DICKSON INVARIANTS

STEVEN V SAM

Let q be a prime power, V a vector space of dimension n over the finite field \mathbf{F}_{q}, and $\mathbf{G L}(V)$ the group of invertible linear transformations on V. The goal of this note is to prove the following nice theorem of Dickson:

Theorem 1 (Dickson). The ring of invariants $\operatorname{Sym}(V)^{\mathbf{G L}(V)}$ is a polynomial algebra on n variables. The degrees of the generators are $q^{n}-q^{i}$ for $i=0, \ldots, n-1$. In particular, they are unique up to scalars.

From the theorem, we see that these generators aren't stable under base change. For example, if we extend scalars to some finite extension of \mathbf{F}_{q}, these are no longer invariants (by looking at degrees). This is consistent with the fact that if we replaced \mathbf{F}_{q} with its algebraic closure, then there are no non-constant invariants.

I'll follow the exposition in Wilkerson from http://www.math.purdue.edu/~wilker/ papers/dickson.pdf, but I found the notation slightly confusing, so I'm going to change it.

Choose a basis x_{1}, \ldots, x_{n} for V. Let K be the field of fractions of $\operatorname{Sym}(V)$, i.e., $K=$ $\mathbf{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$. Define a polynomial $f_{n}(t) \in K[t]$ by

$$
f_{n}(t)=\prod_{\lambda \in V}(t-\lambda) .
$$

Lemma 2. $f_{n}(t)$ can be written in the form

$$
f_{n}(t)=t^{q^{n}}+\sum_{i=0}^{n-1} c_{n, i} t^{t^{i}}
$$

where $c_{n_{i}} \in \mathbf{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ has degree $q^{n}-q^{i}$.
Proof. First consider the $(n+1) \times(n+1)$ matrix

$$
M_{n}(t)=\left(\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & x_{n} & t \\
x_{1}^{q} & x_{2}^{q} & \cdots & x_{n}^{q} & t^{q} \\
\vdots & & & & \\
x_{1}^{q^{n}} & x_{2}^{q^{n}} & \cdots & x_{n}^{q^{n}} & t^{q^{n}}
\end{array}\right)
$$

and let $\Delta_{n}(t)=\operatorname{det} M_{n}(t)$. Note that $\Delta_{n}(\lambda)=0$ whenever $\lambda \in V$ because $M_{n}(t)$ will have a linear dependency amongst its columns (since λ is a linear combination of the x_{i}). Since both $\Delta_{n}(t)$ and $f_{n}(t)$ are polynomials in t of degree q^{n}, and they have the same roots, we must have $\Delta_{n}(t)=c f_{n}(t)$ for some constant $c \in K$. But $f_{n}(t)$ is monic, and we can see that from the definition that the leading coefficient of $\Delta_{n}(t)$ is $\Delta_{n-1}\left(x_{n}\right)$, so $c=\Delta_{n-1}\left(x_{n}\right)$.

If $\Delta_{n-1}(t)$ is not identically 0 , then all of its roots lie in the span of $\left\{x_{1}, \ldots, x_{n-1}\right\}$, which implies that $\Delta_{n}(t)$ is not identically 0 . Since $\Delta_{1}(t)=x_{1} f_{1}(t) \neq 0$, we see that all of the $\Delta_{n}(t)$
are nonzero polynomials. Hence if we let C_{i} be the determinant of the submatrix of $M_{n}(t)$ obtained by deleting the last column and i th row, we see that $c_{n, i}=(-1)^{n-i} C_{i} / \Delta_{n-1}\left(x_{n}\right)$.

That $c_{n, i}$ is a polynomial in the x_{i} and has degree $q^{n}-q^{i}$ can be seen from the original definition of $f_{n}(t)$. Furthermore, $c_{n, i}$ is invariant under $\mathbf{G L}(V)$ because any change of basis can only scale $\Delta_{n}(t)$, and $\Delta_{n-1}\left(x_{n}\right)$ will also be scaled by the same amount. Also from the identity

$$
\prod_{\lambda \in V}(t-\lambda)=t^{q^{n}}+\sum_{i=0}^{n-1} c_{n, i} t^{q^{i}},
$$

we see that each $\lambda \in V \subset \operatorname{Sym}(V)$ satisfies a monic polynomial equation with coefficients in $R=\mathbf{F}_{q}\left[c_{n, 0}, \ldots, c_{n, n-1}\right]$, so the same is true for all of $\operatorname{Sym}(V)$ by basic properties of integral extensions of rings. Passing to their fields of fractions $F(R)$ and $F(\operatorname{Sym}(V))$, we get an algebraic extension, and hence both of them have the same transcendence degree (namely, n) over \mathbf{F}_{q}. Since R is generated by n elements over \mathbf{F}_{q}, they must be algebraically independent (we hadn't even shown they were nonzero previously!), so that R is a polynomial ring.

All that remains to show is that we have found all of the invariants. Note that $F(\operatorname{Sym}(V))$ is the splitting field over $F(R)$ of the polynomial $f_{n}(t)$, so it is in fact a Galois extension. Let W be the Galois group. Since $\mathbf{G L}(V)$ leaves $F(R)$ pointwise fixed, we have $\mathbf{G L}(V) \subseteq W$. On the other hand, W permutes the roots of $f_{n}(t)$, i.e., W acts on V. Furthermore, W acts \mathbf{F}_{q}-linearly on V since W acts by field automorphisms on $F(\operatorname{Sym}(V))$, and since W fixes \mathbf{F}_{q} pointwise. Hence $W \subseteq \mathbf{G L}(V)$ and hence we get equality $W=\mathbf{G L}(V)$.

This implies in particular that $F(\operatorname{Sym}(V))^{\mathbf{G L}(V)}=F(R)$, so that $\operatorname{Sym}(V)^{\mathbf{G L}(V)} \subset F(R)$. Finally, R is integrally closed (being a polynomial ring), and we have already seen that $\operatorname{Sym}(V)$ (and hence $\left.\operatorname{Sym}(V)^{\mathbf{G L}(V)}\right)$ is integral over R, so we conclude that $\operatorname{Sym}(V)^{\mathbf{G L}(V)}=R$.

