Finite Coxeter Groups

\[(W, S) \rightarrow \Gamma \text{ Coxeter graph} \]
\[\text{vertex } = S\]
\[\text{between } s \neq t (s \neq t) \text{ draw } m(s, t) \geq 2 \text{ edges.}\]
\[\text{Represent by } \frac{s}{t} \text{ if } m(s, t) = 2\]
\[s \quad \text{if } m(s, t) = 3\]
\[(W, S) \text{ is irreducible if } \Gamma \text{ is connected} \]
\[\text{direct product of } \rightarrow \text{ disjoint union of graphs} \]
\[\text{+ direct sums of } \text{geometric representations} \]

\[G \subset \text{GL}(V) \text{ subgroup acts irreducible on } V \text{ if the only } \]
\[G\text{-invariant subspace of } V \text{ are } 0 \text{ and } V \text{ (} V \text{ is an irreducible representation of } G \text{)} \]

\[g \in \text{GL}(V) \text{ is a reflection if } \cdot g \text{ has finite order} \]
\[\text{im}(g - 1) \text{ is 1-dimensional} \]

Lemma. \[G \subset \text{GL}_n(\mathbb{R}) \text{ act irreducibly on } \mathbb{R}^n. \text{ Assume } G \text{ contains a reflection.} \]
\[= \exists \text{ unique bilinear form (up to scalar multiple) which is } G\text{-invariant} \]
\[(B(v, w) = B'(v', w')) \forall v, w \in \mathbb{R}^n \]
Furthermore, up to sign, this bilinear is symmetric + positive definite.

Proof. If \(B \neq 0\) nonzero \(G\)-invariant bilinear form ,
\[\mathbb{R}^n \rightarrow \left(\mathbb{R}^n\right)^* \text{ is a } G\text{-linear map} \]
\[v \rightarrow B(v, -) \quad \text{By irreducibility, this is an isomorphism.} \]
Let \(B\) be another \(G\)-invariant bilinear form. For any \(v \in \mathbb{R}^n, \)
\[\exists v' \in \mathbb{R}^n \text{ s.t. } B(v, -) = B'(v', -), \text{ if we set } y(v) = v', \]
then \(y : \mathbb{R}^n \rightarrow \mathbb{R}^n \text{ is } G\text{-linear.}\)
Let \(S \in G \) be a reflection, so \(\dim \text{Image}(1-S) = 1 \), let \((1-S)\mathbf{v} \) span it.
\[\varphi(1-S)\mathbf{v} = (1-S)\varphi\mathbf{v} = \alpha(1-S)\mathbf{v} \] for some \(\alpha \in \mathbb{R} \).

\(\alpha \) is eigenvalue for \(\varphi \), \(\varphi - \alpha I \) is also \(G \)-linear, its kernel is a nonzero \(G \)-invariant subspace. Irreducibility \(\Rightarrow \ker(\varphi - \alpha I) = \{0\} \)

\[\Rightarrow B' = \alpha B \]

Consider \(B(v,w) = \sum_{g \in G} g(v) \cdot g(w) \). symmetric, \(G \)-linear

If \(v \neq 0 \), then \(g(v) \cdot g(v) > 0 \) \(\forall g \in G \), \(\Rightarrow B(v,v) > 0 \).

\(\Rightarrow B \) is pos. definite.

(\(\blacksquare \))

Then (Maschke) \(U \) vector space/field of char. 0

\(G \subset GL(U) \) finite subgroup. If \(U' \subset U \) is \(G \)-invariant,

then \(\exists \) \(G \)-invariant subspace \(U'' \) which is complement to \(U' \), i.e.,

\[U + U'' = U \quad \& \quad U' \cap U'' = 0 \]

(\(\blacksquare \)). Pick any complementary subspace \(X \) to \(U' \). Let \(p: U \rightarrow U' \)

be projection w/ kernel \(X \). Then \(\frac{1}{|G|} \sum_{g \in G} g p \) is also a projection

which is \(G \)-linear. Let \(U'' \) be its kernel.

(\(\blacksquare \)).

Lemma. Let \((W,S) \) be Coxeter group. Assume \(\Pi \) connected

\& \(W \) is finite. Then \(W \) acts irreducibly on its geometric representation \(V \).

(\(\blacksquare \)). Pick \(V' \subset V \) \(W \)-invariant subspace, define \(S' = \{ s \in S \mid s \cdot V' \} \).

If \(v \in V' \), \(t \notin S' \) then \(s_t(v) - v = -2B(w(v),At)At \in V' \)

\[\Rightarrow B(w(v),At) = 0 \]. \(\Rightarrow \) no edges between \(S' \) and \(S \setminus S' \) in \(\Pi \).

\(\Pi \) connected \(\Rightarrow \) \(S' = S \) or \(S' = \emptyset \).
Case 1. \(S' = S \Rightarrow V = V' \) ✔

Case 2. \(S' = \emptyset \Rightarrow V' \leq \ker B_w \). We will show \(\ker B_w = 0 \).

