Ring of invariants

\[G = \text{finite group}, \quad G \subseteq A = \text{Sym}(V), \quad V \text{ complex vector space} \]

\[\mathcal{P} = \frac{1}{|G|} \sum_{g \in G} g, \quad \text{Define } f^\# = \mathcal{P}(f) \text{ for } f \in A \]

\[\text{Reynolds operator} \]

If \(f_1, f_2 \in A^G \), then \((f_1 f_2)^\# = f_1 f_2^\# \)

\[\mathcal{P}(f_1 f_2) = \frac{1}{|G|} \sum_{g \in G} g(f_1) g(f_2) = \frac{f_1}{|G|} \sum_{g \in G} g(f_2) = f_1 f_2^\# \]

\[\Rightarrow \quad \# : A \rightarrow A^G \text{ is a } A^G \text{-module homomorphism.} \]

\[+ \text{ surjective + preserves degrees} \]

Prop. Let \(I \subseteq A \) be ideal generated by \(A^G \):

\[I = \{ \sum \alpha_i f_i \mid f_i \in A^G, \alpha_i \in A \} \]

Suppose that \(f_1, \ldots, f_k \in A^G \) are positive degree homogeneous elements that generate \(I \). Then \(f_1, \ldots, f_k \) generate \(A^G \) as a \(\mathbb{C} \)-algebra.

Pf. Pick \(f \in A^G \). We show \(f \) is generated by \(f_1, \ldots, f_k \) by induction on \(\text{deg}(f) \).

\[f \in A^G \Rightarrow f \in I \Rightarrow \exists h_1, \ldots, h_k \in A \text{ homogeneous s.t. } f = h_1 f_1 + \ldots + h_k f_k. \]

Apply \(\# \):

\[f = f^\# = h_1^\# f_1 + \ldots + h_k^\# f_k. \]

Note \(\text{deg} h_i^\# + \text{deg} f_i = \text{deg} f \). By induction, \(h_i^\# \) is generated by \(f_1, \ldots, f_k \) as a \(\mathbb{C} \)-algebra. Substitute these expressions in for \(h_i^\# \) to get that \(f \) is generated by \(f_1, \ldots, f_k \) as \(\mathbb{C} \)-algebra. \(\square \)
Cor. \(AG \) is a finitely generated \(F \)-algebra.

Prf. \(I \) is f.g. by Hilbert basis thm. \(\square \)

Rmk. Proof extends to any field of characteristic 0.

In general, \(AG \) is f.g. (Noether) Let \(k \) be any field.

Let \(t \) be a new variable. For each \(i \), consider
\[
P_i(t) = \prod_{g \in G}(t - g x_i) \in A[t].
\]
In fact, \(p_i(t) \in AG[t] \).

Let \(B = \{ k \text{-subalgebra of } AG \text{ generated by the coeff. of } p_i(t) \text{ for all } i \} \). By definition, \(B \) is finitely generated over \(k \).

Furthermore, \(A \) is a finitely generated \(B \)-module:
\[
\{ x^j_i \mid i = 1, \ldots, n; 0 \leq j < |G| \} \text{ generates } A \text{ as a } B \text{-module:}
\]
\[
x_i^j = \text{ linear combination of lower powers of } x_i \text{ w/ coeff. in } B.
\]
Since \(p_i(x_i) = 0 \).

Next, \(AG \) is a \(B \)-submodule of \(A \). Hilbert basis thm \(\Rightarrow \)

\(AG \) is a f.g. \(B \)-module. A set of generators as \(B \)-module

together w/ generators for \(B \) give set of algebra generators for \(AG \). \(\square \)

Def. \(R \) integral domain, \(\text{Frac}(R) = \text{field of fractions} \)

Prop \(\text{Frac}(AG) = \text{Frac}((A)^G) \).

In particular, if \(G \) acts faithfully on \(V \), then \(\text{Frac}(H) \) is a degree \(|G| \) extension of \(\text{Frac}(A^G) \), and tr. deg. \(\text{Frac}(A^G) = n \).
\begin{proof}
\text{Frac}(A^G) \subseteq \text{Frac}(A)^G$. Pick \(\frac{p}{q} \in \text{Frac}(A)^G \).
Define \(q' = \prod_{g \in G} g \cdot p \). Then \(pp' \) is \(G \)-invariant. \(\frac{p}{q} = \frac{pp'}{q'} \).
\(q'p' \) is also \(G \)-invariant \(\Rightarrow \frac{p}{q} \in \text{Frac}(A^G) \).

In general, if \(G \subseteq \text{Aut}(K) \), then \(K \) is a degree \(|G| \) extension of \(KG \).

Since \(\text{tr.deg} \) is constant within finite extensions,
\[\text{tr.deg}(\text{Frac}(A^G)) = \text{tr.deg}(\text{Frac} A) = n. \]
\end{proof}