A \text{ coves}

\[D = \{ f \in V^* | f(x) = 0 \text{ for all } s \in S \} \]

\[E = \{ f \in V^* | f(x) = 1 \} \cong V \]

Let \(\alpha_1, \ldots, \alpha_n \) be simple roots for \(W \) acting on \(V \)

\(\check{\alpha} = \) highest root of \(W \)

Lemma. \(D \cap E = \left\{ e_0 + z \mid (z, \alpha_i) \geq 0 \text{ for } i = 1, \ldots, n \right\} \cup \left\{ (z, \check{\alpha}) \leq 1 \right\} \)

Proof. Pick \(e_0 + z \in D \cap E \). Then \((e_0 + z)(x) = 0 \) for all \(x \in S \).

\((e_0 + z)(s) = 1 \). Note: \(e_0(x) = 0 \) for all \(x \in S \), so \(z(x) \geq 0 \) for all \(x \in S \).

\(e_0(x_0) = 1 \Rightarrow z(x_0) \geq -1 \). When we identify \((V_a/V_{a_1})^* \cong V \), \(x \in S \) becomes \(\alpha_i \) for some \(i = 1, \ldots, n \) and \(x_0 \) becomes \(-\check{\alpha} \), so \((z, \alpha_i) \geq 0, i = 1, \ldots, n, \text{ and } (z, \check{\alpha}) \leq 1 \).

Conversely, if these hold, then \((e_0 + z)(x) = 0 \) for all \(x \in S \) and

\[1 = (e_0 + z)(s) = (e_0 + z)(x_0) + z(\delta - x_0) \]

\((z, \check{\alpha}) \leq 1 \) \(\Rightarrow (e_0 + z)(x_0) = 0 \). \(\square \)

Define \(A_0 = \left\{ v \in V \mid (v, \alpha_i) \geq 0 \text{ for } i = 1, \ldots, n, (v, \check{\alpha}) < 1 \right\} \)

\(A = \left\{ v \in V \mid (v, \alpha_i) \geq 0 \text{ for } i = 1, \ldots, n, (v, \check{\alpha}) \leq 1 \right\} \)

Fundamental alcove (Open simplex), \(A = \overline{A_0} \).

Each \(W_a \)-orbit in \(V \) intersects \(A \) in at most one point.

Proof. The \(W_a \)-orbit of \(A \) is \(V \).

Proof. Pick \(x \in A_0 \). Pick any \(v \in V \). Note: \(T_v \cdot \mu \) is a
discrete subset of V, since $W \uparrow T W \subseteq W$ is finite, $W \backslash \mu$ is also discrete. So $\exists \nu \in W \backslash \mu$ which minimizes distance to λ. If $\nu \in A$, done. Otherwise, \exists hyperplane that bounds A and separates λ, ν. Reflect across hyperplane to get point closer to λ, but this reflection belongs to $W \mu \rightarrow \nu$.

Ex. A_1 root system. $\Phi \cong \mathbb{R}$, $\Phi = \{2, -2\}$, so $\alpha_1 = 1$.

$A_\circ = (0, 1) \quad \begin{array}{cccccccc}
2 & 1 & 0 & 1 & 1 & 1 & 3 \\
\end{array}$

$\alpha_1 = e_1 - e_2$
$\alpha_2 = e_2 - e_3$
$\alpha_3 = e_1 - e_3$

A_2

\tilde{B}_2

\tilde{C}_2

Length Function we $W \backslash \mu$. $H = H_{x, k}$ separates A_\circ and $W \mu$ if they are on different sides of H.
\[L(w) = \{ H_{a,k} | H_{a,k} \text{ separates } A_0 \text{ & } wA_0 \} \]

\[H_{s_{0}} = H_{a,1}, \quad H_{s} = H_{s_{0}} \text{ for } s \in S. \]

Lemma. For \(s \in S_a, \quad L(s) = \{ H_{s} \}. \)