Since \(\ker B_w \) is \(W \)-invariant, Marden gives "complement" \(V' \).

If \(V'' = V \), then \(\ker B_w = 0 \) ✔

Otherwise \(V'' \) is a proper subspace, \(\Rightarrow V'' \leq \ker B_w \).

Since \(V'' \cap \ker B_w = 0 \Rightarrow V'' = 0 \Rightarrow \ker B_w = V \implies \quad \square \)

\(\text{Rank} \). Fails if \(W \) infinite: If \(W = \text{infinite dihedral group}, S = \{s, t \} \), we saw that \(\text{span}(d, s + at) \) is a \(W \)-invariant subspace of \(V \).

Prop. \(W \) is finite \(\iff \) \(B_w \) is positive definite.

PF. Assume \(W \) finite, \(\psi \) geometric representation \(W \leq GL(V) \).

Suffices to assume \(\Pi \) is connected, \(\Rightarrow W \subset V \) is irreducible.

\(\Rightarrow B_w \) is either positive definite or negative definite.

\(B_w(a_s, a_s) = 1 \) \(\forall s \in S \Rightarrow \) positive definite.

Suppose \(B_w \) is positive definite. By picking orthonormal basis, group preserving \(B_w \) is \(\{ \psi \mid A^T A = I \} \), which is compact.

Closed & bounded in \(R^{n^2} \)

\(W \leq GL_n(\mathbb{R}) \) is discrete (by previous lecture)

Discrete + compact \(\Rightarrow \) Finite \(\square \)

Thm. Any finite subgroup \(G \leq GL_n(\mathbb{R}) \) generated by reflections is isomorphic to a Coxeter group.

PF. First, \(R^n \) has symmetric positive definite \(G \)-invariant bilinear form

\((v, w) = \sum g v \cdot g w \). Change basis so that this becomes dot product.
Given hyperplane \(H \subseteq \mathbb{R}^n \), let \(s_H \) be reflection which fixes \(H \) and negates a normal vector. \(H_G = \{ H \mid s_H \in G \} \)

\(\mathbb{R}^n \setminus \cup_{H \in H_G} H \) has finitely many components (called chambers).

Let \(C \) be chamber, \(\overline{C} = \text{closure of } C \).

\(S = \{ s_H \mid H \text{ bounds } \overline{C} \} \). Let \(G' = \text{group generated by } S \).

Claim: Every \(G' \)-orbit of a vector in \(\mathbb{R}^n \) has nonempty intersection with \(\overline{C} \).

Pick \(a \in C \), \(v \in \mathbb{R}^n \). \(G' \cdot v \) is finite \(\Rightarrow \exists \text{ element } v' \in G' \cdot v \) whose distance to \(a \) is minimized. If \(v' \notin \overline{C} \), \(\exists H \text{ bounding } \overline{C} \) s.t. \(a, v' \) are on separate sides of \(H \). \(s_H(v') \) is now closer to \(a \) \(\Rightarrow v' \in \overline{C} \).

Claim \(\Rightarrow G' \) applied to any chamber will contain \(C \)

\(\Rightarrow \) For any \(s_H \in G \), \(\exists g \in G' \) s.t. \(g s_H g^{-1} = s_H \) \(\in S \)

\(\Rightarrow s_H \in G' \Rightarrow G' \) contains all reflections of \(G \) \(\Rightarrow G' = G \).

For each \(s \in S \), let \(a_s \) be unit normal vector to \(\ker(s-1) \) pointing in direction of \(C \)

\((a_s, a) > 0 \) for all \(a \in C \)

& \((a_s, a_t) \leq 0 \) for \(s \neq t \). [Reduce to considering \(\text{span}(a_s, a_t) \)]

Claim: \(a_s \) are linearly independent.

Pf: Suppose we have \(\sum_{s \in S} c_s a_s = 0 \). Let \(v = \sum_{s \in S} c_s a_s \).

If \(v = 0 \), then no \(c_s \) are positive. If not, \(v = (a, v) = \sum_{s \in S} c_s (a, a_s) \).
\[a \in C \quad \Rightarrow \quad 0 = (a, \sum_{s} c_{s} a_{s}) = \sum_{s} c_{s} (a, a_{s}) \quad \forall c_{s} \leq 0, \text{dependency is trivial.} \]

If \(v \neq 0 \), so
\[
0 < (v, v) = \sum_{s \in S} \sum_{t \in S} c_{s} c_{t} (a_{s}, a_{t}) \quad \Rightarrow \quad 0
\]

For \(s, t \in S \), let \(m(s, t) = \text{order of } st \). By restricting to \(\text{span} \{a_{s}, a_{t}\} \), we can conclude that \((a_{s}, a_{t}) = -\cos \left(\frac{\theta}{m(s, t)} \right) \).

We have surjective homomorphism \(W \to G \) where \(W \) is Coxeter group defined by \(S, m \). \(V \) is geometric representation of \(W \)
\[
\Rightarrow \quad W \to GL(V) \text{ is injective} \quad \Rightarrow \quad W \cong G. \quad \square
\]