
DICKSON INVARIANTS

STEVEN V SAM

Let q be a prime power, V a vector space of dimension n over the finite field Fq, and
GL(V ) the group of invertible linear transformations on V . The goal of this note is to prove
the following nice theorem of Dickson:

Theorem 1 (Dickson). The ring of invariants Sym(V )GL(V ) is a polynomial algebra on n
variables. The degrees of the generators are qn − qi for i = 0, . . . , n− 1. In particular, they
are unique up to scalars.

From the theorem, we see that these generators aren’t stable under base change. For
example, if we extend scalars to some finite extension of Fq, these are no longer invariants
(by looking at degrees). This is consistent with the fact that if we replaced Fq with its
algebraic closure, then there are no non-constant invariants.

I’ll follow the exposition in Wilkerson from http://www.math.purdue.edu/~wilker/

papers/dickson.pdf, but I found the notation slightly confusing, so I’m going to change it.
Choose a basis x1, . . . , xn for V . Let K be the field of fractions of Sym(V ), i.e., K =

Fq(x1, . . . , xn). Define a polynomial fn(t) ∈ K[t] by

fn(t) =
∏
λ∈V

(t− λ).

Lemma 2. fn(t) can be written in the form

fn(t) = tq
n

+
n−1∑
i=0

cn,it
qi

where cni
∈ Fq[x1, . . . , xn] has degree qn − qi.

Proof. First consider the (n+ 1)× (n+ 1) matrix

Mn(t) =


x1 x2 · · · xn t
xq1 xq2 · · · xqn tq

...

xq
n

1 xq
n

2 · · · xq
n

n tq
n


and let ∆n(t) = detMn(t). Note that ∆n(λ) = 0 whenever λ ∈ V because Mn(t) will have
a linear dependency amongst its columns (since λ is a linear combination of the xi). Since
both ∆n(t) and fn(t) are polynomials in t of degree qn, and they have the same roots, we
must have ∆n(t) = cfn(t) for some constant c ∈ K. But fn(t) is monic, and we can see that
from the definition that the leading coefficient of ∆n(t) is ∆n−1(xn), so c = ∆n−1(xn).

If ∆n−1(t) is not identically 0, then all of its roots lie in the span of {x1, . . . , xn−1}, which
implies that ∆n(t) is not identically 0. Since ∆1(t) = x1f1(t) 6= 0, we see that all of the ∆n(t)
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are nonzero polynomials. Hence if we let Ci be the determinant of the submatrix of Mn(t)
obtained by deleting the last column and ith row, we see that cn,i = (−1)n−iCi/∆n−1(xn).

That cn,i is a polynomial in the xi and has degree qn − qi can be seen from the original
definition of fn(t). Furthermore, cn,i is invariant under GL(V ) because any change of basis
can only scale ∆n(t), and ∆n−1(xn) will also be scaled by the same amount. Also from the
identity ∏

λ∈V

(t− λ) = tq
n

+
n−1∑
i=0

cn,it
qi ,

we see that each λ ∈ V ⊂ Sym(V ) satisfies a monic polynomial equation with coefficients
in R = Fq[cn,0, . . . , cn,n−1], so the same is true for all of Sym(V ) by basic properties of
integral extensions of rings. Passing to their fields of fractions F (R) and F (Sym(V )), we
get an algebraic extension, and hence both of them have the same transcendence degree
(namely, n) over Fq. Since R is generated by n elements over Fq, they must be algebraically
independent (we hadn’t even shown they were nonzero previously!), so that R is a polynomial
ring. �

All that remains to show is that we have found all of the invariants. Note that F (Sym(V ))
is the splitting field over F (R) of the polynomial fn(t), so it is in fact a Galois extension. Let
W be the Galois group. Since GL(V ) leaves F (R) pointwise fixed, we have GL(V ) ⊆ W .
On the other hand, W permutes the roots of fn(t), i.e., W acts on V . Furthermore, W acts
Fq-linearly on V since W acts by field automorphisms on F (Sym(V )), and since W fixes Fq

pointwise. Hence W ⊆ GL(V ) and hence we get equality W = GL(V ).
This implies in particular that F (Sym(V ))GL(V ) = F (R), so that Sym(V )GL(V ) ⊂ F (R).

Finally, R is integrally closed (being a polynomial ring), and we have already seen that
Sym(V ) (and hence Sym(V )GL(V )) is integral over R, so we conclude that Sym(V )GL(V ) = R.