Proof. Clear that \(H_{s} \in L(s). \) Pick \(x \in A_0. \) Then \(0 < (x, x) < 1 \)
for all \(a \in \mathbb{R}^+. \) Pick \(t \in S_a \setminus \{ s_{0} \}. \) Then \((sx, xt) = (x, sa_{t}) \)
and \(sa_t > 0, \) so \(0 < (sx, xt) < 1 \). \(\Rightarrow \) \(A_0 \) and \(sA_0 \) are on
same side of \(H_{a,k} \) for any \(a \neq a_{s}. \) Since \((xs, x_{s}) = -(x, a_{s}) \)
and \(0 < (x, a_{s}) < 1, \) we see that \(H_{a_{s}, k} \) separates only for \(k = 0. \)

Lemma. Pick \(w \in w_a, \ s \in S_a. \)

1. \(H_s \) is in exactly one of \(L(w^{-1}) \) or \(L(sw^{-1}) \)
2. \(s(L(w^{-1}) \setminus \{ H_{s} \}) = L(sw^{-1}) \setminus \{ H_{s} \}. \)

Proof. (1) If \(x \in w^{-1}A_0, \) then \((a_{s}, sx) = -(a_{s}, x), \) so \(w^{-1}A_0 \)
and \(sw^{-1}A_0 \) are on different sides of \(H_s. \)

2. Suppose \(H \in L(w^{-1}) \setminus \{ H_{s} \}. \) Since \(SH_s = H_s, \) we know \(S \neq H_s \)
We claim \(sH \in L(sw^{-1}). \) If not, then \(sw^{-1}A_0 \) and \(A_0 \)
are on same side of \(sH. \) \(\Rightarrow \) \(w^{-1}A_0 \) and \(sA_0 \) are same side of \(H. \)
We know \(H \) separates \(w^{-1}A_0 \) and \(A_0. \) \(\Rightarrow \) \(H \) separates \(A_0 \) and \(sA_0. \)
By previous lemma \(\Rightarrow H = H_s. \) \(\Rightarrow \)
\[s(L(w^{-1}) \setminus \{ H_{s} \}) \subseteq L(sw^{-1}) \setminus \{ H_{s} \} \]
Reverse inclusion follows by symmetry.
Prop. Pick reduced expression \(w = s_{i_1} \ldots s_{i_r} \) for \(w \in \mathcal{W}_a \).

(1) The hyperplanes \(H_{s_{i_1}}, s_{i_1}H_{s_{i_2}}, \ldots, s_{i_1} \ldots s_{i_{r-1}} H_{s_{i_r}} \) are distinct.

(2) \[\mathcal{L}(w) = \phi \]

Proof. (1) If \(n \not\equiv 0 \mod 4 \), then \(s_{i_1} \ldots s_{i_{r-1}} H_{s_{i_r}} = s_{i_1} \ldots s_{i_{r-1}} H_{s_{i_r}} \)

\[\implies H_{s_{i_1} \ldots s_{i_{r-1}}} = H_{s_{i_1} \ldots s_{i_r}}. \]

From last lecture, we know \(\exists x \in L_{w_0} \) and \(u \in W_{s_{i_1} \ldots s_{i_{r-1}}} = L_w \).

\[\implies (s_{i_1} \ldots s_{i_{r-1}})(s_{i_1} \ldots s_{i_{r-1}})^{-1} = s_{i_1}. \]

\[\implies s_{i_1} \ldots s_{i_{r-1}} s_{i_r} = s_{i_1} \ldots s_{i_{r-1}}. \]

(2) Induction on \(l(w) \). \(l(w) = 0 \) clear.

Assume \(l(w) > 0 \). By induction

\[\mathcal{L}(s_{i_1} w) = \mathcal{L}(H_{s_{i_2}}, s_{i_2} H_{s_{i_3}}, \ldots, s_{i_2} \ldots s_{i_{r-1}} H_{s_{i_r}}) \]

and by (1), set has size \(r-1 \). Apply \(s_{i_1} \) to all to get another set of \(r-1 \) hyperplanes, not containing \(H_{s_{i_1}} \) by (1).

\[\implies \mathcal{L}(s_{i_1} w) \neq H_{s_{i_1}}. \]

By previous lemma, \(H_{s_{i_1}} \in \mathcal{L}(w) \) and

\[s_{i_1} (\mathcal{L}(w) \setminus \{H_{s_{i_1}}\}) = \mathcal{L}(s_{i_1} w). \]

Cor. For \(w \in \mathcal{W}_a \), \(l(w) = |\mathcal{L}(w)| \).