α) and d = deg(α). Then we can write α =
∑d

i=0 αi(x
(r))i where

αi ∈ A[x, x′, . . . , x(r−1)]. Then we have

α′ = sep(α)x(r+1) +
d∑
i=0

α′i(x
(r))i.

Denoting the sum by T1, we see that ord(T1) ≤ r. For general k, we get an expression of the
form

α(k) = sep(α)x(r+k) + Tk

where ord(Tk) ≤ r + k − 1.
Now we prove the result by induction on ord(f). If ord(f) < r, then we can take g = f

and m = n = 0. Next suppose that ord(f) = r. We will show by induction on deg(f) that
the result holds with n = 0. If deg(f) < d, then f is below α so we can take m = n = 0 and
g = f . Otherwise, if deg(f) ≥ d, then h = lc(α)f − lc(f)α has strictly smaller degree than
f , and so by induction, there exists m0 and g ∈ A{x} below α such that lc(α)m0h− g ∈ I.
This implies that lc(α)m0+1f − g ∈ I which proves the induction.

Finally, we deal with the case that ord(f) > r. Let k = ord(f)− r. Then h = sep(α)f −
lc(f)α(k) satisfies ord(h) < ord(f), so that by induction, there exist integers m,n0 and g ∈
A{x} below α such that lc(α)msep(α)n0h−g ∈ I. This implies that lc(α)msep(α)n0+1f−g ∈
I, which proves the induction. �

Proof of Theorem 10. Suppose the theorem fails, so that there is at least one radical differ-
ential ideal in A{x} which is not of finite type. Given a chain of such ideals, their union also
fails to be finite type, so we can use Zorn’s lemma to pick a radical differential ideal I which
is not of finite type and is maximal amongst all such ideals; I is prime by Proposition 11.

Then I ∩ A is finite type since A is topologically d-noetherian; let J be the radical dif-
ferential ideal generated by I ∩ A in A{x}. Then J ⊆ I; since J is finite type, it must be
strictly contained in I. Pick α ∈ I \J such that (ord(α), deg(α)) = (r, d) is minimal amongst
elements of I \ J . Then we can write

α = lc(α)(x(r))d + γ

for some γ which is below α. We claim that lc(α) /∈ I. If it were, then γ ∈ I. Since both
lc(α) and γ are below α, we must have lc(α), γ ∈ J . But that implies that α ∈ J , which is
a contradiction and the claim follows.

We also claim that the separant sep(α) is not in I. Suppose it does belong to I. Then
sep(α) it is below α, it belongs to J . But α − 1

d
x(r)sep(α) is also below α and belongs to I

so it must belong to J . Once again this implies that α ∈ J , which is a contradiction, so the
claim follows.

Next, let a = lc(α)sep(α). Then a /∈ I because I is prime. Hence 〈a, I〉 strictly contains
I so must be finite type. By Lemma 4, we can find e1, . . . , er so that 〈a, I〉 = 〈a, e1, . . . , er〉.
Let K be the differential ideal generated by α. Now pick f ∈ I. It follows from Lemma 13
that there exist integers m,n and g ∈ A{x} which is below α such that

lc(α)msep(α)nf − g ∈ K ⊆ I.

Since f ∈ I, we also have g ∈ I, and since g is below α, we in fact have g ∈ J . In particular,
af ∈ 〈α, J〉. Since this is true for any f ∈ I, we conclude that aI ⊆ 〈α, J〉. Now we use
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Corollary 3 to conclude that

I2 ⊆ 〈a, I〉I ⊆ 〈aI, e1I, . . . , erI〉 ⊆ 〈α, J, e1, . . . , er〉 ⊆ I.

Now take radicals to get

I ⊆
√
〈a, I〉I ⊆ 〈aI, e1I, . . . , erI〉 ⊆ 〈α, J, e1, . . . , er〉 ⊆ I,

which implies that all ideals in the above expression are equal. Since J is finite type, this
implies that I is as well, which is a contradiction. �
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