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1. Introduction

The main object of study in this course is the “category O” introduced by Bernstein,
Gelfand, and Gelfand in the study of representations of semisimple Lie algebras. This is a
certain category of well-behaved representations which includes all of the finite-dimensional
representations and makes use of the fact that semisimple Lie algebras have a certain “tri-
angular structure”. I’m not going to assume any specific background knowledge other than
algebraic fluency at the level of Math 200. I’ll start with examples and try to maintain doing
concrete examples throughout.

Otherwise, these notes are not meant to be polished, but rather they are written in a way
that makes it easy for me to remember what should be discussed during each lecture. They
should still be readable, though I can’t guarantee it will be enjoyable.

1.1. Basic definitions. First, we’ll almost exclusively be dealing with algebras over the
complex numbers C. A Lie algebra consists of a vector space g together with a bilinear
operation known as a “Lie bracket”

[, ] : g× g → g

which is:

• skew-symmetric ([x, y] = −[y, x] for all x, y ∈ g) and
• satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g.

Remark 1.1.1. There’s an important way to rephrase the Jacobi identity (subject to skew-
symmetry). Given x ∈ g, let adx : g → g be the linear map adx(y) = [x, y]. Then adx is a
derivation: for any y, z ∈ g, we have

adx([y, z]) = [adx(y), z] + [y, adx(z)].

Using skew-symmetry, you can see that requiring that adx is a derivation for all x is equivalent
to the Jacobi identity. □

Here’s an important example:

Example 1.1.2. Let A be any associative C-algebra. Define [x, y] = xy − yx (this is called
a commutator). Then this is a Lie bracket on the underlying vector space of A. The check
that the Jacobi identity holds is straightforward but not interesting to spell out. □

For each integer n ≥ 0, we let gln(C) (or just gln) denote the set of n×n complex matrices,
which we consider as a Lie algebra using the example above, i.e., [x, y] = xy− yx where the
product on the right side is the usual matrix multiplication.

Without appealing to bases, if V is a vector space (not necessarily finite-dimensional), let
gl(V ) denote the set of linear operators X : V → V , which is again a Lie algebra with the
bracket [X, Y ] = XY − Y X.

Given Lie algebras g, g′, a homomorphism φ : g → g′ is a linear map such that

[φ(x), φ(y)] = φ([x, y])

for all x, y ∈ g. This lets us define a representation of g as a homomorphism φ : g → gl(V )
for some vector space V . Usually, V denotes the representation and the information φ is
understood from context.
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For x ∈ g and v ∈ V , we usually just write xv instead of φ(x)(v).

Example 1.1.3. For any g, the linear map ad: g → gl(g) is a representation, called the
adjoint representation. □

Example 1.1.4. Let g = gln(C) and let Ei,j denote the matrix with a 1 in row i, column
j, and 0’s elsewhere. Take V = C[z1, . . . , zn], the space of polynomials in n variables and
define φ : g → gl(V ) by

φ(Ei,j) = zi∂j

where ∂j means partial derivative with respect to the variable zj and zi here means the
operation of multiplying by zi. In other words, given f ∈ V , we have

(zi∂j)f = zi
∂f

∂zj
.

Since the Ei,j are a basis, this defines a linear map. To verify that this is a Lie algebra
homomorphism, by linearity it is enough to show that

φ([Ei,j, Ek,ℓ]) = [φ(Ei,j), φ(Ek,ℓ)]

for all i, j, k, ℓ. Here are the relevant formulas. First,

[Ei,j, Ek,ℓ] = δj,kEi,ℓ − δi,ℓEk,j

where δ is the Kronecker delta, i.e., δj,k =

{
1 if j = k

0 otherwise
.

Second, to compute commutators between zi∂j, we make a few observations: multiplying
by variables is commutative, as is taking partial derivatives. Second, ∂j and zk commute if
j ̸= k. Otherwise, we have

∂izi − zi∂i = id

as can be verified by applying both sides to an arbitrary polynomial. This can be more
suggestively rewritten as

∂jzk = zk∂j + δk,jid.

Putting this together gives

[zi∂j, zk∂ℓ] = δj,kzi∂ℓ − δi,ℓzk∂j.

Next, note that each operator zi∂j preserves degree: if f ∈ V is homogeneous of degree
d, then so is zi∂jf . Since V is the symmetric algebra on Cn, we will also denote this
by Sym(Cn). Let Symd(Cn) ⊂ V be the subspace of homogeneous polynomials of degree
d. Then each Symd(Cn) is invariant under the action of g and we have representations
φd : g → gl(Symd(Cn)) given by the same formulas. □

Finally, an annoying point: gln is natural to work with, but it is not a semisimple Lie
algebra (to be defined later). Instead it has a (simple) subalgebra sln which is the subspace
of matrices whose trace is 0 (note that Tr(xy − yx) = 0 for any n× n matrices x, y, so this
is actually a subalgebra).
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1.2. Basic operations. There are a bunch of standard algebraic notions.

• If V is a representation of g, then a subspace W ⊆ V is a subrepresentation if, for
all x ∈ g and for all v ∈ W , we have xv ∈ W . In that case, the quotient space V/W
has a natural structure of a representation called the quotient representation.

An ideal of g is a subrepresentation of the adjoint representation. In other words,
a subspace a ⊆ g such that for all x ∈ g and y ∈ a, we have [x, y] ∈ a.

• Given a representation V , the dual representation on the linear dual V ∗ is defined
by (x ∈ g, f ∈ V ∗, v ∈ V )

(xf)(v) = −f(xv).

• Let V,W be representations of g.
– The direct sum representation on V ⊕W is given by x(v, w) = (xv, xw).
– The tensor product representation on V ⊗W is given by

x(
∑
i

vi ⊗ wi) =
∑
i

(xvi ⊗ wi + vi ⊗ xwi).

– The space of linear maps V → W is denoted Hom(V,W ). Given φ : V → W
and x ∈ g, we define an action by

(xf)(v) = x(f(v))− f(xv).

If W = C is trivial, this agrees with the dual representation on V ∗. If V is
finite-dimensional, this is isomorphic to V ∗ ⊗ W . Finally, f : V → W is a
homomorphism if and only if xf = 0 for all x ∈ g.

1.3. Representations of sl2. Now let’s take a look at the representation V = Symd(Cn)
more carefully in the case n = 2. In this case, there is a standard naming convention for
basis elements of sl2:

Y =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
.

The obvious basis for V is {zd1 , zd−1
1 z2, . . . , z1z

d−1
2 , zd2}. Let’s consider the action of the diag-

onal matrix H. Under φ, we have

H =

[
1 0
0 −1

]
7→ z1∂1 − z2∂2.

Each basis element is in fact an eigenvector for φ(H) since

(z1∂1 − z2∂2)z
d−i
1 zi2 = (d− 2i)zd−i1 zi2.

We’ll express this by saying that each zd−i1 zi2 is a weight vector and that its weight is
d− 2i (I’ll give the general setup and definitions later).
Next, consider the strictly upper-triangular matrix:

X =

[
0 1
0 0

]
7→ z1∂2.

This moves between the weight vectors:

(z1∂2)z
d−i
2 zi2 = iz

d−(i−1)
1 zi−1

2 .
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We can interpret this as saying that X increases the weight. Similarly, the strictly lower-
triangular matrix Y decreases the weight. We say that d is the “highest weight” of this
representation.

Now consider a general representation V of sl2 and for each complex number α let Vα be
the subspace of eigenvectors for H with eigenvalue α.

To understand what properties we might expect, let’s start with some useful formulas:

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

Lemma 1.3.1. Let β be a weight. If v ∈ Vβ, then Xv ∈ Vβ+2 and Y v ∈ Vβ−2.

Proof. We have (HX − XH)v = 2Xv since [H,X] = 2X. Since v ∈ Vβ, this simplifies to
HXv = (β + 2)Xv, so Xv ∈ Vβ+2. The other statement is similar. □

Note that this implies that if v ∈ Vα and α is a highest weight, then Xv = 0. Let’s
formalize this:

Definition 1.3.2. A weight vector v ∈ V is a highest weight vector if Xv = 0. □

Define the partial ordering on weights: β ≤ α means that α− β ∈ 2Z≥0.
We’ll say that V is a highest weight representation of highest weight α if

• dimVα = 1,
• α is the unique maximal weight of V , i.e., if Vβ ̸= 0 then β ≤ α, and
• Vα generates V , i.e., any subrepresentation containing Vα must be all of V .

All of these properties are satisfied by Symd(C2) with α = d.
This is the kind of phenomenon we’re trying to capture with a “triangular structure”:

we want to decompose our algebra into 3 pieces: (strictly) upper-triangular, diagonal, and
(strictly) lower-triangular and we want a good theory of highest weight representations.

If V is a highest weight representation with highest weight α, then Vα is spanned by
highest weight vectors, but there could be other highest weight vectors (the terminology is
a little confusing, but fairly standard, so keep this in mind).

Now V is a highest weight representation of highest weight α and pick nonzero v0 ∈ Vα
and define vi = Y iv0 for all i. We already know that vi ∈ Vα−2i (but vi may be 0).

Lemma 1.3.3. We have Xvi = i(α− i+ 1)vi−1.

Proof. By induction on i: if i = 0, then Xv0 = 0 by assumption that Vα+2 = 0. In general,
we have

Xvi = XY iv0 = Y XY i−1v0 +HY i−1v0

= Y Xvi−1 + (α− 2i+ 2)vi−1

= (i− 1)(α− i+ 2)Y vi−2 + (α− 2i+ 2)vi−1

= i(α− i+ 1)vi−1. □

Here are a few consequences of this statement:

• V is spanned by v0, v1, v2, . . . .
• If α ∈ C \ Z≥0, then V is irreducible, and vi ̸= 0 for all i ≥ 0. First, the expression
i(α− i+1) is never 0 for i > 0, so any subrepresentation containing a nonzero weight
vector must be all of V . Furthermore, every nonzero subrepresentation contains a
nonzero weight vector.
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This is just a general statement about eigenvectors, so suppose w = w1 + · · ·+wn
is a sum where each wi is an eigenvector of an operator H with eigenvalue λi and all
λi are distinct. Then

(H − λ1)(H − λ2) · · · (H − λn−1)w = (λn − λ1) · · · (λn − λn−1)wn.

• On the other hand, if α ∈ Z≥0, then the span of {vi | i ≥ α+1} is a subrepresentation
V ′ of V and vi ̸= 0 for i ≤ α. Actually there are two possibilities here. As we’ve seen
with Symα(C2), the space of polynomials of degree α, we could have V ′ = 0. But
we can also have V ′ ̸= 0, and we’ll construct an example shortly. In the latter case,
vα+1 gives a highest weight vector of weight −α − 2, which is not itself the highest
weight in V . Furthermore, V ′ is irreducible since −α− 2 /∈ Z≥0.

1.4. Roadmap. Here’s the plan for what we should discuss (not necessarily in this order):

• Definition and classification of semisimple Lie algebras (omitting proofs)
• Generalization of above setup for sl2: highest weight representations and weight
spaces. Construction of “free” highest weight representations (= Verma modules).

• Enveloping algebras used in previous step, so need to discuss basic properties.
• Classification of finite-dimensional representations using highest weight theory (omit-
ting proofs), can realize all as quotients of Verma modules.

• The theory has many rich combinatorial gadgets (roots, weights, Weyl groups, etc.)
and I’ll spell this out as concretely as possible for classical series of semisimple Lie
algebras.

• Category O: Verma modules aren’t finite-dimensional, so would be good to have a
well-behaved category of representations that contains both them and finite-dimensional
representations (studying all representations is too unwieldy).

After that we might do some more advanced topics depending on time left over and interest
from audience.

2. Enveloping algebras

2.1. Definition. For this definition, let g be an arbitrary Lie algebra (over any field k). Let
T(g) denote the tensor algebra, i.e.,

T (g) =
⊕
n≥0

g⊗n

(g⊗0 = k). This is an algebra with the concatenation product, i.e., given xi, yj ∈ g, we define
the product on simple tensors by

(x1 ⊗ · · · ⊗ xm)(y1 ⊗ · · · ⊗ yn) = x1 ⊗ · · · ⊗ xm ⊗ y1 ⊗ · · · ⊗ yn

and extend linearly for arbitrary elements. This is a graded algebra with T(g)n = g⊗n

generated by its degree 1 piece T(g)1.
The enveloping algebra of g, denoted U(g), is the quotient of T(g) by the 2-sided ideal

generated by

x⊗ y − y ⊗ x− [x, y]

for all choices of x, y ∈ g. Here note that x ⊗ y − y ⊗ x ∈ T(g)2 and [x, y] ∈ T(g)1, so the
relations are not homogeneous in general (except for the very special case when [x, y] = 0 for
all x, y, see next example), so U(g) generally has no obvious structure of a graded algebra.
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Example 2.1.1. Consider the special case of an abelian Lie algebra g where the bracket is
always 0. Then the relations in U(g) simply say that the generators in T(g)1 all commute
with each other, and we can identify it with the symmetric algebra on g. If we pick a basis
{xi} for g, then U(g) is also isomorphic to the polynomial ring with variables xi. □

U(g) satisfies a universal property. Suppose that A is an associative k-algebra and f : g →
A is a linear map satisfying

f([x, y]) = f(x)f(y)− f(y)f(x).

Then this extends uniquely to an algebra homomorphism f : U(g) → A.
In particular, suppose that V is a representation of g. Then we can take A = gl(V ) which

is an associative algebra with the usual product. Then the representation extends to an
algebra homomorphism U(g) → gl(V ), which gives V the structure of a left U(g)-module.
This gives the following important fact (after verifying some routine details):

Proposition 2.1.2. The above correspondence defines an equivalence of categories between
the category of g-representations and the category of left U(g)-modules.

Remark 2.1.3. If you’re familiar with group representations, then there is a similar result
where U(g) is taking the role of the group algebra. □

Remark 2.1.4. Consider the linear map f : g → U(g)⊗U(g) given by f(x) = x⊗ 1+1⊗x.
Define an algebra structure on U(g)⊗U(g) by (x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ y1y2 and extend
linearly. Then we can check that

f([x, y]) = f(x)f(y)− f(y)f(x)

so we get an algebra homomorphism U(g) → U(g) ⊗ U(g) which we denote by ∆ and call
comultiplication. This gives U(g) the structure of a Hopf algebra and is responsible for the
formula for tensor product representations. □

The algebra U(g) has an important filtration: for n ≥ 0, let F n denote the image of⊕n
i=0 g

⊗i under the quotient map T (g) → U(g) (and set F n = 0 for n < 0). If x ∈ Fm and
y ∈ F n, then xy ∈ Fm+n, which means that the associated graded space

grF • =
⊕
n≥0

F n/F n−1.

inherits an algebra structure. It can be checked (e.g., by induction) that if x ∈ Fm and y ∈
F n, then xy−yx ∈ Fm+n−1, which means that grF • is a commutative algebra. Furthermore,
it is generated by the image of F 1 and F 0 = k. So if we pick a basis {xi}i∈I for g, then we
get a surjective map from the polynomial ring

k[xi | i ∈ I] → grF •.

This gives the following important result.

Proposition 2.1.5. If dim g <∞, then U(g) is left-noetherian (and also right-noetherian).

Proof. First, given a left ideal J of U(g), we define a filtration on it by F nJ = F n ∩ J . I’ll
leave these checks as exercises:

(1) grF •J :=
⊕

n≥0 F
nJ/F n−1J is an ideal of grF •.

(2) If J ⫋ J ′ is a strict inclusion of left ideals in U(g), then we get a strict inclusion
grF •J ⫋ grF •J ′.
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If U(g) were not left-noetherian, there is an infinite chain of strict inclusions of left ideals.
This leads to one inside grF •, but that violates the Hilbert basis theorem. You can also do
the above with “left” replaced by “right”. □

Remark 2.1.6. Curiously, it is not known whether U(g) being left-noetherian implies that
dim g <∞. In other words, if g is infinite-dimensional, we might expect that U(g) is not left-
noetherian. This is known for various classes of Lie algebras, but the general problem is open.
The above argument breaks down but that doesn’t say anything about the problem. □

2.2. PBW basis. Pick a basis {xi}i∈I for g along with a total ordering on the index set
I (for our applications, I is going to be finite, but we don’t need to make that restriction
here).

First note that the simple tensors xi1⊗· · ·⊗xin form a basis for the tensor algebra T(g) and
hence give a spanning set for U(g). For the moment, let’s call these elements “monomials”
and we’ll call it an “ordered monomial” if i1 ≤ · · · ≤ in. Note that every monomial can be
written as a linear combination of ordered monomials: if i > j, then we have

· · ·xi ⊗ xj · · · = · · ·xj ⊗ xi · · ·+ · · · [xi, xj] · · · .
The second term has strictly smaller degree while the first term has less inversions (pairs, not
necessarily consecutive, that are out of order) in its index set, so this process will eventually
terminate.

Theorem 2.2.1 (Poincaré, Birkhoff, Witt; PBW theorem). The set of ordered monomials
is a basis for U(g).

We will not discuss the proof.

Corollary 2.2.2. The natural map g → U(g) given by x 7→ x is injective.

Proof. A basis for g maps to a linearly independent set of U(g). □

Corollary 2.2.3. If a ⊂ g is a Lie subalgebra, then the natural map U(a) → U(g) is injective,
and U(g) is free as a left (or right) U(a)-module.

Proof. Pick a basis {xi}i∈I for a and extend it to a basis {xi}i∈J for g. If we order them
so that i < j for all i ∈ I and j ∈ J \ I, then the PBW theorem tells us that the set of
increasing monomials using the basis vectors indexed by J \ I give a basis for U(g) as a left
U(a)-module. For the statement about right modules, we can instead order J so that i > j
for all i ∈ I and j ∈ J \ I. □

2.3. Induction. Let a ⊂ g be a Lie subalgebra of g and let M be a representation of a.
This is equivalently a left U(a)-module. Also, U(g) is naturally a right U(a)-module, so we
can define the tensor product:

Indg
a(M) := U(g)⊗U(a) M.

Recall that this just means the usual tensor product (of abelian groups) U(g)⊗M modulo
the relations xa ⊗ m = x ⊗ am for all x ∈ U(g), a ∈ U(a), and m ∈ M . This has the
structure of a left U(g)-module via

x(y ⊗m) = xy ⊗m

for all x, y ∈ U(g) and m ∈ M (this is well-defined since U(g) is associative). The resulting
U(g)-module (or g-representation) is called the induction of M from a to g.
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The PBW theorem lets us write down a basis for the induction as follows. First, pick a
basis {zk}k∈K for M . Next, pick a basis {xi}i∈I for a and extend it to a basis {xi}i∈J for g.
Order J so that i > j for all i ∈ I and j ∈ J \ I. Then the set

{xj1 ⊗ · · · ⊗ xjn ⊗ zk | j1 ≤ · · · ≤ jn ∈ J \ I, k ∈ K}
is the desired basis for Indg

a(M). It can be a bit unwieldy to compute the action of g on this
basis, but we have a well-defined procedure: given y ∈ g and a basis element xj1⊗· · ·⊗xjn⊗zk
as above, we first rewrite y⊗xj1 ⊗· · ·⊗xjn as a linear combination of increasing monomials.
In any such monomial, say xj′1 ⊗· · ·⊗xj′d , if j

′
r, j

′
r+1, . . . , j

′
d ∈ I and j′r−1 /∈ I, then we replace

the term
xj′1 ⊗ · · · ⊗ xj′d ⊗ zk

with
xj′1 ⊗ · · · ⊗ xj′r−1

⊗ x′jr · · ·x
′
jd
zk.

3. Back to sl2

Now let’s take g = sl2. Recall the basis we’re using

Y =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
.

3.1. Verma modules. Let h be the span of H, which is an abelian subalgebra of g and let
b be the span of H,X. Note that we have a quotient map b → h (since the span of X is an
ideal). So any representation of h can be pulled back to give a representation of b (on which
X acts by 0).

Going back to our definitions, given a representation V of sl2, a vector v ∈ V is a highest
weight vector if Xv = 0 and v is a weight vector, say v ∈ Vα. Note that this is equivalent to
the span of v being a b-subrepresentation of V .
To formalize this, pick α ∈ C. Then we get a one-dimensional representation h → gl1

which sends H to the 1 × 1 matrix (α). Let’s call this representation Cα and let z ∈ Cα

denote 1 to avoid confusing notation. This can also be made into a b-representation on which
X acts by 0 by the above comments, and we’ll continue to use the notation Cα.

Then the highest weight vectors of V with weight α are parameterized by the space

Homb(Cα, V ).

By hom-tensor adjunction, this is the same as

Homg(Ind
g
bCα, V ).

Let’s define M(α) = Indg
bCα and call it a Verma module. In particular, if V is a highest

weight representation of highest weight α, then it is a quotient of M(α).
Now let’s analyzeM(α). First, it is itself a highest weight representation of highest weight

α since it’s generated by the vector 1⊗ z and X(1⊗ z) = 1⊗Xz = 0.
Using the notation from last time, we define

v0 = 1⊗ z, vi = Y i ⊗ z (i ≥ 1).

For uniformity, write Y 0 for 1. We see that the vi form a basis for M(α) (in fact, the PBW
basis if we order the basis vectors Y < H < X).

Now let’s compute the action of g on M(α). We’ve seen how this works before, but let’s
do it again using this new context to practice the PBW rewriting rule.
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First, the easy one:

Y vi = Y (Y i ⊗ z) = Y i+1 ⊗ z = vi+1

and no rewriting needs to be done.
Now consider the action of H. If i = 0, no rewriting is needed and we have H(1 ⊗ z) =

1⊗Hz = α(1⊗ z). For i > 0, we have HY i = Y HY i−1 − 2Y i since [H,Y ] = −2Y . In other
words, each time the H moves past a Y , it creates −2 copies of vi, so we have

H(Y i ⊗ z) = Y i ⊗Hz − 2i(Y i ⊗ z) = (α− 2i)(Y i ⊗ z).

Finally, the action of X is a little more complicated. First, X(1⊗ z) = 0 as we saw. For
i > 0, we have (using what we just computed)

X(Y i ⊗ z) = Y XY i−1 ⊗ z +HY i−1 ⊗ z = Y XY i−1 ⊗ z + (α− 2i+ 2)(Y i−1 ⊗ z).

Iterating this i− 1 times will give us what we had before:

X(Y i ⊗ z) = i(α− i+ 1)(Y i−1 ⊗ z).

Let’s summarize a few points:

• If α /∈ Z≥0, then the only highest weight vector in M(α) is v0. In particular,

Homg(M(β),M(α)) =

{
0 if β ̸= α

C if β = α
.

In this case, M(α) is an irreducible representation.
• If α ∈ Z≥0, then vα+1 is a highest weight vector of weight −α − 2, and this is the
only new one besides v0 (ignoring scalar multiples). The g-submodule generated by
vα+1 is the span of vi for i ≥ α + 1. This is also the image of the map

M(−α− 2) →M(α).

By construction, this map is given by Y i⊗z 7→ Y i+α+1⊗z, so it is injective by PBW.
The quotient by this subrepresentation (or the cokernel of this map) can be shown
to be isomorphic to the space of homogeneous polynomials in 2 variables of degree
α (which we discussed earlier). Furthermore, M(−α− 2) is irreducible (either using
the previous case or the explicit analysis here).

Next we’d like to generalize this setup for general semisimple Lie algebras, so we’ll work
on introducing what they are after the next example.

3.2. Spherical harmonics. Here’s another example to illustrate highest weight represen-
tations of sl2.
Consider the polynomial ring P = C[z1, . . . , zn] and the quadratic polynomial

q = z21 + z22 + · · ·+ z2n.

The group of invertible linear change of coordinates that preserves q is an orthogonal group
On(C) (think of it as a complexified version of the usual real orthogonal group). We’ll be
interested in operators that commute with the action of On(C). We will think of q as the
operator of multiplication by q.

First, multiplication by q commutes with On(C) by definition. Second, so does the Lapla-
cian

∆ = ∂21 + ∂22 + · · ·+ ∂2n.
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Now define the Euler operator

E = z1∂1 + · · ·+ zn∂n.

Note that if f is homogeneous, then Ef = (deg f)f , so this also commutes with On(C).
Here are their commutator relations:

[E, q] = 2q, [E,∆] = −2∆, [∆, q] = 4E + 2nI,

where I just means the identity operator.
To check these, we can reduce to the case n = 1 because distinct variables and derivatives

commute with each other. In the n = 1 case, we can write out the commutators explicitly
and then repeatedly use the relation z∂ = ∂z − I (to do this systematically, we want every
term to have all ∂ before z, this is similar to the PBW basis idea). An alternative is to just
check that both sides of each identity do exactly the same thing to any polynomial f .
Comparing this with the relations for sl2 (recall they are [H,X] = 2X, [H,Y ] = −2Y ,

[X, Y ] = H), we can define a representation ρ : sl2 → gl(P ) by

ρ(X) =
1

2
∆, ρ(H) = −E − n

2
I, ρ(Y ) = −1

2
q.

Let’s consider the module structure for n = 1 (I’ll write some exercises for the n > 1 case).
In this case, P is a clearly a direct sum of Podd, the span of z, z3, z5, . . . , and Peven, the span
of 1, z2, z4, . . . .

Then Podd is a highest weight representation with the highest weight being spanned by z.
We have

Hz = −Ez − 1

2
z = −3

2
z.

So we see that Podd
∼= M(−3

2
), the Verma module with highest weight −3

2
. Similarly,

Peven
∼= M(−1

2
). In this case, O1(C) ∼= {1,−1} and −1 acts on Podd by −1 and on Podd by

1.
In general, On(C) has more complicated representations, which helps to organize P (see

exercises).

4. Semisimple Lie algebras

This will not be a systematic treatment of the theory since that could be its own course.
I’ll just summarize important points; you can read [H2] for a self-contained development.

4.1. Basic terminology. For this section we’re just working with finite-dimensional Lie
algebras over the complex numbers.

Let g be such a Lie algebra. We make some definitions.
First, g is simple if it is non-abelian and contains no nonzero proper ideals.
Recall that we have the adjoint representation

ad: g → gl(g)

where (adx)(y) = [x, y]. The Killing form κ is the symmetric bilinear form

κ : g× g → C

κ(x, y) = trace((ad x)(ad y)).

For all x, y, z ∈ g, this satisfies

κ([x, y], z) = −κ(y, [x, z]).
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This can be proven using the fact that the trace of a product is invariant under cyclic
permutations (i.e., trace(ABC) = trace(BCA)). If we identify bilinear forms with elements
of g∗ ⊗ g∗, the identity is equivalent to saying that κ has a trivial action of g.

Example 4.1.1. Consider sl2, where we have an eigenspace decomposition in terms of H.
Our choice for an eigenbasis has been {X,H, Y }. The above identity says that κ(v, w) = 0
unless the eigenvectors for v and w add to 0. In terms of this basis, here are the matrices
for the adjoint representation:

ad(X) =

0 −2 0
0 0 1
0 0 0

 , ad(H) =

2 0 0
0 0 0
0 0 −2

 , ad(Y ) =

 0 0 0
−1 0 0
0 2 0

 .
So:

κ(X, Y ) = κ(Y,X) = 4, κ(H,H) = 8

and all other pairings are 0 by the above observation on eigenvalues. □

Theorem 4.1.2. The following properties are equivalent:

(1) g is isomorphic to a direct product of simple Lie algebras.
(2) The Killing form κ is nondegenerate.
(3) g does not contain any nonzero abelian ideals.

A Lie algebra is semisimple if it satisfies any (equivalently, all) of the above conditions.
Their finite-dimensional representations satisfy “complete reducibility” in the following

sense.

Theorem 4.1.3 (Weyl). If V is a finite-dimensional representation of a semisimple Lie
algebra, then V is isomorphic to a direct sum of irreducible representations.

Notably, this will not apply to infinite-dimensional representations in general, which will
be relevant for us later.

Example 4.1.4. You can already see this with sl2: check for yourself that when α ∈ Z≥0,
M(−α−2) is the only irreducible subrepresentation ofM(α), and henceM(α) is not a direct
sum of irreducible representations. □

Fortunately, we can classify the semisimple Lie algebras. The first condition tells us that
it’s enough to classify simple Lie algebras, and we’ll spend some time describing them.

4.2. Classical series. Let’s start by describing the “classical series”.

Example 4.2.1. Let n ≥ 2 be an integer. Then sln is a simple Lie algebra. Note that gln
is not: the span of the identity matrix gives a nonzero abelian ideal. □

Let V be an n-dimensional vector space equipped with a bilinear form β. We say that
x ∈ gl(V ) stabilizes β if, for all v, w ∈ V , we have

β(x(v), w) + β(v, x(w)) = 0.

We can show that the subspace of x that preserve β (also called the stabilizer of β) is a Lie
subalgebra of gl(V ). As before, if we identify β as an element of V ∗ ⊗ V ∗, this means that
xβ = 0.
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To state this concretely, pick a basis v1, . . . , vn for V . The Gram matrix of β is the n×n
matrix

Mβ =

β(v1, v1) β(v1, v2) · · · β(v1, vn)
...

β(vn, v1) β(vn, v2) · · · β(vn, vn)


Then we have

β(v, w) = vTMβw

where in the right side, v and w are written as column vectors with respect to the basis
v1, . . . , vn. The condition that β be nondegenerate is just equivalent to detMβ ̸= 0. Then x
stabilizes β if and only if

xTM = −Mx.

Example 4.2.2. If β is symmetric and nondegenerate, then its stabilizer is called a spe-
cial orthogonal Lie algebra, denoted so(V, β). Since C is algebraically closed, any two
nondegenerate symmetric bilinear forms β, β′ differ by a change of basis, which means that
so(V, β) ∼= so(V, β′), so we usually just write so(V ), or just son (but the different choices of
forms can be more or less convenient depending on what calculations we want to do).

If we diagonalize the form, i.e., work with an orthonormal basis e1, . . . , en, then the Gram
matrix is just the identity, so we can identify son with the subspace of skew-symmetric
matrices (you can check directly that this is a Lie subalgebra).

I’ll leave it to you to check that if n ≥ 3, then son is semisimple (and is simple as long as
n ̸= 4). As a bonus, you can try checking that so3 ∼= sl2, so4 ∼= sl2 × sl2, and so6 ∼= sl4. □

Example 4.2.3. If β is skew-symmetric and nondegenerate (i.e., β is a symplectic form),
then its stabilizer is called a symplectic Lie algebra, denoted sp(V, β). Again, any two
symplectic forms differ by a change of basis, so we usually just write sp(V ) or spn. Note
that n = 2m must be even for a symplectic form to exist.

There isn’t really an “easy” choice of basis to identify what sp is like with the previous
example. One popular choice is to pick a “symplectic basis” e1, . . . , e2m, i.e., one so that Mβ

is a block direct sum of m copies of

[
0 1
−1 0

]
. This is convenient for some purposes, and

we’ll see a different choice in the next section.
If m ≥ 1, then sp2m is simple. Furthermore, sp2

∼= sl2 and sp4
∼= so5. □

That’s almost all of them, actually. There are 5 more simple Lie algebras which are not
one of the above 3 examples, called the “exceptional” Lie algebras, and that exhausts the
entire list. They take a bit of effort to describe precisely and we won’t focus much on it, so
I’m not going to go into detail.

4.3. Roots and weights. Now let g be a semisimple Lie algebra. An element x ∈ g is
semisimple if adx ∈ gl(g) is diagonalizable. A subalgebra of g is toral if all of its elements
are semisimple. All toral subalgebras are abelian.

A maximal toral subalgebra is called a Cartan subalgebra, and is usually denoted by h.

Theorem 4.3.1. Any two Cartan subalgebras h, h′ of g are conjugate: there exists an auto-
morphism φ of g such that φ(h) = h′.

In particular, all Cartan subalgebras are isomorphic. Since they are abelian, the only
important information is their dimension, and dim(h) is called the rank of g.
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Next, recall that if x, y are diagonalizable endomorphisms of the same (finite-dimensional)
vector space and they commute, then they can be simultaneously diagonalized: there ex-
ists a basis e1, . . . , en so that each ei is an eigenvector for both x and y. (If this doesn’t
sound familiar, prove it as an exercise.) More generally, this is true for any collection of
diagonalizable endomorphisms which all pairwise commute.

We can apply this to a Cartan subalgebra h. For each x, y ∈ h, we know that ad x and ad y
are diagonalizable (by definition) and commute with each other. That means there exists a
basis e1, . . . , en for g such that each ei is an eigenvector for adx for all x ∈ h. In particular,
for each i, there is a function λi : h → C such that (adx)ei = λi(x)ei. Since ad is linear, so
is λi, so λi ∈ h∗. We call these functions λi roots when they are nonzero, and denote the
set of roots by Φ.

First, let’s describe them for the classical examples.

Example 4.3.2. Let g = sln. Then the space of diagonal matrices is a Cartan subalgebra
h (we aren’t going to prove all of the properties) so rank(sln) = n− 1.

For i = 1, . . . , n, let εi : h → C be the function that returns the ith diagonal entry. Then
we can identify h∗ with the hyperplane of Cn defined by ε1 + · · · + εn = 0. The roots are
εi− εj ranging over all choices of i ̸= j: the corresponding eigenvector is the matrix unit Ei,j
which is 1 in row i and column j and 0 elsewhere. □

Example 4.3.3. For soN , it will help to distinguish between the cases when N is even and
odd. First, let’s consider the even case N = 2n and use a different symmetric form. All
2n × 2n matrices will be written in block form, with all blocks of size n × n. We choose β
so that

Mβ =

[
0 In
In 0

]
.

Then

[
A B
C D

]
belongs to so2n if and only if

B = −BT , C = −CT , D = −AT .
For a Cartan subalgebra h, we can take the matrices where B = C = 0 and A is diagonal (and
D = −AT ), i.e., diagonal matrices whose entries are of the form x1, . . . , xn,−x1, . . . ,−xn.
Then rank(so2n) = n. For i = 1, . . . , n, let εi : h → C be the function that takes the ith
diagonal entry.

Again, letting Ei,j denote the matrix unit with a 1 in row i and column j and 0’s elsewhere,
we have eigenvectors (corresponding to nonzero roots) as follows:

• Ei,j − En+j,n+i for 1 ≤ i, j ≤ n and i ̸= j with root εi − εj, and
• Ei,n+j − Ej,n+i for 1 ≤ i, j ≤ n and i ̸= j with root εi + εj, and
• En+i,j − En+j,i for 1 ≤ i, j ≤ n and i ̸= j with root −εi − εj. □

Example 4.3.4. For sp2n, we can do something similar. All 2n×2n matrices will be written
in block form, with all blocks of size n× n. We choose β so that

Mβ =

[
0 In

−In 0

]
.

Then

[
A B
C D

]
belongs to sp2n if and only if

B = BT , C = CT , D = −AT .
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For a Cartan subalgebra h, we can take the matrices where B = C = 0 and A is diagonal (and
D = −AT ), i.e., diagonal matrices whose entries are of the form x1, . . . , xn,−x1, . . . ,−xn.
Then rank(sp2n) = n. For i = 1, . . . , n, let εi : h → C be the function that takes the ith
diagonal entry.

Again, letting Ei,j denote the matrix unit with a 1 in row i and column j and 0’s elsewhere,
we have eigenvectors (corresponding to nonzero roots) as follows:

• Ei,j − En+j,n+i for 1 ≤ i, j ≤ n and i ̸= j with root εi − εj, and
• Ei,n+j + Ej,n+i for 1 ≤ i, j ≤ n with root εi + εj, and
• En+i,j + En+j,i for 1 ≤ i, j ≤ n with root −εi − εj.

The main difference between the previous case is that we allow i = j in the last two cases. □

Example 4.3.5. Finally, we discuss so2n+1. All (2n+1)× (2n+1) matrices will be written
in 3 × 3 block form, with the blocks of rows/columns having sizes n, n, 1. We choose β so
that

Mβ =

 0 In 0
In 0 0
0 0 1

 .
Then

A B E
C D F
G H J

 belongs to so2n+1 if and only if

B = −BT , C = −CT , D = −AT , E = −HT , F = −GT , J = 0.

For a Cartan subalgebra h, we can take the matrices where B = C = E = F = G = H =
J = 0 and A is diagonal (and D = −AT ), i.e., diagonal matrices whose entries are of the
form x1, . . . , xn,−x1, . . . ,−xn, 0. Then rank(so2n+1) = n. For i = 1, . . . , n, let εi : h → C be
the function that takes the ith diagonal entry.

Again, letting Ei,j denote the matrix unit with a 1 in row i and column j and 0’s elsewhere,
we have eigenvectors (corresponding to nonzero roots) as follows:

• Ei,j − En+j,n+i for 1 ≤ i, j ≤ n and i ̸= j with root εi − εj, and
• Ei,n+j − Ej,n+i for 1 ≤ i, j ≤ n and i ̸= j with root εi + εj, and
• En+i,j − En+j,i for 1 ≤ i, j ≤ n and i ̸= j with root −εi − εj, and
• Ei,2n+1 − E2n+1,n+i for 1 ≤ i ≤ n with root εi, and
• En+i,2n+1 − E2n+1,i for 1 ≤ i ≤ n with root −εi. □

We can actually do the same thing for any finite-dimensional representation φ : g → gl(V ).
It turns out that if adx is diagonalizable, then so is φ(x) (we won’t explain why, but it is
part of the theory of abstract Jordan decomposition). Then the same thing applies: we can
find a basis of V consisting of eigenvectors. This leads to a decomposition

V =
⊕
λ∈h∗

Vλ

where
Vλ = {v ∈ V | φ(x)(v) = λ(x)v}.

The λ such that Vλ ̸= 0 are called the weights of V . This generalizes the notion of roots,
except that we don’t consider 0 a root as a matter of convention (though it is a weight).

One special property about the adjoint representation is that for each root α, we have
dim gα = 1.
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4.4. Root systems. Here’s a few things we need to know about the set of roots Φ in a
semisimple Lie algebra g:

• Φ spans h∗.
• If we pick a basis for h∗ consisting of elements from Φ, then every other root can
be written as a rational linear combination of these basis elements. Let EQ be the
Q-vector space spanned by Φ and let E = EQ ⊗Q R.

• The restriction of the Killing form κ to h is nondegenerate. In particular, it gives
an isomorphism h ∼= h∗, so we can also transfer the form to h∗. Furthermore, the
restriction to E is positive-definite.

So, in particular, given a semisimple Lie algebra and a choice of Cartan subalgebra, we get
the following data: a finite-dimensional real inner product space E and a finite collection of
vectors Φ ⊂ E. They satisfy some more conditions, and for the sake of completeness, let’s
axiomatize it.

First, let’s define some notation. We let (, ) denote the inner product on E. Given
α, β ∈ E, define

⟨β, α⟩ = 2(β, α)

(α, α)
.

This follows the notation of [H2]. Warning: in [H3], this is instead denoted by ⟨β, α∨⟩.
Given α ∈ E, define the reflection sα ∈ GL(E) by

sα(v) := v − ⟨v, α⟩α = v − 2(v, α)

(α, α)
α.

Definition 4.4.1. Let E be a finite-dimensional real inner product space. A finite collection
of nonzero vectors Φ ⊂ E is called a root system if it satisfies the following conditions:

(1) Φ spans E.
(2) Let α ∈ Φ. Then −α ∈ Φ, and if cα ∈ Φ for some scalar c, then c = ±1.
(3) For all α ∈ Φ, sα preserves Φ, i.e., if v ∈ Φ, then sα(v) ∈ Φ.
(4) For all α, β ∈ Φ, we have ⟨β, α⟩ ∈ Z. □

Definition 4.4.2. The root lattice Λr is the Z-span of Φ. The weight lattice is

Λ = {β ∈ h∗ | ⟨β, α⟩ ∈ Z for all α ∈ Φ}. □

Definition 4.4.3. A subset ∆ ⊂ Φ is called a base if:

(1) ∆ is a basis for E, and
(2) If β ∈ Φ and β =

∑
α∈∆ cαα, then either {cα} ⊂ Z≥0 or {−cα} ⊂ Z≥0. In other

words, every root can be written as an integer linear combination of elements of ∆,
and all nonzero coefficients have the same sign.

If a base ∆ is fixed, then its elements are called simple roots. Roots which are non-negative
(respectively, non-positive) linear combinations of ∆ are called positive roots (respectively,
negative roots), and the set is denoted Φ+, (respectively, Φ−).

Remember that this is all depends on the choice of ∆, and is not intrinsic to Φ. □

The subgroup of GL(E) generated by the elements sα for α ∈ Φ is called the Weyl group
of Φ, and usually denoted by W .

Proposition 4.4.4. W is a finite group.
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Some facts: First, bases do exist, and W acts transitively on the set of all bases. Second,
given any base ∆, W is generated by sα for α ∈ ∆. The sα are called simple reflections.
In particular, every w ∈ W is a product of simple reflections, and the minimal length of such
a product is called the length of w, and denoted ℓ(w). Alternatively, ℓ(w) is the number of
positive roots that become negative after applying w:

ℓ(w) = |w(Φ+) ∩ Φ−|.
Here’s an important special case of this equivalence:

Proposition 4.4.5. If α ∈ ∆, then sα sends Φ+ \ {α} to itself and sα(α) = −α.

First, let’s examine the root systems for the classical series.

Example 4.4.6. For sln, we can take

E = {(x1, . . . , xn) ∈ Rn | x1 + · · ·+ xn = 0}
with the usual dot product. Letting εi ∈ Rn denote the ith standard basis vector, we have
Φ = {εi − εj | i ̸= j}. For a base, we can take

∆ = {εi − εi+1 | i = 1, . . . , n− 1}.
Then εi − εj is positive if and only if i < j, and negative otherwise.

The reflection sεi−εj is the transposition that swaps the ith and jth coordinates, so we see
that W is the nth symmetric group. Furthermore, if i < j, then w(εi− εj) is negative if and
only if w(i) > w(j). So ℓ(w) is the number of inversions of w: by definition, the number of
pairs i < j such that w(i) > w(j).

For reference, this is the type A root system, and is specifically denoted An−1 (the
subscript is for the rank).

The root lattice is just the integer vectors:

Λr = {(x1, . . . , xn) ∈ Zn | x1 + · · ·+ xn = 0}.
The weight lattice consists of vectors whose sum is 0 and such that the difference between
any two entries is an integer. This forces the entries to belong to 1

n
Z and Λr is a subgroup

of index n inside Λ.
For instance, for sl2, Λ is the Z-multiples of (1

2
,−1

2
). To translate to our previous notation,

the weight (x,−x) corresponds to the eigenvalue 2x. □

Example 4.4.7. For sp2n, we can take E = Rn (thinking of (x1, . . . , xn) as the diagonal
matrix of sp2n with entries x1, . . . , xn,−x1, . . . ,−xn) with the usual dot product. Again, let
εi ∈ Rn be the ith standard basis vector. Then

Φ = {εi − εj | i ̸= j} ∪ {±(εi + εj) | i ≤ j}.
For a base, we can take

∆ = {εi − εi+1 | i = 1, . . . , n− 1} ∪ {2εn}.
Then

Φ+ = {εi − εj | i < j} ∪ {εi + εj | i ≤ j}.
As before, sεi−εi+1

swaps the ith and (i+1)st coordinates, while s2εn negates the nth coordi-
nate. So the corresponding Weyl groupW is the group of n×n signed permutation matrices,
i.e., n× n matrices where each row and column has exactly 1 nonzero entry, and that entry
is ±1. This is also known as the hyperoctahedral group. The length function is kind of
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messy to describe, so we’ll omit it. There is a discussion in [BB, §8.1], but be warned that
a change of coordinates is needed.

This is the type C root system, denoted Cn.
The root lattice is

Λr = {(x1, . . . , xn) ∈ Zn | x1 + · · ·+ xn ∈ 2Z}
and the weight lattice is Λ = Zn. In particular, Λr is an index 2 subgroup of Λ. □

Example 4.4.8. For so2n+1, we can take E = Rn (thinking of (x1, . . . , xn) as the diagonal
matrix of sp2n with entries x1, . . . , xn,−x1, . . . ,−xn, 0) with the usual dot product. Again,
let εi ∈ Rn be the ith standard basis vector. Then

Φ = {εi − εj | i ̸= j} ∪ {±(εi + εj) | i < j} ∪ {±εi}.
For a base, we can take

∆ = {εi − εi+1 | i = 1, . . . , n− 1} ∪ {εn}.
Then

Φ+ = {εi − εj | i < j} ∪ {εi + εj | i < j} ∪ {εi}.
As before, sεi−εi+1

swaps the ith and (i+1)st coordinates, while sεn negates the nth coordi-
nate. So the corresponding Weyl group W is again the hyperoctahedral group.

This is the type B root system, denoted Bn.
The root lattice is Λr = Zn and the weight lattice is

Λ = Zn ∪
(
Zn + (

1

2
, . . . ,

1

2
)

)
.

In particular, Λr is an index 2 subgroup of Λ. □

Example 4.4.9. For so2n, we can take E = Rn (thinking of (x1, . . . , xn) as the diagonal
matrix of sp2n with entries x1, . . . , xn,−x1, . . . ,−xn) with the usual dot product. Again, let
εi ∈ Rn be the ith standard basis vector. Then

Φ = {εi − εj | i ̸= j} ∪ {±(εi + εj) | i < j}.
(it looks like the symplectic case, but we don’t allow i = j in the second set). For a base,
we can take

∆ = {εi − εi+1 | i = 1, . . . , n− 1} ∪ {εn−1 + εn}.
Then

Φ+ = {εi − εj | i < j} ∪ {εi + εj | i < j}.
As before, sεi−εi+1

swaps the ith and (i+1)st coordinates, while sεn−1+εn swaps the (n− 1)st
and nth coordinates while also negating them. So the corresponding Weyl group W is a
subgroup of n× n signed permutation matrices consisting of matrices where −1 appears an
even number of times. This is an index 2 subgroup of the hyperoctahedral group. Again,
we’ll skip making the length function explicit.

This is the type D root system, denoted Dn.
The root lattice is

Λr = {(x1, . . . , xn) ∈ Zn | x1 + · · ·+ xn ∈ 2Z}
and the weight lattice is

Λ = Zn ∪
(
Zn + (

1

2
, . . . ,

1

2
)

)
.
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In particular, Λr is an index 4 subgroup of Λ. □

Remark 4.4.10. There is an asymmetry here: the orthogonal cases get 2 cases depending
on parity, while the symplectic case only gets 1 case. Technically, there is an additional
“odd symplectic” case. The way to do this consistently is to enlarge our setting to allow
Lie superalgebras and the corresponding root system ends up being the union Bn ∪ Cn,
sometimes called BCn. This, however, violates the second axiom for root systems (it is
sometimes referred to as a non-reduced root system). □

4.5. Formal characters. A representation V of g is a weight representation if it decom-
poses into weight spaces for h (i.e., it is a semisimple representation of h):

V =
⊕
α∈h∗

Vα.

This is automatic if dimV <∞. The elements of each Vα are called weight vectors.
The representations we deal with will satisfy dimVα < ∞ for all α. In that case, it is

convenient to record these dimensions as a formal character which can be thought of in
some different ways.

First, we have a function chV : h
∗ → Z≥0 defined by chV (α) = dimVα. These can be added

in the obvious way. Given two functions f, g : h∗ → Z, we can attempt to multiply them
using a convolution product:

(f ∗ g)(α) =
∑
β∈h∗

f(β)g(α− β).

But this is generally not well-defined since there is no guarantee that the sum is finite.
To deal with this issue, let’s be more precise. Fix a base ∆ for our root system Φ. Let

Γ denote the set of non-negative linear combinations of elements in ∆. Given a function
f : h∗ → Z, define its support to be Supp(f) = {α ∈ h∗ | f(α) ̸= 0}. We define

X = {f : h∗ → Z | there exists λ1, . . . , λN such that Supp(f) ⊆
N⋃
i=1

(λi − Γ)}.

I’ll leave it as an exercise to check that if f, g ∈ X , then f ∗ g is well-defined, so X is a
commutative ring. Note that chV need not belong to X ; we will later restrict to studying
representations where this holds.

A slightly different perspective on this: given α ∈ h∗, introduce a formal symbol eα, so
that we can instead interpret the formal character as the sum∑

α∈h∗
(dimVα)e

α.

Instead of considering the convolution product, we instead use the rules eαeβ = eα+β and
“distribute” in the obvious way. Of course, the product is not always well-defined, so we
need to restrict to linear sums corresponding to elements in X .
The second notation can be helpful since we can treat them like formal power series. For

instance, we can write down identities like

1

1− eα
=

∑
n≥0

enα

since (1− eα)
∑

n≥0 e
nα = e0, and e0 is the multiplicative identity.
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In any case, given two representations M,N , we have (whenever they are defined)

chM + chN = chM⊕N , chM ∗ chN = chM⊗N .

4.6. Borel subalgebras. Use the notation from before: g is a semisimple Lie algebra, h is
a Cartan subalgebra, and ∆ is a choice of simple roots for the corresponding root system
Φ. The Borel subalgebra b associated to this data is the span of h together with the root
spaces of its positive roots:

b = h⊕
⊕
α∈Φ+

gα.

There is also an opposite Borel subalgebra b− defined using negative roots:

b− = h⊕
⊕
α∈Φ−

gα.

Remark 4.6.1. This is not the usual way to define Borel subalgebras, so let’s remark
on that. Given a Lie algebra a, define a(0) = a and a(i+1) = [a(i), a(i)] (the span of all
brackets of elements in a(i)); call a solvable if a(N) = 0 for some N . Without reference to
Cartan subalgebras, Borel subalgebras can equivalently defined to be the maximal solvable
Lie subalgebras of g. (There’s a lot of work going into showing that these definitions are
equivalent.) □

In this case, we will write n = [b, b]. This is called the nilpotent radical of b. We note
that n is an ideal of b and h ∼= b/n (prove it as an exercise). In particular, we have a quotient
map b → h, and we can choose this so the composition h → b → h is the identity. We also
define n− = [b−, b−].

4.7. Highest weight representations. Let V be a nonzero weight representation of g. A
weight vector v ∈ V is a highest weight vector1 if xv = 0 for all x ∈ n. Finally, V is a
highest weight representation if it is generated by a highest weight vector, i.e., there is
a highest weight vector v+ and the smallest subrepresentation containing v+ is V itself. In
that case, any 2 highest weight vectors are scalar multiples of each other, so if v+ ∈ Vλ, then
we call λ the highest weight of V .

Given λ ∈ h∗, we get a 1-dimensional representation Cλ of h. We can restrict along the
quotient map b → h to get a corresponding 1-dimensional representation of b, which we also
denote Cλ. The associated Verma module is

M(λ) = Indg
bCλ.

As a vector space (or representation of h), this is U(n−) ⊗C Cλ, so we have the following
result.

Proposition 4.7.1. We have

chM(λ) =
eλ∏

α∈Φ−(1− eα)
.

In particular, chM(λ) ∈ X .

1Humphreys uses the terminology “maximal vector”.



22 STEVEN V SAM

Proof. The main point is that by the PBW theorem, we have U(n−) ∼= Sym(n−) as an h-
representation, where Sym denotes symmetric algebra. Breaking this down further, we have
n− ∼=

⊕
α∈Φ− Cα and hence

Sym(n−) ∼=
⊗
α∈Φ−

Sym(Cα)

and

chSym(Cα) =
∑
n≥0

enα =
1

1− eα
.

For the second statement, the formula implies that the support of chM(λ) is λ− Γ. □

Then M(λ) is a highest weight representation of weight λ and dimM(λ)λ = 1. Pick
a highest weight vector v ∈ M(λ). Then the space of homomorphisms φ : M(λ) → V is
isomorphic to the space of highest weight vectors of V of weight λ, namely φ(v) is the
corresponding highest weight vector of V (prove this; use hom-tensor adjunction).
Finally, if N and N ′ are both subrepresentations of M(λ) which do not contain M(λ)λ,

then neither does their sum N + N ′. Hence there is a maximal proper submodule N(λ) of
M(λ); denote the quotient by L(λ). Then:

• L(λ) is also a highest weight representation of highest weight λ and L(λ) is irreducible.
• Any other irreducible highest weight representation of highest weight λ is isomorphic
to L(λ).

I’ll leave these as exercises.
Just to make it easy to see, here is how they are related in a short exact sequence:

0 → N(λ) →M(λ) → L(λ) → 0.

So now we’re caught up with terminology from the sl2 case.

4.8. Definition of category O. We now fix the usual notation (I likely won’t repeat myself,
but this notation will generally be reserved and fixed)

• g is a semisimple complex Lie algebra,
• h ⊂ g is a Cartan subalgebra,
• ∆ ⊂ Φ is a choice of simple roots,
• b and b− are the associated Borel subalgebra and opposite Borel subalgebra.
• n = [b, b] and n− = [b−, b−].
• Λr is the set of integer linear combinations of ∆ (the root lattice).
• Γ is the subset of Λr consisting of non-negative integer linear combinations.
• We equip h∗ with a partial ordering: λ ≤ µ if µ− λ ∈ Γ.

Recall that we have a vector space decomposition

g = n− ⊕ h⊕ n.

Definition 4.8.1. Category O is the full subcategory of the category of (left) U(g)-modules
consisting of objects M satisfying these conditions:

(1) M is a finitely generated U(g)-module,
(2) M is a semisimple h-representation, i.e., M is a direct sum of its weight spaces,
(3) M is locally n-finite: for every v ∈ M , the U(n)-submodule generated by v is finite-

dimensional. □
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Here “full subcategory” just means that the homomorphisms between modules in category
O are just the usual U(g)-module homomorphisms. GivenM,N ∈ O, we’ll use HomO(M,N)
to denote this space of homomorphisms.

About (3): if v is a weight vector of weight λ, then every weight µ appearing in U(n) · v
satisfies µ ≥ λ. Hence Verma modules satisfy (3) and so also belong to O (the first 2
conditions we’ve already discussed).

It follows from our previous discussions that every finite-dimensional representation be-
longs to O.

Remark 4.8.2. The letter “O” was chosen since it is the first letter of the Russian word for
“basic”. □

Given M ∈ O, let Π(M) = {λ ∈ h∗ |Mλ ̸= 0}.
Proposition 4.8.3. Let M ∈ O. Then:

(1) dimMλ <∞ for all λ ∈ h∗.
(2) There exist finitely many λ1, . . . , λN such that Π(M) ⊆

⋃
i λi − Γ.

In particular, chM ∈ X .

Proof. Since M is finitely generated and a direct sum of its weight spaces, it has a finite
generating set consisting of weight vectors. To prove the proposition, it suffices to consider
the case when M is generated by a single weight vector v.

Let V be the U(n)-submodule generated by v; V is finite-dimensional by axiom (3). Fur-
thermore, V is invariant under h since U(n) is a sum of h-eigenspaces. So by PBW, we have
a surjection of h-representations U(n−)⊗ V →M . So Π(M) ⊆ Π(U(n−)⊗ V ), and

chU(n−)⊗V =
chV∏

α∈Φ−(1− eα)
.

from which it follows that dim(U(n−) ⊗ V )λ < ∞ for all λ and Π(U(n−) ⊗ V ) =
⋃
i λi − Γ

where λi are all of the weights of V . □

Proposition 4.8.4. Let M ∈ O.

(1) M satisfies the ascending chain condition, i.e., every chain of submodules of M must
be eventually constant. Equivalently, every submodule of M is finitely generated.
This property is saying that O is a noetherian category.

(2) Every submodule and quotient module of M also belongs to O.
(3) If M1, . . . ,Mr ∈ O, then M1 ⊕ · · · ⊕Mr ∈ O.
(4) M is finitely generated as a U(n−)-module.
(5) If N is a finite-dimensional representation, then M ⊗ N ∈ O; tensoring with N is

an exact functor on O.
(6) M has a finite filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ M r = M such that M i/M i−1 is a

highest weight representation for all i.

Proof. (1) We’ve already proven that U(g) is left-noetherian.
(2) Axioms (2) and (3) are clear from the definitions; axiom (1) follows from part (1).
(3) Clear from definitions.
(4) This can be extracted from the previous proof.
(5) Let v1, . . . , vr be generators for M . Then the finite-dimensional subspace

∑r
i=1 vi⊗N

generates M ⊗ N by direct inspection of how tensor product representations work. Simi-
larly, since finite-dimensional representations are automatically h-semisimple, (2) also holds.



24 STEVEN V SAM

Finally, for
∑

i vi ⊗ wi ∈M ⊗N , we have

U(n) ·
∑
i

vi ⊗ wi ⊆
∑
i

U(n) · vi ⊗N

and the latter is finite-dimensional since M satisfies axiom (3).
(6) Assume M ̸= 0. From the previous result, Π(M) has a maximal element λ. Any

v ∈ Mλ must be a highest weight vector; let M1 be the U(g)-submodule that v generates.
Then M/M1 ∈ O; if it is nonzero, then it also has a nonzero highest weight vector: let M2

be the preimage in M of the submodule that it generates. Repeating this, we obtain an
increasing chain of submodules, which then must stabilize after finitely many steps by (1),
and it satisfies the property we claimed. □

Remark 4.8.5. Even though chM⊗N is well-defined for any M,N ∈ O, in general, M ⊗N
may not belong to O since it can fail to be a finitely generated U(n−)-module. This is
easiest to see for g = sl2 where U(n

−) ∼= C[z] is a polynomial ring in 1 variable. Then Verma
modules are free modules of rank 1 and the tensor product of any 2 (remember, the tensor
product is over C) is not finitely generated (for example, it grows too fast). □

5. The center of U(g)

5.1. Central characters. We let Z(g) denote the center of U(g). To get a better under-
standing of Verma modules, we’ll need to understand this ring.

Proposition 5.1.1. Let M be a highest weight representation of highest weight λ. There
exists an algebra homomorphism χλ : Z(g) → C, depending only on λ, such that zv = χλ(z)v
for all z ∈ Z(g) and v ∈M .

Proof. SinceM is a quotient of the Verma moduleM(λ) it suffices to assume thatM =M(λ).
This also proves that the function χλ only depends on λ once we show that it exists.
Let v+ ∈Mλ be a highest weight vector. For any h ∈ h and z ∈ Z(g), we have

h(zv+) = zhv+ = λ(h)zv+

which shows that zv+ ∈ Mλ. Since dimMλ = 1, there exists a scalar χλ(z) such that
zv+ = χλ(z)v

+. Since v+ generates M , every element of M can be written as fv+ for some
f ∈ U(g). Since z is central, we have zfv+ = fzv+ = χλ(z)fv

+.
It’s immediate that χλ is an algebra homomorphism. □

The homomorphism χλ : Z(g) → C is called the central character associated to λ.
With respect to the decomposition g = n−⊕h⊕n, we get a linear projection map pr : g → h

which also extends to a linear projection

pr : U(g) → U(h)

using the PBW basis (pick an ordering where n− < h < n): any basis element that uses n−

or n is sent to 0.
Given λ ∈ h∗, we also extend it to an algebra homomorphism λ : U(h) → C. Concretely,

since h is abelian, U(h) ∼= Sym(h) as an algebra, and if we pick a basis x1, . . . , xn for h, then
the elements are polynomials in the xi, and

λ(f(x1, . . . , xn)) = f(λ(x1), . . . , λ(xn)).
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The restriction of pr to Z(g) is denoted ξ:

ξ : Z(g) → Sym(h).

Proposition 5.1.2. For z ∈ Z(g), we have

χλ(z) = λ(ξ(z)).

In particular, ξ is an algebra homomorphism.

Proof. Use the notation from the previous proof: v+ is a highest weight vector of M(λ).
Using our PBW basis, we can write z as a linear combination of elements of the form

z1z2z3 where z1 ∈ U(n−), z2 ∈ U(h), and z3 ∈ U(n) are all themselves PBW monomials. If
z3 ̸= 1, then z1z2z3v

+ = 0. Otherwise if z3 = 1, then z1z2v
+ = z1λ(z2)v

+. Now if z1 ̸= 1,
this element does not belong to M(λ)λ, so it will cancel with some other terms (since we
know that zv+ ∈M(λ)λ). Hence only the terms with z1 = 1 and z3 = 1 will contribute, and
the sum of these terms is precisely ξ(z), which gives the claimed formula.

By definition, ξ is linear, so we need to check multiplication. Pick z, z′ ∈ Z(g). Then for
every λ, we have

λ(ξ(zz′)− ξ(z)ξ(z′)) = λ(ξ(zz′))− λ(ξ(z))λ(ξ(z′))

= χλ(zz
′)− χλ(z)χλ(z

′) = 0

since χλ is a homomorphism. Since this holds for all λ, this means that ξ(zz′)− ξ(z)ξ(z′) is
a polynomial that is identically 0 on h∗, and hence it is the 0 polynomial. □

ξ is called the Harish-Chandra homomorphism.

5.2. Linked weights. If L(µ) is a subquotient of M(λ), then necessarily χλ = χµ. We will
try to understand when this equality holds.

Recall that for λ, α ∈ h∗, we define ⟨λ, α⟩ = 2(λ, α)/(α, α).
As before, let v+ denote a highest weight vector of weight λ in M(λ).

Proposition 5.2.1. Let λ ∈ h∗ be a weight, α ∈ ∆, and pick a nonzero y ∈ g−α. If
n := ⟨λ, α⟩ ∈ Z≥0, then y

n+1v+ is a nonzero highest weight vector of weight λ− (n+ 1)α.
In particular, there is a nonzero homomorphism

M(λ− (n+ 1)α) →M(λ).

This involves some calculations which I’ll outline in the exercises.
In particular, using the notation above, we have

λ− (n+ 1)α = λ− ⟨λ, α⟩α− α = sα(λ)− α.

We can phrase this another way that’s more convenient. First, define ρ ∈ h∗ by

ρ =
1

2

∑
α∈Φ+

α.

This is another important notation and ρ will always have this meaning.
For α ∈ ∆, we stated before that sα permutes Φ+ \ {α} and sα(α) = −α, so

sα(ρ) = ρ− α.

In particular,
sα(λ)− α = sα(λ+ ρ)− ρ.
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We define the shifted Weyl group action (or dotted Weyl group action) of W on h∗

by
w • λ = w(λ+ ρ)− ρ.

Its significance is the following:

Proposition 5.2.2. If µ = w • λ for some w ∈ W , then χµ = χλ.

Proof. First suppose that λ ∈ Λ, pick α ∈ ∆, and let n = ⟨λ, α⟩. We claim that χsα•λ = χλ.
If n ≥ 0, we already saw this above. If n = −1, then sα • λ = λ, so there is nothing to show.
Otherwise, if n ≤ −2, let µ = sα • λ. Then ⟨µ, α⟩ = −n− 2 ≥ 0, and the first case applied
to µ shows that χµ = χsα•µ. Since λ = sα • µ, we’re done.
Next, the sα generate W , and W stabilizes Λ, so we conclude that χw•λ = χλ for all

w ∈ W . This translates to the statement that λ(ξ(z)) = (w • λ)(ξ(z)) for all z ∈ Z(g). If
we fix z ∈ Z(g) and w ∈ W , then the function

λ 7→ λ(ξ(z))− (w • λ)(ξ(z))
is a polynomial function on h∗. We just said that this polynomial is 0 on Λ. Since Λ is
dense in h∗ under the Zariski topology, we conclude that it is identically 0. More concretely,
if we pick a basis for Λ, then we can identify Λ ∼= Zn and h∗ ∼= Cn. We’re just saying that
any polynomial that has every integer point as a solution must be identically 0 (left as an
exercise). □

This tells us that the image of ξ is invariant under a shifted action of W . We’ll describe
this more carefully.

Example 5.2.3. Just for reference, here is what ρ looks like for the classical root systems
using the same notation from the earlier section:

sln:
1
2
(n− 1, n− 3, . . . ,−n+ 3,−n+ 1).

so2n+1:
1
2
(2n− 1, 2n− 3, . . . , 3, 1).

sp2n: (n, n− 1, . . . , 2, 1).
so2n: (n− 1, n− 2, . . . , 1, 0). □

5.3. Harish-Chandra’s theorem. We can identify Sym(h) with the space of polynomial
functions on h∗. Using this, define τ : Sym(h) → Sym(h) by (τf)(λ) = f(λ− ρ).
We now define the twisted Harish-Chandra homomorphism ψ : Z(g) → Sym(h) by

ψ = τ ◦ ξ. In particular, for every λ ∈ h∗ and z ∈ Z(g), we have

χλ(z) = λ(τ−1ψ(z)) = (λ+ ρ)(ψ(z)).

The linear action of W on h extends to an action of W on Sym(h) by algebra automor-
phisms. We claim that each ψ(z) is invariant under this action: given w ∈ W and λ ∈ h∗,
we have

λ(w−1(ψ(z))) = (wλ)(ψ(z)) = χw(λ)−ρ(z) = χw•(λ−ρ)(z) = χλ−ρ(z) = λ(ψ(z)).

Again, since this is true for all λ, we have w−1(ψ(z)) = ψ(z). In particular, the image of ψ
lies in the space of W -invariant polynomials Sym(h)W .

Theorem 5.3.1 (Harish-Chandra). ψ gives an isomorphism from Z(g) to Sym(h)W .

We won’t prove this, but here are some consequences.

Corollary 5.3.2. (1) The Harish-Chandra map ξ is injective.
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(2) If χλ = χµ, there exists w ∈ W such that µ = w • λ.
(3) Every algebra homomorphism Z(g) → C is of the form χλ.

Proof. (1) Immediate from Harish-Chandra’s theorem since τ is invertible.
(2) Suppose that µ is not in the shifted W -orbit of λ; equivalently, assume that µ + ρ

and λ+ ρ are not in the same W -orbit. First, given two finite subsets S and T of h∗, there
exists a polynomial f ∈ Sym(h) such that f(s) = 0 for all s ∈ S and f(t) = 1 for all t ∈ T
(omitted). Apply this with S being the W -orbit of µ+ ρ and T being the W -orbit of λ+ ρ.
Now define g = 1

|W |
∑

w∈W wf to get a W -invariant polynomial with the same property.

By Harish-Chandra’s theorem, there exists z such that ψ(z) = g. But then χλ(z) =
(λ+ ρ)(ψ(z)) = g(λ+ ρ) = 1 while χµ(z) = 0, so we see that χλ ̸= χµ.

(3) Given an algebra homomorphism φ : Z(g) → C define an algebra homomorphism
χ : Sym(h)W → C via χ = φ ◦ ψ−1. Then m = kerχ is a maximal ideal of Sym(h)W .
Next, Sym(h)W ⊂ Sym(h) is an integral extension (in the sense of commutative algebra)
and hence (by the going-up theorem) there exists a maximal ideal m′ ⊂ Sym(h) such that
m′ ∩ Sym(h)W = m. Next, by Hilbert nullstellensatz, Sym(h)/m′ ∼= C, and so the quotient
map Sym(h) → C can be identified with evaluation at some point λ ∈ h∗. So χ has the same
description, and this translates to φ = χλ−ρ. □

Remark 5.3.3. Actually, Sym(h)W is known to be isomorphic to a polynomial ring itself.
We just give the examples in the classical cases.

• For sln, recall that h = {(c1, . . . , cn) ∈ Cn | c1+ · · ·+cn = 0} andW is the symmetric
group on n letters permuting the coordinates. Let xi be the ith standard basis vector.
Then the generators for Sym(h)W are the elementary symmetric polynomials er(x)
for r = 2, 3, . . . , n, which are the sum of all squarefree monomials of degree r:

er(x) =
∑

i1<···<ir

xi1 · · ·xir .

These are well-known to be algebraically independent.
• The cases so2n+1 and sp2n are the same: we have h = Cn andW is the group of n×n
signed permutation matrices. Again, letting xi be the ith standard basis vector, the
generators for Sym(h)W are er(x

2) for r = 1, 2, . . . , n:

er(x
2) =

∑
i1<···<ir

x2i1 · · · x
2
ir .

• Finally, for so2n, we have h = Cn and W is the group of n × n signed permutation
matrices that have an even number of −1. Using the notation above, the generators
for Sym(h)W are er(x

2) for r = 1, 2, . . . , n− 1 together with en(x). □

5.4. Application: O is artinian. We recall some definitions. A module M is artinian
if it satisfies the descending chain condition, i.e., every descending chain of submodules
is eventually constant. If the module is also finitely generated, this implies that it has a
composition series: a finite chain of submodules 0 = M0 ⊂ M1 ⊂ · · · ⊂ M r = M such
that each M i/M i−1 is irreducible.

Recall that every submodule and quotient module is artinian. Similarly, ifM ′ is an artinian
submodule of M such that M/M ′ is artinian, this implies that M is also artinian.

Proposition 5.4.1. If M ∈ O, then M is artinian.
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Proof. We already saw thatM has a filtration whose quotients are highest weight modules, so
it suffices to show that highest weight modules are artinian. Since they are quotients of Verma
modules, we may also assume thatM =M(λ) for some λ ∈ h∗. Define V =

∑
w∈W M(λ)w•λ.

Then dimV <∞ since each weight space is finite-dimensional and W is finite.
Now suppose that N ⫋ N ′ are submodules of M . Then z ∈ Z(g) acts on N ′/N by the

scalar χλ(z). Since N
′/N ̸= 0, it has a highest weight vector, say of weight µ. So this means

χλ = χµ and hence µ = w • λ for some w ∈ W . In particular, N ∩ V ̸= N ′ ∩ V . This tells
us that any descending chain of distinct submodules of M must have length at most dimV ,
so M satisfies the descending chain condition. □

So everyM ∈ O has a composition seriesM0 ⊂ · · · ⊂M r. The irreducible representations
are of the form L(λ) for λ ∈ h∗. We let [M : L(λ)] denote the number of i such that
L(λ) ∼= M i/M i−1. This does not depend on the choice of composition series by the Jordan–
Hölder theorem.

Corollary 5.4.2. If M,N ∈ O, then dimHomO(M,N) <∞.

Proposition 5.4.3. If [M(λ) : L(µ)] ̸= 0, then µ ≤ λ.

Proof. If [M(λ) : L(µ)] ̸= 0, thenM(λ)µ ̸= 0. But every weight µ appearing inM(λ) satisfies
µ ≤ λ since M(λ) ∼= U(n−)⊗Cλ as an h-representation. □

5.5. Grothendieck group. The Grothendieck group of O, denoted K(O) (here K is the
first letter of the German word for “class”), is defined to be the free abelian group whose
basis consists of the objects of O (given M , let [M ] denote the corresponding basis element)
modulo the relation [B] = [A] + [C] for every short exact sequence 0 → A → B → C → 0.
(This is not technically correct due to set-theoretic issues, but they are easy to fix and not
important for understanding what we will do with K(O).)

This is a standard definition which you can make for any category with some notion of
short exact sequences.

Example 5.5.1. Let Vec be the category of finite-dimensional (complex) vector spaces. If
V ∼= W , then we have a short exact sequence 0 → V → W → 0 → 0 which tells us that
[W ] = [V ] + [0]. Applying this to V = W = 0, we conclude that [0] = 0 and in particular,
[V ] = [W ], so isomorphic objects have the same class (this observation was not special to
vector spaces). Next, everything is isomorphic to Cn for some n, and we have short exact
sequences 0 → Ca → Cn → Cn−a → 0 for any a ≤ n, so [Cn] = n[C1] for all n ≥ 0.
Next, K(Vec) is nonzero: there is a surjective homomorphism dim: K(Vec) → Z given by

dim(
∑
V

cV [V ]) =
∑
V

cV dim(V ).

since dim(B) = dim(A) + dim(C) for any short exact sequence 0 → A → B → C → 0. We
conclude from this that K(Vec) ∼= Z. □

Note that chB = chA + chC if there is a short exact sequence 0 → A → B → C → 0,
which tells us that there is a well-defined linear map

ch: K(O) → X .
Since we know that O is artinian, we have

[M ] =
∑
λ∈h∗

[M : L(λ)][L(λ)].
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(the point is that the sum is finite and [M : L(λ)] is well-defined). So the [L(λ)] span K(O).
They’re also linearly independent (use ch; I’ll leave it as an exercise).

This is a nice organizational tool. One obvious question is how to compute the numbers
[M(λ) : L(µ)]. We know that this is 0 unless µ ∈ W • λ and µ ≤ λ. Furthermore,
[M(λ) : L(λ)] = 1. This tells us that the change of basis matrix between {M(w • λ)}w∈W
and {L(w • λ)}w∈W is upper-triangular with 1’s on the diagonal if we pick an ordering of
w • λ that extends the partial order ≤, and hence is invertible. So we have integers b(λ, µ)
such that

[L(λ)] =
∑

µ∈W•λ
µ≤λ

b(λ, µ)[M(µ)].

It would also be nice to understand how to compute these numbers since this tells us how
to compute the character of L(λ):

chL(λ) =
∑
µ

b(λ, µ)eµ∏
α∈Φ−(1− eα)

.

Remark 5.5.2. L(λ) is finite-dimensional if and only if λ ∈ Λ ∩ Γ, i.e., ⟨λ, α⟩ ∈ Z≥0 for
all positive roots α. In that case, the Weyl character formula gives the coefficients b(λ, µ)
explicitly. In fact, they are always ±1; more precisely, if µ = w • λ (the condition on λ
guarantees that there is a single w that works for µ), then b(λ, µ) = (−1)ℓ(w). The BGG
resolution, to be discussed later, will give a different way to understand this identity. □

6. Block decomposition

6.1. Yoneda Ext. Category O is quite large, but it turns out to decompose into much
smaller, more manageable pieces, called blocks. To discuss this notion, we review some
basics on extensions (in the sense of homological algebra) from the Yoneda perspective.

First, fix modules A,C. Consider a short exact sequence E of the form

E : 0 → A
f−→ B

g−→ C → 0

(in short, this means f is injective, g is surjective, and ker g = image f). Given another
extension E ′

E ′ : 0 → A
f ′−→ B′ g′−→ C → 0,

we say that E and E ′ are Yoneda equivalent if there is a homomorphism φ : B → B′ such
that f ′ = φ ◦ f and g = g′ ◦ φ. Pictorially, we are asking for this diagram to commute:

0 // A
f //

id
��

B
g //

φ

��

C //

id
��

0

0 // A
f ′ // B′ g′ // C // 0

Here are a few key facts (without proof, this can take a long time to do everything properly,
so you’ll have to find a reference on homological algebra if you want the details):

• This is an equivalence relation; let Ext1O(C,A) denote the set of equivalence classes.
• Ext1O(C,A) has the structure of a complex vector space, where the 0 vector is repre-
sented by the split sequence

0 → A→ A⊕ C → C → 0
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with the first map being x 7→ (x, 0) and the second map being (x, y) 7→ y.
• For fixed M , the assignment A 7→ Ext1O(M,A) is a functor from O to the category
of complex vector spaces; and the assignment A 7→ Ext1O(A,M) is a contravariant
functor.

• For fixedM , and any short exact sequence 0 → A→ B → C, we have exact sequences

0 → HomO(M,A) → HomO(M,B) → HomO(M,C) → Ext1O(M,A) → Ext1O(M,B) → Ext1O(M,C),

0 → HomO(C,M) → HomO(B,M) → HomO(A,M) → Ext1O(C,M) → Ext1O(B,M) → Ext1O(A,M).

• We have Ext1O(C,A ⊕ A′) ∼= Ext1O(C,A) ⊕ Ext1O(C,A
′) and similarly in the other

argument.

If we know that Ext1O(C,A) = 0, then for every short exact sequence 0 → A
f−→ B

g−→ C →
0, it must be equivalent to the split sequence. This implies that there exists C

s−→ B such
that gs = idB, and in particular, B ∼= A⊕ C.

Remark 6.1.1. If you have seen derived functors, then Ext1O(A,−) can also be defined as
the first derived functor of HomO(A,−) and similarly for the other argument. It takes a bit
of work to prove that these two definitions agree, so we won’t cover it here. □

6.2. Blocks. Blocks are certain subcategories of O which will decompose it. Given two irre-
ducible representations L and L′, we say that they belong to the same block if Ext1O(L,L

′) ̸=
0, i.e., there exists a non-split exact sequence 0 → L′ → M → L → 0 or if Ext1O(L

′, L) ̸= 0.
More generally, two irreducible representations L and L′ are in the same block if there exists
a sequence L = L1, L2, . . . , Ln = L′ such that Li and Li+1 are in the same block for all
i = 1, . . . , n− 1. We’ll denote the set of blocks by B. A general M ∈ O belongs to a block b
if all of its composition factors belong to b.
Given a block b ∈ B and M ∈ O, let [M ]b be the sum of [M : L(λ)][L(λ)] ranging over all

L(λ) ∈ b. Then we get [M ] =
∑

b∈B[M ]b; we’d like to lift this decomposition to the level of
modules.

Given a general objectM ∈ O, and a block b ∈ B, letMb denote the sum of all submodules
M ′ of M such that all composition factors of M ′ belong to b. Since M is artinian, Mb ̸= 0
for only finitely many b. The following proof was adapted from [J, §II.7.1].

Proposition 6.2.1. We have

M =
⊕
b∈B

Mb.

In particular, given any other M ′ ∈ O, we have

HomO(M,M ′) ∼=
⊕
b∈B

HomO(Mb,M
′
b),

and if M is indecomposable, then all of its composition factors belong to the same block.

Proof. Let N =
∑

b∈BMb. For any b, we have Mb ∩ (
∑

b′ ̸=bMb′) = 0 since they don’t share
any composition factors and hence can’t have any common submodules. Hence the sum
defining N is direct. We need to show that N =M .
Suppose not. Then M/N ̸= 0, so it has a simple submodule L (since it is artinian) and so

its preimage in M gives a submodule N ′ that contains N such that N ′/N ∼= L. Let b be the
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block that contains L. The sequence 0 → N → N ′ → L→ 0 is non-split: otherwise there is
a preimage of L that belongs to Mb and contradicts that N ′ ̸= N . So

0 ̸= Ext1O(L,N) ∼=
⊕
b′∈B

Ext1O(L,Mb′)

so there exists some composition factor L′ of some Mb′ such that Ext1O(L,L
′) ̸= 0. This

implies that b = b′ by definition. Now set N ′′ =
⊕

b′ ̸=bMb′ . Since all composition factors of

N ′/N ′′ belong to b, the exact sequence 0 → N ′′ → N ′ → N ′/N ′′ → 0 must be split. But
then by definition, this means that there is a preimage of N ′/N ′′ in N ′ that is contained in
Mb, which implies that N ′ ⊆ N , a contradiction.

For the statement about Hom, it follows from the fact that Hom commutes with finite
direct sums in both arguments, and there are no nonzero maps Mb → M ′

b′ if b ̸= b′ by
definition. □

We can think of the assignment M 7→ Mb as a functor O 7→ b, where we think of b as
being the full subcategory on objects belonging to b. The above discussion implies that this
functor is exact (i.e., preserves exact sequences). We can also think of the above result as
giving a decomposition

O ≃
⊕
b∈B

b.

Our next goal is to determine what these blocks are with a combinatorial description.

6.3. Subcategories Oχ. First, a reminder on generalized eigenvectors. Let X be a linear
operator on a space V and let λ be a scalar. Then v ∈ V is a generalized eigenvector
with eigenvalue λ if there exists n such that (X − λ)nv = 0 and the set of all generalized
eigenvectors of eigenvalue λ is the generalized eigenspace. If dimV < ∞, then we can
rephrase Jordan canonical form as saying that V is a direct sum of its generalized eigenspaces.

If X, Y commute, then the generalized eigenspaces of X are invariant under Y , and vice
versa.

Now let χ be a central character (an algebra homomorphism Z(g) → C). Given M ∈ O,
define Mχ to be the set of v ∈ M such that v is a generalized eigenvector with eigenvalue
χ(x) for all x ∈ Z(g). Each Mχ is a subrepresentation of M (check).

Proposition 6.3.1. If M ∈ O, then M =
⊕

χM
χ.

Proof. Given a weight µ, Mµ is finite-dimensional. Furthermore, Mµ is a Z(g)-submodule of
M . Hence the intersections Mµ ∩Mχ are generalized eigenspaces for the action of Z(g) on
Mµ, so Mµ is the direct sum of them. Since M is a sum of its weight spaces, this gives the
result. □

Define Oχ to be the full subcategory on objects M such that M =Mχ.

Proposition 6.3.2. If M ∈ Oχ and M ′ ∈ Oχ′ with χ ̸= χ′, then Ext1O(M,M ′) = 0.

Proof. Consider an extension 0 → M ′ → N → M → 0. But then M ′ = Nχ′
and Nχ is a

submodule of N which maps isomorphically toM . We can use an inverse of this isomorphism
to split the sequence. □
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In particular, every block belongs to some Oχ and we have a decomposition

O ≃
⊕
χ

Oχ.

Recall that we already discussed that every central character is of the form χλ for some
weight λ.

Proposition 6.3.3. If λ ∈ Λ is an integral weight, then Oχλ
is a block.

Proof. The irreducible representations of Oχλ
are all of the form L(w • λ) for w ∈ W . Since

W is generated by simple reflections, it will suffice to show that L(λ) and L(µ) are in the
same block where µ = sα • λ for some simple root α. Let n = ⟨λ, α⟩. Without loss of
generality, we can assume that n ≥ 0 (if n = −1, then λ = µ and if n ≤ −2 we may reverse
the roles of λ and µ).

By Proposition 5.2.1, we know that there is a nonzero homomorphism f : M(µ) → M(λ)
(whose image lies in the maximal submodule N(λ)). Let N = f(N(µ)). Then M(λ)/N is
a highest weight module containing a submodule isomorphic to L(µ) (the image of M(µ)
under f) and a quotient module isomorphic to L(λ) (since its highest weight is λ). Highest
weight modules are indecomposable (since they are cyclic modules) so we get the result since
we already saw that indecomposable modules belong to a single block. □

For the central weight χ0, the corresponding block Oχ0 is called the principal block.
Recall this comes from the trivial representation, so χ0(x) = 1 for all x ∈ Z(g).
When λ is not integral, Oχλ

is not going to be a single block in general.

Example 6.3.4. Consider g = sl2. In previous examples, we identified Λ with Z, and h∗

with C; then ρ = 1 with this identification.
The two irreducible representations of Oχλ

are L(λ) and L(−λ− 2).
We saw that if α /∈ Z≥0, then the Verma module M(α) is irreducible, so M(α) = L(α).

In particular, if λ /∈ Z then Oχλ
has two irreducible representations which are both Verma

modules.
However, M(λ) and M(−λ− 2) are not in the same block: suppose N is an extension of

these two modules (in either order). Starting with any weight vector, applying elements of
U(sl2) can only change its weight by integer multiples of 2 (since the weight of X is 2 and
the weight of Y is −2), and so the sum of weight spaces for either M(λ) or M(−λ− 2) in N
must both be subrepresentations, so N is the direct sum of the two.
So we see a few different kinds of behavior here:

• If λ ∈ Z \ {−1}, then Oχλ
is a single block and has two irreducible representations.

• If λ = −1, thenOχ−1 is still a single block, but only has one irreducible representation.
• If λ /∈ Z, then Oχλ

splits into two blocks, each having one irreducible representation.
□

6.4. Dominant and antidominant weights. In the previous example, we used the fact
that in a nontrivial extension of irreducible representations of sl2, the weights should always
differ by integer multiples of 2, or said another way, should all belong the same coset of 2Z
in C. For general g, we can replace 2Z with the root lattice Λr and formalize it as follows.

Proposition 6.4.1. Let V ∈ O and for each coset [α] of h∗/Λr, define V[α] =
⊕

λ∈[α] Vλ.

Then each V[α] is a subrepresentation of V and V =
⊕

[α]∈h∗/Λr
V[α].
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This motivates the following definition. For λ ∈ h∗, define [λ] to be its coset in h∗/Λr, and
define (recall that W is the Weyl group)

W[λ] = {w ∈ W | w • λ− λ ∈ Λr}.

As the notation suggests, W acts on h∗/Λr via the dotted action and W[λ] is the stabilizer
of [λ] under this action.

In particular, Oχλ
decomposes further as a direct sum of subcategories indexed by the

orbits of W[λ] acting on W • λ (via the dotted action). These are in fact blocks, but we
probably won’t get to that proof, see [H3, §4.9].
Recall for λ, µ ∈ h∗, that we defined ⟨λ, µ⟩ = 2(λ, µ)/(µ, µ).

Remark 6.4.2. In [H3, §3.4], it is proven that the collection of vectors

Φ[λ] = {α ∈ Φ | ⟨λ, α⟩ ∈ Z},

is a root system inside of its linear span, and that W[λ] is its Weyl group. □

Definition 6.4.3. λ ∈ h∗ is antidominant if ⟨λ+ρ, α⟩ /∈ Z>0 for all positive roots α ∈ Φ+.
Analogously, λ is dominant if ⟨λ+ ρ, α⟩ /∈ Z<0 for all α ∈ Φ+. □

As Humphreys warns, this definition of dominant is a relaxation of the usual definition of
dominance (which also requires that λ ∈ Λ).

Recall that λ < µ means that µ−λ can be written as a sum of positive roots with positive
integer coefficients.

Proposition 6.4.4. Pick λ ∈ h∗. An element of the dotted orbit W[λ] • λ is antidominant
if and only if it is minimal with respect to the partial order <, and there is a unique such
element.

Similarly, an element is dominant if and only if it is maximal with respect to <, and there
is a unique such element.

I’ll just prove the easier implication; for the rest, see [H3, §3.5].
First, if µ is a minimal element of W[λ] • λ, then it must be antidominant. If not, then

pick α ∈ Φ+ such that ⟨µ+ ρ, α⟩ ∈ Z>0. But then

sα • µ = sα(µ+ ρ)− ρ = (µ+ ρ)− ⟨µ+ ρ, α⟩α− ρ = µ− ⟨µ+ ρ, α⟩α,

so sα • µ < µ and sα ∈ W[µ] = W[λ], which contradicts minimality.

In particular, there are two canonical choices for a representative of the coset [λ] in h∗/Λr:
either the antidominant or dominant weight. They will play special roles. For example,
here’s an easy property:

Proposition 6.4.5. If λ is antidominant, then M(λ) is irreducible.

6.5. Duality functor. First, there is an anti-involution τ of g (i.e., τ([x, y]) = [τ(y), τ(x)]
and τ 2 = 1) such that τ(h) = h for all h ∈ h called the transpose map. In particular, for
each root α, we have τ(gα) = g−α.

Example 6.5.1. For sln, we can take τ(x) = xT , the usual transpose operation. Actually
this works for all of the classical cases if we use the particular choices of bilinear forms from
§4.3. □
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Given a representation M , we will denote by M∗,τ the dual space M∗ with the action by
g defined by

(xf)(v) = f(τ(x)v)

for f ∈M∗, x ∈ g, and v ∈M .
Temporarily denote by C the full subcategory of U(g)-modules which admit a weight

decomposition with finite-dimensional weight spaces.
If M ∈ C, then for every weight λ, we can identify M∗

λ with the subspace of f ∈M∗ such
that f(Mµ) = 0 for all µ ̸= λ. We define

M∨ =
⊕
λ∈h∗

M∗
λ ⊆M∗,τ .

Then M∨ is a subrepresentation, so in particular, is a representation. Since τ fixes h, we
have M∨

λ =M∗
λ , so M

∨ ∈ C.
If φ : M → N is a homomorphism, then it preserves weight spaces, and so we get maps

φ∗
λ : N

∗
λ →M∗

λ ; taking the sum gives a dual homomorphism φ∨ : N∨ →M∨.
We start with some basic observations:

Proposition 6.5.2. (1) If M ∈ C, then we have a natural isomorphism M ∼= (M∨)∨.
In particular, ∨ gives an equivalence C ≃ Cop.

(2) Given a short exact sequence 0 → M1 → M2 → M3 → 0, duality induces a short
exact sequence 0 →M∨

3 →M∨
2 →M∨

1 → 0.
(3) For every weight λ, we have L(λ)∨ ∼= L(λ).
(4) If M ∈ C, then chM = chM∨.

Proof. (1) We’re using here that each weight space is finite-dimensional, and hence there is
a natural isomorphism ψ : Mλ → (M∗

λ)
∗ where for v ∈ Mλ and f ∈ M∗

λ , ψ(v)(f) is defined
to be f(v). This is compatible with the representation structure we’ve defined since τ 2 = 1.

(2) Not much to say, we can check this on weight spaces one at a time.
(3) By (2), if L(λ)∨ had a nonzero proper submodule, then this would give a nonzero

proper quotient of (L(λ)∨)∨ ∼= L(λ) which contradicts that it is irreducible. So L(λ)∨ is also
irreducible and a highest weight representation of highest weight λ, so the two are isomorphic
by uniqueness.

(4) Clear from construction. □

Proposition 6.5.3. If M ∈ O, then M∨ ∈ O. In particular, ∨ gives an equivalence O ≃
Oop.

Proof. We know that M is artinian, and so has a composition series

0 =M0 ⊆M1 ⊆ · · · ⊆Mn =M.

Define Ni = ker(M∨ →M∨
i )

∼= (M/Mi)
∨. Then we get

0 = Nn ⊆ Nn−1 ⊆ · · · ⊆ N0 =M∨.

Also, Ni/Ni+1
∼= (Mi+1/Mi)

∨. From the previous result, these are irreducible, so we have a
composition series for M∨. In particular, M∨ is a finitely generated U(g)-module.
By construction, M∨ is h-semisimple.
Finally, we need to check that M∨ is locally n-finite. First recall that since M ∈ O, there

are finitely many weights λ1, . . . , λr so that if Mβ ̸= 0, then β ≤ λi for some i. Now pick
a weight vector v ∈ Mβ. Then U(n) · v is contained in the sum of weight spaces Mγ such
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that γ ≥ β. Also, the intervals {γ | β ≤ γ ≤ λi} are finite (write λi − β =
∑

j cjαj as a

nonnegative integer sum of simple roots; any γ is of the form β+
∑

j c
′
jαj with c

′
j ≤ cj), and

so U(n) · v is a contained in finitely many weight spaces, and each one is finite dimensional.
Finally, everything is a finite sum of weight vectors, so we’re done. □

Now that we know that ∨ preserves objects of O, we get some more consequences:

Corollary 6.5.4. (1) For M,N ∈ O, we have

Ext1O(M,N) ∼= Ext1O(N
∨,M∨).

In particular, for any pairs of weights λ, µ, we have

Ext1O(L(λ), L(µ))
∼= Ext1O(L(µ), L(λ)).

(2) We have (M ⊕N)∨ ∼= M∨ ⊕N∨. In particular, if M ∈ O is indecomposable, then so
is M∨.

(3) If M ∈ Oχ, then M
∨ ∈ Oχ. In particular, ∨ gives an equivalence Oχ ≃ Oop

χ .

Proof. (1) can be proven using the fact that ∨ preserves short exact sequences.
(2) The isomorphism is straightforward; if M∨ decomposes as P ⊕ Q, then we get M ∼=

P∨ ⊕Q∨, which means that M is decomposable.
(3) We recall some facts. We have the Harish-Chandra homomorphism ξ : Z(g) → U(h)

where Z(g) is the center of U(g) which is defined by restricting the projection map U(g) →
U(h) to Z(g) (specifically, we pick a basis compatible with g = n− ⊕ h ⊕ n and order it so
that n− < h < n and send all PBW basis elements that use n− or n to 0).

Next, τ fixes h pointwise and U(h) is commutative; also it swaps n and n−, and so ξ(τ(z)) =
ξ(z) for all z ∈ Z(g). In particular, τ fixes Z(g) pointwise since ξ is injective. Hence, if
z ∈ Z(g) acts on M by the scalar χ(z), then it also acts on M∨ by the same scalar. □

The dual Verma modules M(λ)∨ gives us a new class of modules to consider. Some more
properties:

Proposition 6.5.5. (1) M(λ)∨ has a unique irreducible subrepresentation which is L(λ).
If L(µ) is a composition factor of M(λ)∨, then µ ≤ λ.

(2) We have

dimHomO(M(µ),M(λ)∨) = δλ,µ.

Every nonzero homomorphism M(λ) →M(λ)∨ has image equal to L(λ).
(3) We have Ext1O(M(µ),M(λ)∨) = 0 for all λ, µ.

Proof. (1) This follows by applying ∨ to the fact thatM(λ) has a unique irreducible quotient
representation which is L(λ). Also, the composition factors ofM(λ) andM(λ)∨ are the same,
so the second part follows from previous results.

(2) Suppose there is a nonzero homomorphism M(µ) → M(λ)∨. Its image is artinian, so
it has an irreducible submodule, which must be isomorphic to L(λ) by (1). This implies that
λ ≤ µ since then L(λ) is a composition factor of M(µ). But we can dualize to get a nonzero
homomorphism M(λ) →M(µ)∨ so we also conclude that µ ≤ λ, and hence λ = µ.
Next, since M(λ) is generated by M(λ)λ, every homomorphism M(λ) →M(λ)∨ is deter-

mined by the image of this subspace. But dimM(λ)∨λ = 1 so the space of maps is at most
1-dimensional. We do actually get a nonzero map though, since we can take the composition
M(λ) → L(λ) →M(λ)∨ (the rest are scalar multiples of this map).
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(3) Since Ext1O(M(µ),M(λ)∨) ∼= Ext1O(M(λ),M(µ)∨), we may assume without loss of
generality that λ ̸> µ, i.e., λ ≤ µ or they are incomparable. This means that µ is a maximal
element of the set of weights appearing in either M(µ) or M(λ)∨. Suppose we have an
extension

0 →M(λ)∨ →M →M(µ) → 0.

Let v be a highest weight vector in M(µ)µ and let v′ ∈ Mµ be any preimage. Then v′ must
also be a highest weight vector by maximality of µ, so there is a map M(µ) → M taking v
to v′; this splits the above extension. □

7. Projectives and injectives

7.1. Projective objects. Recall that a U(g)-module P is projective if the functor Homg(P,−)
is exact. Alternatively, given any surjection π : M → N and arbitrary homomorphism
φ : P → N , there exists a homomorphism ψ : P → M (the “lift”) such that φ = π ◦ ψ.
Free modules are projective, so we can write any representation as a quotient of a projective
module; we say that “the category of U(g)-modules has enough projectives”. However,
free U(g)-modules do not belong to O since they fail to be locally n-finite.

We would like to prove that nonetheless, O has enough projectives. There is a subtle
distinction though: if M ∈ O is a projective object of O, it may not be projective as a
U(g)-module because we only require that the lifting property hold for surjections between
modules that belong to O. To emphasize this, we will usually say “projective object of O”.

Proposition 7.1.1. If λ is dominant, i.e., maximal in its W[λ]-orbit, then M(λ) is a pro-
jective object of O.

Proof. To check that M(λ) is projective, it suffices to only consider modules in the same
block as M(λ). Let π : U → V be a surjection in this block and suppose we’re given a map
φ : M(λ) → V . Letm+ ∈M(λ)λ be a highest weight vector and set v+ = φ(m+). Finally, let
u+ ∈ Uλ be any preimage of v+ under π. Let β be a maximal element in {µ | µ ≥ λ, Uµ ̸= 0}.
Then every vector of Uβ is a highest weight vector. However, since U is in the same block as
M(λ), β is in the W[λ]-orbit of λ, and so β = λ by assumption. Hence there is a well-defined
map ψ : M(λ) → U given by ψ(m+) = u+, and so M(λ) is projective. □

Proposition 7.1.2. If P ∈ O is a projective object and L is a finite-dimensional represen-
tation, then P ⊗ L is projective.

Proof. By hom-tensor adjunction, for any M ∈ O, we have a natural isomorphism

HomO(P ⊗C L,M) = HomO(P,HomC(L,M)),

here HomC(L,M) is isomorphic to L∗ ⊗M as a representation (usual dual ∗, not ∨). In
particular, tensoring with L∗ (over C) is exact, and the functor HomO(P,−) is exact since
P is projective, so we conclude that P ⊗C L is projective. □

Before continuing, we should examine the structure of tensor products M(λ) ⊗ L where
L is finite-dimensional. In order to do that, let me recall a general associativity property of
tensor products. Let R, S be rings, let M1 be a right R-module, M2 be an (R, S)-bimodule
(i.e., left R-module and right S-module such that (rm)s = r(ms) for all r ∈ R, m ∈M2 and
s ∈ S) and M3 a left S-module. Then we have a natural isomorphism

(M1 ⊗RM2)⊗S M3
∼= M1 ⊗R (M2 ⊗S M3).
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Implicit here is that M1 ⊗R M2 is a right S-module using the right S-module structure on
M2, and similarly, M2 ⊗S M3 is a left R-module. This gives the following:

Proposition 7.1.3. If L is a finite-dimensional representation of g, then we have an iso-
morphism of g-representations

M(λ)⊗ L ∼= Indg
b(Cλ ⊗ L)

where on the right hand side, we restricted the g-action on L to b.

Proof. We are using the previous isomorphism with R = U(b) and S = C, M1 = U(g),
M2 = Cλ, and M3 = L. Since the U(g)-module structure on both sides is compatible by
naturality. □

First consider the structure of L as a b-representation. Let v1, . . . , vN be a weight basis
for L with respective weights µ1, . . . , µN . We can assume that they are ordered so that if
µi ≤ µj, then i ≤ j. Letting z denote 1 ∈ Cλ, we have that z ⊗ v1, . . . , z ⊗ vN is a weight
basis for Cλ ⊗ L with weights λ + λ1, . . . , λ + λN . Then the b-subrepresentation generated
by any z ⊗ vk is contained in the span of {z ⊗ vk, z ⊗ vk+1, . . . , z ⊗ vN}.
We can phrase this as follows: let Vk be the span of z ⊗ vk, . . . , z ⊗ vN in Cλ ⊗ L. Then

we have a filtration by b-submodules:

VN ⊂ VN−1 ⊂ · · · ⊂ V1 = Cλ ⊗ L.

Finally, note that induction is exact, so if we set V ′
k = Indg

bVk, then Indg
b(Cλ ⊗ L) has a

filtration
V ′
N ⊂ V ′

N−1 ⊂ · · · ⊂ V ′
1 = Indg

b(Cλ ⊗ L),

such that (setting V ′
N+1 = 0)

V ′
k/V

′
k+1

∼= M(λ+ µk).

We can summarize this as follows:

Proposition 7.1.4. Let µ1, . . . , µN be the weights of L, listed with multiplicities. Then
M(λ)⊗ L has a filtration whose successive quotients are the Verma modules M(λ+ µk) for
k = 1, . . . , N . Furthermore, if ν is a maximal weight amongst µ1, . . . , µN , then M(λ) ⊗ L
contains a submodule isomorphic to M(λ+ ν), and similarly, if η is a minimal weight, then
M(λ)⊗ L has a quotient module isomorphic to M(λ+ η).

For future reference, we make a definition:

Definition 7.1.5. A filtration of M ∈ O whose successive quotients are Verma modules is
called a standard filtration (or Verma flag). □

In general, M might not have a standard filtration.
First, let me comment that there is a unique element w0 ∈ W such that w0(Φ

+) = Φ−.
This has maximal possible length (ℓ(w0) = |Φ+|). In particular,

w0(ρ) = −ρ
(recall that ρ is 1

2
times the sum of all positive roots). One last thing: for each simple root

α, we have sα(ρ) = ρ− α (since α permutes Φ+ \ {α}) and hence ⟨ρ, α⟩ = 1.
When L = L(µ), µ is the (unique) maximal weight that appears, and w0(µ) is the (unique)

minimal weight.
Now we have everything to prove our goal.
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Proposition 7.1.6. Category O has enough projectives.

Proof. First we show that given a weight λ, there is a projective object P such that L(λ) is
a quotient of P . If λ is dominant, then we saw that we can take P = M(λ). Recall that
dominant means that ⟨λ + ρ, α⟩ is not a negative integer for all positive roots α. If not,
then since ⟨ρ, α⟩ = 1 for each simple root, there exists an integer n≫ 0 such that λ+ nρ is
dominant.

Set µ = λ + nρ. Then M(µ) is projective. The lowest weight of L(nρ) is w0(nρ) = −nρ,
and so M(µ) ⊗ L(nρ) is a projective object which has a quotient isomorphic to M(λ), and
hence we have a surjection M(µ)⊗ L(nρ) → L(λ).
Finally, we prove that every M ∈ O is a quotient of a projective object by induction on

the length of its composition series. The base case has just been handled. Otherwise, we
can find a simple submodule L(λ) of M ; let N be the quotient module. Then N has shorter
length, so there is a surjection P → N where P is projective. In particular, we can lift this
to a map P → M . If this is surjective, we’re done. Otherwise, the image is a submodule
M ′ such that M ′ ∩ L(λ) = 0, which means we have a decomposition M ∼= M ′ ⊕ L(λ). But
we can find a projective object P ′ that surjects onto L(λ) and hence we can write M as a
quotient of P ⊕ P ′, which is again projective. □

7.2. Projective covers. Now we know that every M ∈ O is the quotient of at least one
projective object. We now want to show there is a “smallest” choice of projective object,
which we will call its projective cover. A lot of this will result from some general algebra
facts, but since they may not be familiar, we’ll cover them here, and try to minimize technical
background.

Let’s start with irreducible representations. Our first claim is that there is a natural
correspondence between irreducible representations and indecomposable projective objects.

If P is projective and P ∼= P1 ⊕ P2, then both P1 and P2 are also projective (I’ll leave
the check to you if you haven’t seen this before). An object is indecomposable if it is not
isomorphic to a direct sum of two nonzero modules. Otherwise, we can keep decomposing
it into smaller pieces; since every object is artinian, this process always terminates, so every
object is isomorphic to a finite direct sum of indecomposable modules2.

Suppose thatM is irreducible and P is a projective object surjecting ontoM . If P ∼= P1⊕
P2, then the images of P1 and P2 are submodules of M that span it, and in particular, either
P1 or P2 surjects ontoM (possibly both). So we can always write irreducible representations
as a quotient of an indecomposable projective. Furthermore, if P is projective, then it has
at least one irreducible quotient since it has a composition series.

Now we need to refine this discussion. Before proceeding, we begin with Fitting’s lemma.
Note that this will equally apply to any module over a ring which is simultaneously noetherian
and artinian.

Proposition 7.2.1 (Fitting’s lemma). Pick M ∈ O and a g-linear map f : V → V . Then
for all n ≫ 0, we have M = ker(fn) ⊕ image(fn). In particular, if M is indecomposable,
then either f is an isomorphism or f is nilpotent.

Proof. Since M is noetherian, the increasing chain of submodules ker(f) ⊆ ker(f 2) ⊆
· · · must stabilize. Similarly, since M is artinian, the decreasing chain of submodules

2There is a uniqueness property here, generally falling under the name Krull–Schmidt theorem; we might
not need to get into this.
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image(f) ⊇ image(f 2) ⊇ · · · also stabilizes. Pick m so that ker(fn) = ker(fm) and
image(fn) = image(fm) for all n ≥ m.

If n ≥ m, we claim that ker(fn) ∩ image(fn) = 0. Pick x in this intersection. Then there
exists y such that x = fn(y), which means that f 2n(y) = fn(x) = 0. But ker(f 2n) = ker(fn),
and so fn(y) = 0; and hence x = 0. Now we claim that ker(fn) + image(fn) = M . Pick
arbitrary x. Since image(fn) = image(f 2n), there exists z such that fn(x) = f 2n(z). So
x − fn(z) ∈ ker(fn) and we have x = (x − fn(z)) + fn(z). In particular, M = ker(fn) ⊕
image(fn).

Now suppose that M is indecomposable. Then either ker(fn) = 0 or image(fn) = 0.
In the first case, fn is injective, which means that f must also be injective. Furthermore,
M = image(fn) implies that fn is surjective, so in particular f is surjective. So f is an
isomorphism. In the second case, fn = 0, so by definition f is nilpotent. □

Proposition 7.2.2. Let M ∈ O be irreducible (and nonzero), and suppose we are given
surjections π : P → M and π′ : P ′ → M where P, P ′ are indecomposable projective objects.
Then P ∼= P ′.

Proof. Since P is projective, there is a map g : P → P ′ such that π = π′g. Similarly, there
is a map g′ : P ′ → P such that π′ = πg′.

P
π

  
g

��
P ′ π′

// M

P ′

π′

  
g′

��
P

π // M

Define f = g′g : P → P . By Fitting’s lemma, either f is an isomorphism or f is nilpotent.
In the second case, suppose fn = 0. Note that π = π′g = πg′g = πf . So then 0 = πfn =
πfn−1 = · · · = π, which contradicts that π is surjective. Hence f is an isomorphism. If we
define f ′ = gg′, then in the same way we conclude that f ′ is an isomorphism. This means
that g and g′ are isomorphisms. □

Lemma 7.2.3. Let P ∈ O be an indecomposable projective object and suppose we have a
surjection π : P → M with M nonzero and irreducible. If Q is any proper submodule of P ,
then π(Q) = 0.

Proof. Let ψ : Q → M be the restriction of π to Q. Since M is irreducible, ψ is either
surjective or 0. Assume ψ is surjective, then since P is projective, there exists a map
g : P → Q such that ψg = π. Let i : Q→ P be the inclusion map.

P
π

  
g

��
Q

i

OO

ψ // M

Then f = ig is a map from P to itself. So by Fitting’s lemma, either f is an isomorphism
or nilpotent. The first case implies that i is surjective, i.e., Q = P , which contradicts the
assumption that Q is a proper submodule. So f is nilpotent, say fn = 0. But note that
ψ = πi by definition, so

π = ψg = πig = πf

But then repeating that, we conclude that π = πfn = 0, which contradicts that M ̸= 0. So
we conclude that ψ = 0. □
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Proposition 7.2.4. Let P ∈ O be an indecomposable projective object and let M,M ′ be
nonzero irreducible representations together with surjections π : P → M and π′ : P → M ′.
Then M ∼= M ′.

Proof. Apply the previous lemma to π with Q = ker π′. Then π(Q) = 0 implies that ker π′ ⊆
kerπ. A symmetric argument implies that kerπ ⊆ kerπ′. In particular, ker π = kerπ′ implies
that M ∼= M ′. □

In conclusion, the above discussion gives us a bijection between irreducible objects and
indecomposable projective objects.

Definition 7.2.5. For each weight λ, we let P (λ) denote the unique (up to isomorphism)
indecomposable projective object that has L(λ) as a quotient module. □

When λ is dominant, we have P (λ) =M(λ).
Now to extend this discussion to general objects of O. Given M ∈ O, and a surjection

π : P → M where P is projective, we say that π is a projective cover (or by abuse of
notation, that P is a projective cover) if, for every proper submodule N ⊂ P , we have
π(N) ̸=M .

Proposition 7.2.6. Every object of O has a projective cover, and they are unique up to
isomorphism.

Proof. We will prove this by induction on the length of a composition series. For the base
case, when our module is irreducible, it follows from Lemma 7.2.3 that if M = L(λ), then
P (λ) → L(λ) is indeed a projective cover.

Otherwise, we mimic the proof that O has enough projectives. Given M ∈ O, we have a
short exact sequence

0 → L(λ) →M → N → 0

for some λ. Since N has shorter length, it has a projective cover P , and the map P → N
can be lifted to a map P → M . If this is surjective, then this is also a projective cover. If
not, then we have M ∼= L(λ) ⊕ N and P (λ) ⊕ P is a projective cover of M (check). The
uniqueness is left as an exercise. □

Proposition 7.2.7. (1) Let P be a projective object. If P ∼=
⊕

λ P (λ)
⊕mλ, then mλ =

dimHomO(P,L(λ)).
(2) For any M ∈ O, dimHomO(P (λ),M) = [M : L(λ)].

Proof. (1) clear from previous discussion
(2) Let 0 → A→ B → C → 0 be a short exact sequence in O. Since P (λ) is projective in

O, the functor HomO(P (λ),−) is exact and so we get a short exact sequence

0 → HomO(P (λ), A) → HomO(P (λ), B) → HomO(P (λ), C) → 0.

In particular, [M ] 7→ dimHomO(P (λ),M) gives a well-defined homomorphism fλ : K(O) →
Z. Note that fλ([L(µ)]) = δλ,µ. On the other hand, [M ] 7→ [M : L(λ)] also defines a well-
defined homomorphism taking the same values on [L(µ)], so they must agree since {[L(µ)]}
spans K(O). □
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7.3. Injective objects. Recall the definition of injective object: I ∈ O is injective if the
functor HomO(−, I) is exact, i.e., given any injective homomorphism i : M → N of objects
in O together with a homomorphism φ : M → I, there exists ψ : N → I such that ψ ◦ i = φ.
Note we can think of M as a submodule of N , so we’re saying that homomorphisms from
submodules can always be extended to the whole module. As with projective objects, there
is a distinction between being an injective U(g)-module and being an injective object of O,
but we won’t have a use for the former notion.

As before, we’ll say that O has enough injectives if, for all M ∈ O, there exists an
injective object I and an injective homomorphism i : M → I. There is a pleasant shortcut
here: we already know some facts about projective objects, and the definitions for injective
and projective are the same if we reverse the direction of all arrows. We also have a duality
∨ on O, so we can translate statements freely.

So we just state them:

Proposition 7.3.1. (1) O has enough injectives.
(2) For each weight λ, there is a unique (up to isomorphism) indecomposable injective

object, which we will denote by I(λ), that has L(λ) as a submodule.

We can take I(λ) = P (λ)∨.
The dual notion of a projective cover is an injective envelope: given an injective object I

and M ∈ O together with an injection i : M → I, we call I an injective envelope if, for
all nonzero submodules N of I, we have M ∩N ̸= 0.

Proposition 7.3.2. Every object of O has an injective envelope and it is unique up to
isomorphism.

7.4. Standard filtrations. Recall that we define a standard filtration of M ∈ O to be a
filtration whose successive quotients are Verma modules. We saw that the tensor product of
a Verma module with a finite-dimensional module has a standard filtration.

Proposition 7.4.1. Suppose M has a standard filtration.

(1) If λ is a maximal weight of M , then HomO(M(λ),M) ̸= 0, every nonzero homomor-
phism φ : M(λ) →M is injective, and cokerφ has a standard filtration.

(2) If M ∼= M ′ ⊕M ′′, then both M ′ and M ′′ have standard filtrations.

Proof. (1) Pick nonzero v ∈Mλ. Then v is a highest weight vector and hence gives a nonzero
map φ : M(λ) →M . Let M0 ⊂M1 ⊂ · · · be a standard filtration of M , and pick i minimal
so that imageφ ⊆ M i. In particular, the map M(λ) → M i/M i−1 is nonzero, but on the
other hand, M i/M i−1 ∼= M(µ) for some weight µ. Then λ ≤ µ, and so maximality of λ
forces λ = µ. But every nonzero endomorphism of M(λ) is an isomorphism, so we conclude
that φ is injective.

This also implies that imageφ ∩M i−1 = 0 and we have a short exact sequence

0 →M i−1 → cokerφ→M/M i → 0.

By definition, both M i−1 and M/M i have standard filtrations, so we can combine them to
get one on cokerφ as well.
(2) We prove this by induction on the length of a standard filtration on M . The base

case is that M is a Verma module; hence M is indecomposable, so there is nothing to say.
Otherwise, let λ be a maximal weight of M . Then either M ′

λ ̸= 0 or M ′′
λ ̸= 0; without loss

of generality, suppose M ′
λ ̸= 0. Pick nonzero v ∈M ′

λ, which induces a map φ : M(λ) →M ′.
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The compositionM(λ) →M ′ →M is injective by (1) and hence φ is also injective. From (1),
we know that M/M(λ) =M ′/M(λ)⊕M ′′ has a standard filtration; by induction M ′/M(λ)
and M ′′ both have standard filtrations, so we’re done. □

If M has a standard filtration, then its restriction to U(n−) is free. In particular, the
number of quotients that are isomorphic to M(λ) is well-defined since this is the dimension
of the space of free generators of weight λ, and we denote this number by (M :M(λ)).

As we discussed before, the classes of simple objects [L(λ)] form a basis for K(O) as we
vary over all weights of λ. We also know that

[M(λ)] = [L(λ)] +
∑
µ<λ

cλµ[L(µ)]

for some set of non-negative integers cλµ, which implies that the [M(λ)] also forms a basis. If
M has a standard filtration, then

[M ] =
∑
λ

(M :M(λ))[M(λ)].

Proposition 7.4.2. If M has a standard filtration, then

(M :M(λ)) = dimHomO(M,M(λ)∨).

Proof. We prove this by induction on the length of a standard filtration. For the base case,
with M =M(µ), we have

(M(µ) :M(λ)) = δλ,µ = dimHomO(M(µ),M(λ)∨)

where the second equality comes from Proposition 6.5.5.
In general, we have a short exact sequence of the form

0 → N →M →M(µ) → 0

where N has a shorter standard filtration than M . Since [M ] = [M(µ)] + [N ] in K(O), we
have

(M :M(λ)) = (M(µ) :M(λ)) + (N :M(λ))

= dimHomO(M(µ),M(λ)∨) + dimHomO(N,M(λ)∨).

On the other hand, we also have an exact sequence

0 → HomO(M(µ),M(λ)∨) → HomO(M,M(λ)∨) → HomO(N,M(λ)∨) → Ext1O(M(µ),M(λ)∨)

The last term is 0 by Proposition 6.5.5, so we conclude that

dimHomO(M,M(λ)∨) = dimHomO(M(µ),M(λ)∨) + dimHomO(N,M(λ)∨). □

Theorem 7.4.3. (1) If P ∈ O is projective, then P has a standard filtration.
(2) (BGG reciprocity) Given weights λ, µ, we have

(P (λ) :M(µ)) = [M(µ) : L(λ)].

(3) If (P (λ) : M(µ)) ̸= 0, then µ ≥ λ and µ and λ are in the same dotted W -orbit.
Furthermore, (P (λ) :M(λ)) = 1.

(4) In particular, {[P (λ)]} is a basis for K(O), and if P and P ′ are projectives with the
same character, then P ∼= P ′.
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Proof. (1) We can write P as a direct sum of P (λ); it suffices to prove the result for P (λ).
Pick n so that ν = λ + nρ is dominant. As we saw before, M(ν) ⊗ L(nρ) is projective and
has L(λ) as a quotient. In particular, P (λ) is a direct summand of M(ν) ⊗ L(nρ); we also
know that M(ν) ⊗ L(nρ) has a standard filtration (Proposition 7.1.4), so by the previous
result, P (λ) does too.

(2) We have

(P (λ) :M(µ)) = dimHomO(P (λ),M(µ)∨) = [M(µ)∨ : L(λ)] = [M(µ) : L(λ)]

where the last equality follows since M(µ) and M(µ)∨ have the same character.
(3) If the above quantity is nonzero, then λ ≤ µ and λ and µ belong to the same dotted

W -orbit; it is 1 when λ = µ.
(3) The previous result tells us that we have

[P (λ)] = [M(λ)] +
∑
µ>λ

dλµ[M(µ)]

for some set of coefficients dλµ. Furthermore, we can restrict to weights belonging to the
same dotted W -action (in particular a finite set). Since the [M(λ)] form a basis, the result
follows since we have a unitriangular change of bases. The last statement follows since every
projective P is isomorphic to a direct sum of the P (λ). □

Example 7.4.4. Consider the case of sl2. Our positive root is α = 2 and ρ = 1, so
⟨λ+ ρ, α⟩ = 2λ+ 2. So dominance means λ /∈ {−2,−3, . . . }.
Recall that if λ = −1 or λ /∈ Z, then the block containing L(λ) just contains one irre-

ducible, and it is dominant and L(λ) =M(λ) = P (λ).
Otherwise, if λ ∈ Z≥0, we have a block consisting of L(λ) and L(µ) where µ = −λ − 2.

By the above comment, P (λ) =M(λ). What is the structure of P (µ)? We know that it has
a standard filtration and from BGG reciprocity, we get

(P (µ) :M(µ)) = 1, (P (µ) :M(λ)) = [M(λ) : L(µ)] = 1

since [M(λ)] = [L(λ)] + [L(µ)]. Since P (µ) is indecomposable and has M(µ) as a quotient,
it must be an extension of the form

0 →M(λ) → P (µ) →M(µ) → 0. □

Remark 7.4.5. Fix a central character χ = χλ and let P =
⊕

w∈W P (w • λ). Then P is
known as a projective generator for Oχ since every module is a quotient of P⊕n for some
n. Also, A = HomO(P, P ) is a finite-dimensional algebra, and one can show that Oχ is
equivalent to the category of finite-dimensional right A-modules. There are some advantages
to this perspective since the representation theory of finite-dimensional algebras is fairly well-
developed, especially if A can be computed explicitly. □

8. BGG resolution

For M ∈ O, the linear combination in K(O) given by [M ] =
∑

λ cλ[L(λ)] has a concrete
meaning: cλ is the multiplicity of L(λ) in any composition series of M . This makes sense
since the coefficients cλ must be a non-negative integer. However, we’ve already seen that
when we invert linear combinations, we get negative coefficients, such as writing [L(λ)] in
terms of [M(µ)]. Negative coefficients can also be interpreted naturally in terms of Euler
characteristics.
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8.1. General discussion of resolutions. Generally speaking, given a module M , we can
informally call any chain complex

F• : · · · → Fi → Fi−1 → · · · → F0

a “(left) resolution” of M if H0(F•) = M and Hi(F•) = 0 for i > 0. Usually, we want to
require that the Fi satisfy some special property. A common example is requiring that the Fi

are free modules, in which case this is called a free resolution. Another common example
is requiring that the Fi are projective, in which case this is called a projective resolution.
Heuristically, we can think of a resolution as an approximation of a general module M by

modules of a special class. More practically, projective resolutions can be used to compute
right derived functors, such as Tor.

There is yet another angle. If the resolution has finitely many terms, then in the Grothendieck
group, we get an equation

[M ] =
∑
i

(−1)i[Fi].

If we’re talking about O, then this implies an equation for formal characters

chM =
∑
i

(−1)ichFi
.

In category O we don’t have free modules, and projective modules have complicated char-
acters (as we saw from BGG reciprocity). We’ll be interested in the case when the Fi have
standard filtrations. I’m not sure if this is typical terminology, but we’ll call that a stan-
dard resolution. This exists when M is finite-dimensional and we’ll be able to recover the
well-known Weyl character formula. This is perhaps a strange way to deduce it, but it’ll
give us an excuse to discuss some other pieces of algebra that we haven’t yet seen.

8.2. (Relative) Chevalley–Eilenberg complex. For the purposes of this section, let g
be any complex Lie algebra (other fields are fine too). For k = 0, . . . , dim g (though it’s not
necessary to assume that dim g is finite), we define free U(g)-modules

Kk = U(g)⊗C

k∧
(g)

and U(g)-linear maps φk, ψk : Kk → Kk−1 for each k ≥ 1 (f ∈ U(g), xi ∈ g):

φk(f ⊗ x1 ∧ · · · ∧ xk) =
k∑
i=1

(−1)i−1fxi ⊗ x1 ∧ · · · x̂i · · · ∧ xk,

ψk(f ⊗ x1 ∧ · · · ∧ xk) =
∑

1≤i<j≤k

(−1)i+jf ⊗ [xi, xj] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk,

where a hat over an item means that it has been removed.
Now set ∂k = φk + ψk. It can be shown (though we will not do it) that ∂k−1∂k = 0 for all

k ≥ 2 so that we get a chain complex

K• : · · · → Kk
∂k−→ Kk−1

∂k−1−−→ Kk−2 → · · · → K0,

called the Chevalley–Eilenberg complex of g (sometimes also the Koszul complex).
For concreteness, here is ∂k for k = 1, 2:

∂1(f ⊗ x) = fx, ∂2(f ⊗ x1 ∧ x2) = fx1 ⊗ x2 − fx2 ⊗ x1 − f ⊗ [x1, x2].
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It follows immediately from the description of ∂1 that H0(K•) ∼= C.

Theorem 8.2.1 (Koszul). For i ≥ 1, Hi(K•) = 0.

Proof. Just a sketch.
Pick an ordered basis {ei}i∈I for g and consider the corresponding PBW basis for U(g). For

each p and k, let FpKk be the subspace ofKk spanned by the elements ei1 · · · ein⊗ej1∧· · ·∧ejk
where i1 ≤ · · · ≤ in, and j1 < · · · < jk, and n + k ≤ p. From the definition of ∂, it follows
that ∂k(FpKk) ⊆ FpKk−1. In particular, for each p, we get a subcomplex FpK•. General
homological algebra gives an upper bound

dimHi(K•) ≤
∑
p

dimHi(FpK•/Fp−1K•).

The advantage of the quotient complexes on the right is that ψk(FpKk) ⊆ Fp−1Kk−1, and
hence

⊕
p FpK•/Fp−1K• is isomorphic to the Koszul complex on g where g is now thought

of as an abelian Lie algebra. In this case, there are direct methods to show that Hi = 0 for
i ≥ 1, and I will outline some in the exercises. □

Remark 8.2.2. The Chevalley–Eilenberg complex is a free resolution of the trivial repre-
sentation C. But, when g is semisimple, free U(g)-modules do not belong to O, so it will be
better to construct something “smaller”. □

We now want to generalize the above construction to a “relative” setting. Let b ⊆ g be a
Lie subalgebra. Then b acts on g/b and hence also on its exterior powers. Now define

K(g, b)k := U(g)⊗U(b)

k∧
(g/b).

We can generalize the above formulas to define U(g)-linear maps φk, ψk : K(g, b)k → K(g, b)k−1

(for x ∈ g, let x denote its coset in g/b):

φk(f ⊗ x1 ∧ · · · ∧ xk) =
k∑
i=1

(−1)i−1fxi ⊗ x1 ∧ · · · x̂i · · · ∧ xk,

ψk(f ⊗ x1 ∧ · · · ∧ xk) =
∑

1≤i<j≤k

(−1)i+jf ⊗ [xi, xj] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk,

and define ∂k = φk + ψk. It needs to be shown that these maps are well-defined (i.e.,
independent of choices of coset representatives) but we will omit this somewhat tedious, but
straightforward, task. As before, one can check that ∂k∂k−1 = 0 so that we get a chain
complex K(g, b)• (the relative Chevalley–Eilenberg complex). Using a variation of the
above argument, it can also be shown that its homology vanishes in positive degrees (and is
C in degree 0).

8.3. Weights in the relative Chevalley–Eilenberg complex. As the notation suggests,
we will apply the previous construction in the case that g is a semisimple complex Lie algebra
and b is a Borel subalgebra. In that case we have

K(g, b)k = Indg
b(

k∧
(g/b)).
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We recall an earlier discussion. Let µ1, . . . , µN be the weights of
∧k(g/b) (repeated to

account for multiplicities). Then K(g, b)k has a standard filtration whose quotient modules
are M(µ1), . . . ,M(µN).
The µi have an explicit description. First, the weights of g/b are the negative roots Φ−

(each appearing with multiplicity 1). In particular, the weights of
∧k(g/b) is the multiset

α1 + · · ·+ αk where αi ∈ Φ− and the αi are all distinct.

Example 8.3.1. If g = sl3, then Φ− = {(−1, 1, 0), (−1, 0, 1), (0,−1, 1)}. So the weights for
k = 0, 1, 2, 3 are

k
0 (0, 0, 0)
1 (−1, 1, 0), (−1, 0, 1), (0,−1, 1)
2 (−2, 1, 1), (−1, 0, 1), (−1,−1, 2)
3 (−2, 0, 2)

□

Let’s examine the Euler characteristic of this complex, or more precisely its value in K(O).
By general principles, we have (setting N = dim(g/b)):

N∑
k=0

(−1)k[Hk(K(g, b)•)] =
N∑
k=0

(−1)k[Indg
b(

k∧
(g/b))].

The left hand side is just [C], where C is the trivial representation by what we said above.
Furthermore, each term on the right can be expanded into Verma modules using the filtration
above, so we get

[C] =
∑
S⊆Φ−

(−1)|S|[M(
∑
α∈S

α)].

Taking the formal character of both sides gives (with the identification e0 = 1)

1 =
∑
S⊆Φ−

(−1)|S|
∏

α∈S e
α∏

α∈Φ−(1− eα)

which, by clearing denominators, simply gives us the (tautological) identity∏
α∈Φ−

(1− eα) =
∑
S⊆Φ−

(−1)|S|
∏
α∈S

eα.

Example 8.3.2. In the previous sl3 example, the weight (−1, 0, 1) appears in degrees k = 1
and k = 2, so that in the alternating sum above, the terms cancel. So rather than write
it as a sum of 8 terms, we just need 6. The remaining 6 terms are all actually of the form
w • 0 where w ranges over all permutations. Recall that ρ = (1, 0,−1). Here’s a table where
w ∈ S3 is written as w(1)w(2)w(3):

w ℓ(w) w • 0
123 0 (0, 0, 0)
213 1 (−1, 1, 0)
132 1 (0,−1, 1)
231 2 (−2, 1, 1)
312 2 (−1,−1, 2)
321 3 (−2, 0, 2)
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Here I’ve also listed the length ℓ(w) for each permutation w to show that this matches up
with the homological degree k listed in the previous table. □

This suggests that we try to “trim” the complex to get a more interesting identity (and
also a smaller complex). Concretely, for any central character χ, we can project onto the
subcategory Oχ. Since this is an exact functor which either preserves a Verma module or
sends it to 0, the result will be another chain complex whose terms have standard filtrations.
Exactness also says that projection commutes with taking homology; so if we project to the
principal block Oχ0 , the 0th homology of our complex will still be C. This is what we’ll be
interested in doing.

More explicitly, M(µ) will go to 0 if and only if µ /∈ W • 0, so we want to determine which
weights of

∧•(g/b) belong to W • 0.
First, let’s make an important observation. For w ∈ W , define Πw = Φ− ∩w(Φ+), and for

any subset S ⊆ Φ−, define S =
∑

α∈S α.

Lemma 8.3.3. For w ∈ W , we have Πw = w • 0.

Proof. We have

w • 0 =
1

2

∑
α∈Φ+

w(α)− 1

2

∑
α∈Φ+

α.

Hence for α ∈ Φ+, if w(α) ∈ Φ+, then it gets cancelled when combining the above sums,
while if w(α) ∈ Φ−, we get a contribution of w(α). □

Next, the subsets are all distinct: if Πw = Πu, then w
−1u preserves all positive roots (hence

has length 0) and must be the identity. We want to show something stronger: if Π = Πw,
then Π = Πw. First, we develop a preliminary step.

Recall that the simple reflections are denoted σα and that ℓ(w) is the least r such that w
can be written as a product of r simple reflections. Recall also that

ℓ(w) = |Φ− ∩ w(Φ+)| = |Πw|.

Lemma 8.3.4. Let α be a simple root and set w′ = σαw. Then ℓ(w) = ℓ(w′)± 1 and

• ℓ(w) = ℓ(w′) + 1 if and only if −α /∈ Πw′ if and only if Πw = σα(Πw′) ∪ {−α}, and
• ℓ(w) = ℓ(w′)− 1 if and only if −α ∈ Πw′ if and only if Πw = σα(Πw′) \ {−α}.

Proof. First, recall that σα(Φ
− \ {−α}) = Φ− \ {−α} and σα(−α) = α.

This implies that

Πw =

{
σα(Πw′) ∪ {−α} if −α /∈ Πw′

σα(Πw′) \ {−α} if −α ∈ Πw′
.

In the first case, we see that ℓ(w) = ℓ(w′) + 1 and in the second case we have ℓ(w) =
ℓ(w′)− 1. □

In particular, there exists a simple root α such that ℓ(σαw) < ℓ(w) (pick a minimal
expression for w as a product of simple reflections, and take σα to be the leftmost term).

Proposition 8.3.5. Given w ∈ W , if Π ⊆ Π− and Π = Πw, then Π = Πw.

Proof. We prove the above statement by induction on ℓ(w). If ℓ(w) = 0, then Πw = ∅,
and the statement follows from the fact that all elements of Π− are non-positive integer
combinations of the simple roots (which are linearly independent).



48 STEVEN V SAM

In general, suppose that Π = Πw and pick a simple root α such that ℓ(w′) = ℓ(w) − 1
where w′ = σαw. We claim that −α ∈ Π. If not, then σα(Π) ⊆ Φ−, and we have

σαΠ ∪ {−α} = σαΠ− α

= σαΠw − α

= σαw(ρ)− σα(ρ)− α

= w′ • 0 = Πw′ .

Since ℓ(w′) < ℓ(w), we use induction to conclude that Πw′ = σαΠ ∪ {−α}, but the previous
result says that −α /∈ Πw′ , so we get a contradiction.

In particular, −α ∈ Π. Set Π′ = σα(Π \ {−α}), so that

Π′ = σα(Π + α) = σα(Πw)− α = w′ • 0 = Πw′ .

Again, by induction, we conclude that Π′ = Πw′ and hence Π = Πw by the previous lemma.
□

The upshot is that if we project to the principal block, then we get a complex F• such
that Fi has a standard filtration by Verma modules M(w • 0) where ℓ(w) = i since the only
subsets Π ⊂ Φ− that contribute are those of the form Πw. Its homology is still C in degree
0 and 0 in positive degrees. This gives us the following identity:

Theorem 8.3.6 (Weyl denominator formula).∏
α∈Φ−

(1− eα) =
∑
w∈W

(−1)ℓ(w)ew•0.

Proof. Taking the Euler characteristic of F• (its class in K(O)), we get

[C] =
N∑
k=0

(−1)k[Fk].

But also, we have [Fk] =
∑

w∈W
ℓ(w)=k

[M(w • 0)]. The result follows by taking formal characters

and multiplying both sides by
∏

α∈Φ−(1− eα). □

Example 8.3.7. Consider the case g = sln. In that case, we identified h∗ with the space
{(a1, . . . , an) ∈ Cn | a1 + · · · + an = 0}. Let’s think of e(a1,...,an) as a Laurent monomial
xa11 · · ·xann , where x1, . . . , xn are some auxiliary variables. Then the product

∏
α∈Φ−(1− eα)

becomes the product ∏
1≤i<j≤n

(
1− xj

xi

)
.

Also, W is the nth symmetric group Sn and (−1)ℓ(w) is the usual sign sgn(w) (1 for an
even permutation and −1 for an odd permutation). The sum

∑
w∈Sn

sgn(w)ew•0 can be
interpreted as a determinant. More specifically, note that the ith component of w • 0 is
i− w−1(i) so that

ew•0 = x
1−w−1(1)
1 · · ·xn−w−1(n)

n .

Hence the sum can be written as (and simplified using that sgn(w) = sgn(w−1))∑
w∈Sn

sgn(w)x
1−w−1(1)
1 · · ·xn−w−1(n)

n =
∑
w∈Sn

sgn(w)x
1−w(1)
1 · · ·xn−w(n)n .
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Using that the determinant of a matrix is a sum over permutations, we can write this more
compactly as

det(xi−ji )i,j=1,...,n.

For example, when n = 3, we get the matrix

 1 x−1
1 x−2

1

x2 1 x−1
2

x23 x3 1

. In particular, we get the

identity ∏
1≤i<j≤n

(
1− xj

xi

)
= det(xi−ji ).

This is actually just one form of the Vandermonde identity. To see that, multiply both sides
by xn−1

1 xn−2
2 · · ·xn−1 to get ∏

1≤i<j≤n

(xi − xj) = det(xn−ji ).

The Weyl denominator formula for the special orthogonal and symplectic Lie algebras also
have interpretations like this, but I’ll leave it to you to work out.

One can also consider certain infinite-dimensional analogues of semisimple Lie algebras
(Kac–Moody algebras) which also have their own version of the Weyl denominator formula.
Other interesting identities can be realized this way, such as the Jacobi triple product for-
mula. □

What about other finite-dimensional L(λ)? There’s an obvious thing we can try to do.
The tensor product F• ⊗ L(λ) is a resolution of L(λ) and we know that each Fi ⊗ L(λ) has
a standard filtration. However, just like the relative Chevalley–Eilenberg complex K(g, b)•,
it will have a lot of terms that cancel when we consider the Euler characteristic. Again, we
can try to project to the block Oχλ

. This leads to the general notion of translation functors,
which we discuss (unfortunately without much detail) in a later section.

But for now, let’s finish this case. This requires one fact: if L(λ) is finite-dimensional,
then its set of weights is invariant under W .

First, we know that each term Fi ⊗ L(λ) has a standard filtration whose quotients are of
the form M(w • 0+µ) where ℓ(w) = i and µ is a weight of L(λ) (counted with multiplicity).
We need to determine when this is of the form w′ • λ.

Proposition 8.3.8. If µ is a weight of L(λ), then w • 0 + µ ∈ W • λ if and only if µ = wλ.
In that case, we have w • 0 + µ = w • λ.

Proof. Suppose that w • 0 + µ = u • λ for some u ∈ W . Then

wρ− ρ+ µ = uλ+ uρ− ρ,

which we can rewrite as

λ+ ρ = u−1λ+ u−1wρ.

Since L(λ) is finite-dimensional, u−1λ is a weight of it, and so u−1λ ≤ λ, i.e., u−1λ = λ− v
where v is a nonnegative sum of simple roots; similarly, L(ρ) is finite-dimensional, and so
u−1wρ = ρ− v′ where v′ is a nonnegative sum of simple roots. But then the equation above
forces v + v′ = 0, i.e., v = v′ = 0, and so u−1wρ = ρ. Finally, the stabilizer of W on ρ is
trivial, and so u = w.

In that case, we have w • 0 + µ = wρ− ρ+ wλ = w • λ. □
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In conclusion, let Fλ
i be the projection of Fi ⊗ L(λ) to Oχλ

. Then Fλ
i has a standard

filtration whose quotients are exactly of the form M(w • λ) for ℓ(w) = i.

Theorem 8.3.9 (Weyl character formula). If L(λ) is finite-dimensional, i.e., λ is an integral
dominant weight, then

chL(λ) =

∑
w∈W

(−1)ℓ(w)ew•λ∑
w∈W

(−1)ℓ(w)ew•0
.

Proof. The above discussion gives the following formula in K(O):

[L(λ)] =
∑
w∈W

(−1)ℓ(w)[M(w • λ)].

So we can take formal characters of both sides and use the formulas we’ve already established
(we’re using the Weyl denominator formula). □

Example 8.3.10. Going back to sln, we previously interpreted the denominator as a de-
terminant, and we can do similarly for the numerator. Using the notation from before, we
have

ew•λ = x
λw−1(1)+1−w−1(1)

1 · · ·x
λw−1(n)+1−w−1(n)
n

and so ∑
w∈W

sgn(w)ew•λ = det(x
λj+i−j
i )i,j=1,...,n.

This gives the following ratio of determinants:

chL(λ) =
det(x

λj+i−j
i )i,j=1,...,n

det(xi−ji )i,j=1,...,n

=
det(x

λj+n−j
i )i,j=1,...,n

det(xn−ji )i,j=1,...,n

.

For the second equality, we multiplied both determinants by xn−1
1 xn−2

2 · · · xn−1. The last
expression is the classical formula for Schur polynomials sλ(x1, . . . , xn).
For the special orthogonal and symplectic Lie algebras, you can similarly turn the Weyl

character formula into a ratio of determinants. □

8.4. Bott’s theorem. Recall that the first complex we considered, the Chevalley–Eilenberg
complex K•, gives a resolution of C consisting of free U(g)-modules. This can be used to
compute various homological invariants such as Tor and Ext. We won’t consider that, rather
let’s focus on the complexes Fλ

• we just constructed which are a resolution of L(λ) consisting
of modules which have standard filtrations.

Another way to say that is that when restricted to U(n−), each Fλ
i is a free U(n−)-module.

Hence we can use it compute Tor and Ext (but over the smaller ring U(n−)). There’s one
particularly important calculation that falls into this scenario.

We’ve only discussed Ext1, and now we’ll consider Extn for higher n. To understand this
properly, we’d need to discuss derived functors. Let me skip that and just state the one fact
we’ll need. For a ring R and (left) R-modules M,N , to compute ExtnR(M,N), we do the
following:

• Construct an R-free resolution F• of M (a projective resolution is good enough).
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• Apply the functor HomR(−, N) to F• to get a complex

HomR(F0, N)
d0−→ HomR(F1, N)

d1−→ HomR(F2, N)
d2−→ · · · .

• ExtnR(M,N) is the nth homology counting from the left, i.e., ker(dn)/ image(dn−1).

Notably, the final answer will not depend on the particular resolution F•.
We will be interested in the special case where R = U(n−), N = C is the trivial represen-

tation, and M = L(λ), where λ is integral and dominant, and the action is restricted from
the action of U(g).

In that case Fλ
• is the free resolution that we will use. In that case, note that for any

weight µ, we have dimC HomU(n−)(M(µ),C) = 1 since a map only depends on the image of
the highest weight vector. It will be helpful to keep track of the h-action on everything, and
in that case, we can say that

HomU(n−)(M(µ),C) = C−µ.

In particular, our complex HomU(n−)(F
λ
• ,C) gives us a complex of h-modules

C−λ →
⊕
w∈W
ℓ(w)=1

C−w•λ →
⊕
w∈W
ℓ(w)=2

C−w•λ → · · · .

Since all of the weights −w • λ are distinct, the maps are necessarily 0 (since they have to
be h-linear).

We conclude that, as h-modules, we have

ExtkU(n−)(L(λ),C) =
⊕
w∈W
ℓ(w)=k

C−w•λ.

There are a few small things we can say. First, ifM and N are finite-dimensional represen-
tations of a, where a is an arbitrary finite-dimensional Lie algebra, then we have isomorphisms

ExtkU(a)(M,N) ∼= ExtkU(a)(N
∗,M∗).

Second, the ext group ExtkU(a)(C, N) is also called the kth Lie algebra cohomology group

with coefficients in N , and is denoted by Hk(a;N).
With this new terminology, let us summarize.

Theorem 8.4.1 (Bott). As h-representations, we have

Hk(n;L(λ)) =
⊕
w∈W
ℓ(w)=k

Cw•λ.

Proof. We’ve done all of the work and just need to do some change of notation, so to speak.
First, from above, we have

Hk(n−;L(λ)∗) = ExtkU(n−)(C, L(λ)
∗) = ExtkU(n−)(L(λ),C) =

⊕
w∈W
ℓ(w)=k

C−w•λ.

Next, as was used before, there is a unique longest element w0 ∈ W and L(λ)∗ ∼= L(−w0λ).
Then the above becomes

Hk(n−;L(λ)) =
⊕
w∈W
ℓ(w)=k

C−w•(−w0λ).
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Finally, we apply one more trick: n is the span of the positive roots with respect to our fixed
choice of simple roots ∆. However, −∆ is another choice of simple roots, and n is the span
of the negative roots with this new system. Furthermore, with this new choice, ρ is replaced
with −ρ and the highest weight of L(λ) gets replaced with its lowest weight, which is w0λ.
Hence, with respect to −∆, the subscript −w • (−w0λ) becomes −(w(−λ− ρ) + ρ) = w • λ
and the isomorphism above becomes

Hk(n;L(λ)) =
⊕
w∈W
ℓ(w)=k

Cw•λ. □

Remark 8.4.2. There is a geometric version of this theorem which is better known. In that
case, each weight µ corresponds to a line bundle L(µ) on the flag variety X of g. Bott’s
theorem in that context says that its (coherent) sheaf cohomology is nonzero if and only if
µ = w •λ for some dominant integral weight λ, and in that case, it is concentrated in degree
ℓ(w) and gives the representation L(λ). The case when µ is already dominant and integral
is also known as the Borel–Weil theorem and allows one to construct L(λ) geometrically as
the space of sections of the line bundle L(λ). I don’t plan to discuss the connection between
the two or elaborate any further. □

8.5. Complements on the BGG complex. We were able to get two applications from
the complexes Fλ

• just knowing that the terms have standard filtrations (and which Verma
modules show up). We can say much more actually, and we’ll do so without proving the
properties below.

First, the terms Fλ
k are actually isomorphic to a direct sum of Verma modules:

Fλ
k
∼=

⊕
w∈W
ℓ(w)=k

M(w • λ).

This can be proven by showing that Ext1O(M(w • λ),M(u • λ)) = 0 when ℓ(w) = ℓ(u). In
fact, a more refined statement can be made if we make use of the Bruhat order on W , which
we define now.

Let S = {σ1, . . . , σn} be the simple reflections of W and let T =
⋃
w∈W wSw−1 be the set

of elements conjugate to a simple reflection. Given t ∈ T and w,w′ ∈ W , we write w′ t−→ w

if w = tw′ and ℓ(w) > ℓ(w′); we also write w′ → w if there exists t such that w′ t−→ w. Then
we define w ≥ u if there is a sequence w0, . . . , wn such that u = w0 → w1 → · · · → wn = w.
This is a very rich combinatorial structure, but we’ll only touch on some aspects.

Now if λ is integral and dominant, then the Bruhat order can be related to the ordering
on weights: u • λ < w • λ if and only if u > w. This has an alternative formulation: if we
instead assume that µ is integral and antidominant, then u • µ > w • µ if and only if u > w.
We will skip the verification, but see [H3, §5.2] (which phrases it the second way).

Proposition 8.5.1. If λ is dominant and integral and Ext1O(M(w • λ),M(u • λ)) ̸= 0, then
u < w in Bruhat order (and hence ℓ(u) < ℓ(w)).

See [H3, §6.5] for a statement about Ext groups for general weights.
In particular, the map Fλ

k → Fλ
k−1 can be written as a sum of maps of the formM(u•λ) →

M(w • λ) where ℓ(u) = k and ℓ(w) = k − 1. If such a map is nonzero, then u • λ < w • λ
and hence u > w.

To go further, we quote some additional results.
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Proposition 8.5.2. Given weights µ, ν, we have dimHomO(M(µ),M(ν)) ≤ 1. If equal to
1, then any nonzero homomorphism M(µ) →M(ν) is injective.
Furthermore, for λ integral and dominant, we have dimHomO(M(u •λ),M(w •λ)) = 1 if

and only if u > w.

This tells us the following: taking w to be the identity in the previous statement, M(λ)
contains a unique submodule which is isomorphic to M(u • λ) for each u ∈ W . So we can
fix, once and for all, an identification for each u. Concretely, the space of highest weight
vectors in M(λ) of weight u • λ is 1-dimensional, and we are choosing a particular nonzero
vector vu in each. That means that for u > w, there is a distinguished map

iu,w : M(u • λ) →M(w • λ)

such that the image of the generator of M(u • λ) under iu,w gets sent to vu when we embed
M(w • λ) into M(λ). Every other map is a scalar times iu,w, so we can just identify them
with this scalar. Note that everything depends on the choices of vu, but once we make these
choices, the maps iu,w are determined.

Now suppose we’ve made these choices and isomorphisms. Then in Fλ
• , we can identify

each map M(u • λ) → M(w • λ) with a scalar e(u,w). The condition that Fλ
• is a complex

translates to the fact that whenever ℓ(u) = ℓ(w) + 2, we have∑
u<v<w

e(u, v)e(v, w) = 0.

Actually, the structure of these sums is not so complicated. There are exactly two cases:

• u and w are incomparable in Bruhat order, so that the sum is empty (and hence 0).
• u < w. In that case, there are exactly two choices of v, say v1, v2, in that sum. This
is referred to as a “square”:

v1

~~
u w

~~

``

v2

``

We won’t go any further, but it is known that if ℓ(u) = ℓ(w) + 1 and u > w, then
e(u,w) ̸= 0. Furthermore, it’s possible to rescale all of the values so that we always have
e(u,w) ∈ {−1, 0, 1}.

8.6. Translation functors. Given a weight λ, let prλ : O → Oχλ
denote the projection

onto the subcategory Oχλ
as discussed before.

Now suppose that λ, µ are weights such that the difference µ − λ is integral. Then there
is a unique dominant integral weight ν in the usual (not dotted) W -orbit of µ− λ and L(ν)
is finite-dimensional. The translation functor T µλ is defined to be the operation

M 7→ prµ(L(ν)⊗ prλ(M)).

Since projection and tensoring (remember it’s over C) are exact, the translation functor is
also exact. This is technically a functor O → Oχµ , but we can also think of it as a functor
Oχλ

→ Oχµ .
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This topic is discussed in-depth in [H3, §7]. We’ve already seen this used above: starting
with the Chevalley–Eilenberg complex K•, we applied T λ0 to get the BGG complex Fλ

• .
Here I’ll just state a special case of the theorem in [H3, §7.8]. To be consistent, I’ll use

antidominant weights.

Theorem 8.6.1. Let λ, µ be antidominant and integral weights. Then T µλ gives an equiva-
lence between Oχλ

and Oχµ (with inverse T λµ ). For any w ∈ W , we have

T µλ (M(w • λ)) ∼= M(w • µ), T µλ (L(w • λ)) ∼= L(w • µ).

A more general theorem is stated there for not necessarily integral weights, but involves
some more notation. The point here is that if one is focused on integral weights, then it’s
really enough to study the principal block Oχ0 . In general, there are many results that state
that a block is equivalent to a principal block (but perhaps in a semisimple Lie algebra of
smaller rank).

9. Kazhdan–Lusztig polynomials

This section uses material from [H1, §7]. This is also an abridged form of my notes from
Math 264C (Spring 2021).

I want to revisit the issue of expanding the class of a Verma module in K(O) in terms of
classes of irreducible modules. The solution relies on a special class of polynomials called
the Kazhdan–Lusztig polynomials. There is a lot of ground to cover there; what I’d like to
do is give some indication of how they are defined (this is already complicated).

9.1. Coxeter groups. The Kazhdan–Lusztig polynomials for g actually only depend on its
Weyl group W (in the simple case, generally W determines g except that so2n+1 and sp2n
have isomorphic Weyl groups). In fact, they can be defined for a much larger class of groups,
so I want to take a moment to explain that context.

First, let W be the Weyl group of g and let S be the set of simple reflections. Then each
s ∈ S is an involution, i.e., s2 = 1. Furthermore, since W is finite, for each s, s′ ∈ S, the
product ss′ has finite order, call it m(s, s′). A nontrivial fact is that this information is
enough to describe the group. More precisely, W has the following presentation:

W = ⟨s ∈ S | s2 = 1, (ss′)m(s,s′) = 1⟩.

This is essentially the definition of a Coxeter group.

Definition 9.1.1. Let S be a finite set and m : S×S → Z>0∪{∞} be a symmetric function
such that m(s, s) = 1 and m(s, s′) ≥ 2 if s ̸= s′. The associated Coxeter group is denoted
W and is defined as the group with generators s ∈ S with the relations (ss′)m(s,s′) = 1
whenever m(s, s′) <∞. This information is usually given as (W,S). □

Since m(s, s) = 1, the relation above implies that each s ∈ S has order 2. If m(s, s′) = 2,
the relation says that s and s′ commute with each other.

Example 9.1.2. For the symmetric group, we can take S = {s1, . . . , sn−1} withm(si, sj) = 2
if |i− j| > 1 and m(si, sj) = 3 if |i− j| = 1.
The dihedral group of order 2r is a Coxeter group with S = {s, t} and m(s, t) = r. This

is not a Weyl group if r = 5 or r ≥ 7. □
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Remark 9.1.3. Given two Coxeter groups (W,S) and (W ′, S ′), the product W ×W ′ is the
Coxeter group associated with S ⨿ S ′ where m(s, s′) = 2 whenever s ∈ S and s′ ∈ S ′. We
will call this reducible; and (W,S) is irreducible if it is not of this form.

The Weyl groups of simple Lie algebras all give finite irreducible Coxeter groups, but they
don’t exhaust all of them. Besides the dihedral groups, there are two more examples: one
is the symmetry group of the icosahedron (a 3-dimensional polytope), and the other is the
symmetry group of a 4-dimensional polytope known as the “600-cell”.

What is interesting is that the constructions below will have significance for Lie algebras,
but still make sense even when W is not a Weyl group. □

Remark 9.1.4. Being finite is a rather special condition on the function m, so we have
many infinite Coxeter groups. Some of them can also be interpreted as “Weyl groups” of
certain infinite-dimensional Lie algebras known as Kac–Moody algebras. □

Finally, the definition of Bruhat order that we previously gave extends to the general
setting of Coxeter groups.

9.2. Hecke algebras. Let (W,S) be a Coxeter group.
Let A be a commutative ring. Let E be the free A-module with basis {Tw | w ∈ W}.

Theorem 9.2.1. Let a, b ∈ A. There is a unique associative algebra structure on E such
that for all s ∈ S and w ∈ W :

TsTw =

{
Tsw if ℓ(sw) > ℓ(w)

aTw + bTsw if ℓ(sw) < ℓ(w)
.

This algebra will be denoted EA(a, b).
Uniqueness is clear: the relations say that Tw = Ts1 · · ·Tsr whenever s1 · · · sr is a reduced

expression for w (and T1 is the multiplicative identity). Hence, the product TvTw for any
v, w ∈ W can be deduced from the relations above.

Existence is more subtle, and we will omit it.
Let A = Z[q±1/2] (this is the ring of Laurent polynomials in q with a square root of q

adjoined). The Hecke algebra of (W,S) is H = EA(q − 1, q).
There is a different approach to constructingH: we can instead define it as being generated

by Ts for simple reflections and give their relations; the difficulty then is shifted to proving
that H is a free A-module with basis Tw for w ∈ W .

Remark 9.2.2. If we specialize q = 1, then H becomes the group algebra of W . □

9.3. R-polynomials. For s ∈ S, we have T 2
s = (q − 1)Ts + q in H, which we rewrite as

Ts(Ts + 1− q) = q. Hence Ts is invertible with

T−1
s = q−1(Ts − (q − 1)).

This implies that Tw is invertible in general.

Theorem 9.3.1. For x ≤ w, there exist polynomials Rx,w(q) of degree ℓ(w)− ℓ(x) such that
Rw,w(q) = 1 and

T−1
w−1 = (−q)−ℓ(w)

∑
x≤w

(−1)ℓ(x)Rx,w(q)Tx.

Furthermore, these polynomials are nonzero.
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We call the Rx,w(q) the R-polynomials. They satisfy the following recursion:

Proposition 9.3.2. With the convention that Ra,b(q) = 0 if a ̸≤ b, pick s ∈ S so that
w > sw. Then for x ≤ w, we have

Rx,w(q) =

{
Rsx,sw(q) if x > sx

qRsx,sw(q) + (q − 1)Rx,sw(q) if x < sx
.

For our purposes, these are an intermediate tool towards defining the Kazhdan–Lusztig
polynomials (though we don’t prove anything so we could have skipped this discussion).
They do have some significance in their own right, but we won’t discuss it.

9.4. Kazhdan–Lusztig polynomials. Define ι : H → H on Z[q±1/2] by ι(q1/2) = q−1/2 and
extend it to H on basis elements by ι(Tw) = T−1

w−1 .

Lemma 9.4.1. ι is a ring homomorphism, so in particular, ι2 = 1.

Theorem 9.4.2. For each w ∈ W , there exists a unique Cw ∈ H such that

(1) ι(Cw) = Cw,
(2) there exist polynomials Px,w(q) ∈ Z[q] for x ≤ w such that Pw,w(q) = 1 and degPx,w(q) ≤

1
2
(ℓ(w)− ℓ(x)− 1) for x < w, and

Cw = (−q1/2)ℓ(w)
∑
x≤w

(−q)−ℓ(x)Px,w(q−1)Tx.

The Px,w(q) are the Kazhdan–Lusztig polynomials. There’s a long road towards the
next result, but I’m just going to state it. The result is attributed to Beilinson–Bernstein
and also Brylinski–Kashiwara (see [H3, §8.8] for references).
Below, we focus on the principal block Oχ0 ; the dominant weight there is 0 and the

antidominant weight is −2ρ. For each w ∈ W , we let Mw = M(w • (−2ρ)) and Lw =
L(w • (−2ρ)) so that we’re shifting the focus to the antidominant weight. As usual, let
w0 ∈ W be the unique element of longest length.

Theorem 9.4.3. In K(O), we have

[Mw] =
∑
x≤w

Pw0w,w0x(1)[Lx],

[Lw] =
∑
x≤w

(−1)ℓ(w)−ℓ(x)Px,w(1)[Mx].

From our discussion of translation functors, this equally applies to Verma modules and
simples that belong to the other blocks Oχλ

where λ is integral and dominant. There is a
lot known beyond that, but I won’t discuss it.

These formulas only make use the specialization of the Kazhdan–Lusztig polynomials at 1,
i.e., the sum of their coefficients. It turns out that these coefficients are always nonnegative,
and it is natural to ask if they individually have any meaning.

One interpretation is in terms of the socle filtration ofMw, which we define now. Given any
module M over a ring R, define its socle, denoted Soc(M), to be the sum of all of its simple
submodules. Note that this sum is necessarily a direct sum. The socle filtration is defined
inductively by Soc0(M) = 0 and, for k > 0, Sock(M) is the preimage of Soc(M/Sock−1(M))
under the quotient map M → M/Sock−1(M). If M is noetherian, then this is a finite
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filtration, and if M is artinian, the final term is M (if a nonzero module is artinian, then its
socle is always nonzero).

Finally, for k > 0, we define Sock(M) = Sock(M)/Sock−1(M). If M ∈ O, we get an
identity in K(O):

[M ] =
∑
k

[Sock(M)].

Theorem 9.4.4. If x < w, we have

Pw0w,w0x(q) =
∑
k

[Socℓ(x)+1+2k(Mw) : Lx]q
k.

Remark 9.4.5. • See [H3, Chapter 8] for a connection between Kazhdan–Lusztig poly-
nomials and Schubert varieties. In fact, this was one of the early proofs that they
have non-negative coefficients in the case when the Coxeter group is the Weyl group
of a semisimple Lie algebra (or more generally, a Kac–Moody algebra). The general
situation was resolved in [EW].

• It is an open problem (interval conjecture) to determine if Px,y(q) is a combinatorial
invariant of the interval [x, y] in Bruhat order. That is, [x, y] carries a poset structure
and if this is isomorphic to [x′, y′] for some other elements in a Bruhat order, does
this force Px,y(q) = Px′,y′(q)?

• Kazhdan–Lusztig polynomials arise in many other parts of representation theory.
For instance, they play a role in determining the characters of finite-dimensional
representations of the superalgebra versions of semisimple Lie algebras. □

10. Abstract highest weight categories

We’ll follow the exposition in [CPS].

10.1. Highest weight categories. Let k be a field and let C be an abelian k-linear category.
Rather than define this, let me just point out the main examples of interest. If A is a
k-algebra, then the category of all left A-modules, denoted ModA is an abelian k-linear
category, as is the category of all right A-modules, denoted AMod. Any full subcategory
which is closed under taking kernels and cokernels is also an example. For instance, if A
is (left-)noetherian, then the full subcategory of finitely generated (left-)modules forms an

abelian subcategory, denoted Modfg
A . So for instance, O is an abelian C-linear category. We

will just use module categories (and their subcategories) as our examples; one can do things
more generally, but I want to keep technicalities to a minimum.

A module M is locally artinian if it is the union of its finite length submodules; al-
ternatively, if for every x ∈ M , the submodule generated by x has finite length. If M is
locally artinian and S is simple, then S is defined to be a composition factor of M if it is a
composition factor of some finite length submodule of M , and [M : S] is defined to be the
supremum of [N : S] where N ranges over all finite length submodules of M .
We’ll say that C is locally artinian if all of its objects are locally artinian.
Given a partially ordered set (poset for short) (Λ,≤) and x, y ∈ Λ, define the interval

[x, y] to be

[x, y] = {z ∈ Λ | x ≤ z, z ≤ y}.
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Then Λ is called interval-finite if [x, y] is a finite set for all x, y. We have seen an example:
Λ = h∗ where h is a Cartan subalgebra in g, and x ≤ y is the usual order, i.e., y − x is a
Z≥0-linear combination of positive roots.

Definition 10.1.1. Let C be a locally artinian k-linear category. Let Λ be the set of isomor-
phism classes of simple modules in C and suppose for each λ ∈ Λ, we have a representative
S(λ) for this isomorphism class. We call C a highest weight category if:

(1) There is a partial ordering ≤ on Λ that makes it interval-finite.
(2) There is a collection of objects {A(λ) | λ ∈ Λ} of C such that:

(a) For all λ, we have S(λ) ⊂ A(λ), and the composition factors S(µ) of A(λ)/S(λ)
satisfy µ < λ.

(b) For all λ, µ ∈ Λ, both dimkHomC(A(λ), A(µ)) and [A(λ) : S(µ)] are finite.
(3) Every S(λ) has an injective envelope I(λ) in C. Furthermore, I(λ) has a filtration

(possibly infinite) F1 ⊂ F2 ⊂ · · · such that:
(a) F1

∼= A(λ).
(b) For n ≥ 1, we have Fn+1/Fn ∼= A(µ(n)) for some µ(n) > λ.
(c) For all µ ∈ Λ, there are only finitely many n such that µ = µ(n).
(d) The filtration is exhaustive, i.e.,

⋃
n Fn = I(λ). □

The objects A(λ) are called co-standard modules and any filtration in part (3) is called
a good filtration.

Remark 10.1.2. If we also assume that each module is also finitely generated, then the
locally artinian condition forces each object of C to be finite length. Then the finiteness
conditions (2b), (3c), and (3d) above become redundant. □

Example 10.1.3. Let C = O for a semisimple complex Lie algebra g. Then we can take
Λ = h∗ with the usual partial order. We’ve already seen that objects of O are artinian. The
objects A(λ) can be taken to be the dual Verma modules M(λ)∨ and the properties about
composition factors and injective envelopes follow by applying ∨ to our obtained results on
projective covers. Hence O is an example of a highest weight category (in fact, it is one of
the motivating examples). □

Example 10.1.4. Let k be an algebraically closed field and let G = GLn(k) be the group of
n×n invertible matrices with entries in k. A representation of G on a k-vector space V is a
homomorphism φ : G→ GL(V ), the group of invertible operators on V . This representation
is called polynomial if there is a choice of basis for V so that the coordinate functions of φ
are polynomial functions in the n2 coordinates of G.

The category of finite-dimensional polynomial representations is a highest weight category.
If the characteristic of k is 0, this is a boring statement since all representations are direct
sums of irreducible representations, but this breaks down in positive characteristic.

Without going into too much detail, the irreducibles are indexed by integer partitions
with at most n parts, that is, λ = (λ1, . . . , λn) ∈ Zn≥0 such that λ1 ≥ · · · ≥ λn ≥ 0. Let

Sd = Symd(kn) denote the dth symmetric power of the standard representation kn (i.e., the
space of column vectors). Then for each λ, define Sλ = Sλ1 ⊗ · · · ⊗ Sλn . This is always an
injective module independent of characteristic. It contains a certain submodule called the
Schur module Sλ. This is irreducible in characteristic 0, but otherwise will play the role
of the co-standard object.
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The partial ordering on partitions is the dominance order, which is defined as follows: first
define |λ| = λ1+ · · ·+λn. If |λ| ≠ |µ|, we do not compare the elements, but otherwise, λ ≤ µ
means that λ1 + · · · + λi ≤ µ1 + · · · + µi for all i = 1, . . . , n. This is closely related to the
usual order on weights for the Lie algebra sln.
The axioms for a highest weight category follow from a few non-trivial properties which

we outline. First, a vector v ∈ V of a polynomial representation V is a weight vector of
weight (α1, . . . , αn) if

diag(x1, . . . , xn)v = xα1
1 · · ·xαn

n v

for all x1, . . . , xn ∈ k× and diag means the diagonal matrix with those entries. Then V has
a basis of weight vectors, and we define its character chV (x1, . . . , xn) =

∑
α x

α, the sum over
the weights of these basis vectors.

The character of the irreducible representation L(λ) is of the form xλ +
∑

α≤λ cλ,αx
α for

some non-negative integers cλ,α.
The character of Sλ is the Schur polynomial sλ(x1, . . . , xn). The coefficient of xα is some-

thing combinatorial: it is the number of semistandard Young tableaux of shape λ and using
αi many i’s for all i. This is nonzero if and only if α ≤ λ.
Second, and more subtle, is that Sλ has a good filtration. An easier statement is that its

character is the sum of Schur polynomials sµ such that µ ≥ λ. More precisely, the coefficient
of sµ in chSλ is the number of semistandard Young tableaux of shape µ using λi many i’s
(note the reversal of the roles). This follows from a combinatorial result known as Pieri’s
rule. □

Proposition 10.1.5. Let C be a highest weight category.

(1) If HomC(S(µ), A(λ)) ̸= 0, then µ = λ.
(2) If Ext1C(S(µ), A(λ)) ̸= 0 or Ext1C(A(µ), A(λ)) ̸= 0, then µ > λ.
(3) I(λ) has a good filtration F• such that if we define Fn+1/Fn ∼= A(µ(n)), then for all

i, j > 0, µ(i) < µ(j) implies that i < j.

Proof. (1) If HomC(S(µ), A(λ)) ̸= 0, then a nonzero map S(µ) → A(λ) is injective and hence
gives an inclusion S(µ) ⊂ I(λ). However, S(λ) is an essential submodule of I(λ), which
implies that S(µ) ∩ S(λ) ̸= 0, and hence we must have µ = λ.

(2) First suppose that Ext1C(S(µ), A(λ)) ̸= 0. Then consider the short exact sequence

0 → A(λ) → I(λ) → I(λ)/A(λ) → 0.

Since I(λ) is injective, Ext1C(S(µ), I(λ)) = 0, and so HomC(S(µ), I(λ)/A(λ)) ̸= 0 since
it has Ext1C(S(µ), A(λ)) as a quotient (consider the long exact sequence from applying
HomC(S(µ),−)). In particular, if F• is a good filtration of I(λ), there exists j such that
HomC(S(µ), Fj/F1) ̸= 0. In particular, HomC(S(µ), A(µ(n))) ̸= 0 for some n ≤ j, which
means that µ(n) = µ by (1). But also µ > λ by axiom (3b).
Next, suppose that Ext1C(A(µ), A(λ)) ̸= 0. Then there exists S(ν) in the composition

series of A(µ) such that Ext1C(S(ν), A(λ)) ̸= 0. But then ν ≤ µ by axiom (2) and ν > λ by
what we just proved, so we conclude that µ > λ.
(3) First, pick any good filtration of I(λ). Suppose there is an n so that

Ext1C(A(µ(n+ 1)), A(µ(n))) = 0.

Then the short exact sequence

0 → Fn+1/Fn → Fn+2/Fn → Fn+2/Fn+1 → 0
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must split, which means there exists a submodule F ′
n+1 ⊂ Fn+2 that contains Fn such that

F ′
n+1/Fn

∼= A(µ(n+ 1)), Fn+2/F
′
n+1

∼= A(µ(n)),

i.e., we can “swap” the order of A(µ(n)) and A(µ(n+ 1)) in this good filtration.
To finish, extend the partial ordering on the set {µ(n)} to a total ordering ≺ (by the

interval-finite property, we can do this so that there are no infinite decreasing sequences).
Then if µ(n + 1) ≺ µ(n), we know that µ(n) ̸< µ(n + 1), and so we can swap these terms
in the filtration. In particular, keep swapping terms until we have µ(1) ⪯ µ(2) ⪯ · · · . Since
there are no infinite decreasing sequences, any given term will only be swapped finitely many
times, and so the nth term of the resulting filtration is well-defined for all n. □

10.2. Path algebras. In representation theory literature, a quiver Q is a directed graph.
Formally, it consists of a finite vertex set V and for each pair (v, w) ∈ V × V , we have a
positive integer a(v, w), which represents the number of arrows pointing from v to w, and
will usually denote them by a : v → w. Pictorially, here is an example with 3 vertices (and
we have named the arrows for reference’s sake):

v1
a1 //
a2
// v2

a3 // v3

A representation M of Q (over a field k) consists of two pieces of data:

• For each x ∈ V , we have a k-vector space Mx,
• For each arrow a : x→ y, we have a linear map Ma : Mx →My.

Notably, no compatibilities between these arrows are required. A homomorphism f between
representations M and N consists of a linear map fx : Mx → Nx for all x ∈ V such that for
all arrows a : x→ y, we have fyMa = Nafx.

The path algebra of Q, denoted k[Q] is the k-vector space whose basis is the set of all
directed paths in Q (including paths of length 0, which correspond to the choice of a vertex).
In the example above, k[Q] has basis

{v1, v2, v3, a1, a2, a3, a1a3, a2a3}.

Multiplication of two paths is defined by concatenating paths when the endpoints match up,
and 0 otherwise. In our example, a1 · a2 = 0, a1 · a3 = a1a3, v1 · a1 = a1, v2 · a1 = 0, etc. In
particular, each vertex is an idempotent element in k[Q] and the multiplicative identity is
the sum of the vertices.

Proposition 10.2.1. The category of representations of Q over k is equivalent to the cate-
gory of right k[Q]-modules.

Proof. Here’s just a sketch.
If M is a representation of Q, then

⊕
x∈V Mx will be our k[Q]-module. If a : x → y is

an arrow, then ma = 0 if m ∈ Mz for z ̸= x and otherwise ma = Ma(m) ∈ My. Also, for
each x ∈ V , the idempotent x acts on Mx by the identity and acts on Mz for z ̸= x by 0.
The idempotents and arrows generate k[Q], so it remains to check that this extends to a
well-defined module structure; it is a right module because of our convention on how paths
are written.

Conversely, ifM is a right k[Q]-module, then we get a representation by settingMx =Mx
and defining Ma to be action of a ∈ k[Q]. □
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An acyclic quiver is a quiver which does not have any directed cycles (or loops, i.e.,
a(v, v) = 0 for all v). This is equivalent to k[Q] being finite-dimensional.
In that case, there is one simple module S(x) for each x ∈ V . This corresponds to the

representation defined by

S(x)y =

{
k if x = y

0 if x ̸= y
.

The radical of k[Q] is the span of all paths of positive length.
Since each vertex x ∈ V is an idempotent, we get a projective module P (x) = xk[Q]. This

is the span of all paths that begin at x. In fact, this is the projective cover of S(x). Dually,
I(x) = (k[Q]x)∗ is the injective envelope of S(x) and is the dual space of the span of all
paths that end at x.
This already tells us how to define a highest weight structure. Let Λ = V and define x ≤ y

if there exists a path starting at x and ending at y (since there are no directed cycles, this
is indeed a partial ordering). Then we can take A(x) = I(x), and we’re done.

Remark 10.2.2. If A is a finite-dimensional algebra, then there exists a quiver Q and a 2-
sided ideal I ⊂ k[Q] such that ModA is equivalent to Modk[Q]/I . Hence, the study of quotients
of path algebras can be seen as encompassing the study of general finite-dimensional algebras.
However, the translation may not be so easy to understand in practice. □

10.3. Quasi-hereditary algebras. A natural question is, given a k-algebra A, is C = ModA
(or AMod) a highest weight category? Cline, Parshall, and Scott characterized the finite-
dimensional algebras with this property. We will need some definitions from noncommutative
algebra.

Below, A will be a finite-dimensional algebra over k. Given a left A-module M , its
annihilator is defined to be

Ann(M) = {a ∈ A | am = 0 for all m ∈M}.
We can define the same for right modules.

Proposition 10.3.1. The following sets are the same:

(1) The intersection of Ann(M) as M ranges over all simple left A-modules.
(2) The intersection of Ann(M) as M ranges over all simple right A-modules.
(3) The intersection of all maximal left ideals of A.
(4) The intersection of all maximal right ideals of A.

The ideal characterized by the previous proposition is denoted rad(A) and is called the
Jacobson radical of A.

Generalizing (3), given any left A-moduleM , the radical ofM , denoted rad(M), is defined
to be the intersection of all maximal proper submodules ofM . If there are no maximal proper
submodules, define rad(M) =M (if M is finitely generated, maximal proper submodules do
indeed exist). We can also make a similar definition for right A-modules. When M = A,
this agrees with the previous definition.

Proposition 10.3.2. (1) If M is a finite length module, then the quotient M/ rad(M)
is semisimple, i.e., a direct sum of simple modules.

(2) If A is finite-dimensional (the case we’ll consider), then for any A-module M , we
have rad(M) = rad(A)M .
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I’ll skip the proof.

Definition 10.3.3. A nonzero 2-sided ideal J is heredity if

(1) J2 = J ,
(2) J rad(A)J = 0, and
(3) J is both a projective left A-module and a projective right A-module. □

The conditions might be difficult to parse, so let’s see what they say about simple modules
(how we’ll use them).

Proposition 10.3.4. Suppose that J is heredity.

(1) For any left A/J-module M , we have HomA(J,M) = 0.
(2) Every simple left A-module is a composition factor of exactly one of J/ rad(J) or

A/J .

Proof. (1) To see this, suppose there is a nonzero homomorphism J → M . We can write
M as a quotient of free A/J-module, and since J is projective, this gives us a nonzero
homomorphism J → A/J , i.e., a homomorphism J → A which is not contained in J .
However, the image of J2 under this map must be contained in J , but J = J2, so we have a
contradiction.

(2) Let S be a simple left A-module. If S appears in the composition series for A/J , then
J annihilates S, i.e., S is an A/J-module. Then (1) implies that HomA(J, S) = 0 and hence
S is cannot be a summand of J/ rad(J). In particular, the composition factors of J/ rad(J)
and A/J do not overlap.

On the other hand, every simple A-module is a composition factor of A, and hence must
be a composition factor of rad(J), J/ rad(J), or A/J . If S is a composition factor of rad(J),
then since J rad(J) = J rad(A)J = 0, we have that S is an A/J-module, and hence is a
composition factor of A/J . □

Finally, a finite-dimensional algebra A is quasi-hereditary if there exists a chain of 2-
sided ideals

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jm = A

such that Ji/Ji−1 is a heredity ideal in A/Ji−1 for all i = 1, . . . ,m. Such a chain is called a
heredity chain.

Remark 10.3.5. If we prefer a recursive definition, we can replace this condition and instead
declare that A is quasi-hereditary if either:

• A is semisimple, or
• A has a heredity ideal J such that A/J is quasi-hereditary. □

I couldn’t think of any good simple examples to illustrate this definition. Most of the
literature treats these algebras using different perspectives beyond the scope of what I have
time to talk about. However, there is a rather nice fact which illustrates the point of these
algebras.

Theorem 10.3.6. Let A be a finite-dimensional k-algebra. Then A is quasi-hereditary if
and only if AMod is a highest weight category.

Let’s first tackle one implication.

Proposition 10.3.7. If A is a quasi-hereditary k-algebra, then AMod and ModA are both
highest weight categories.
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Before we begin the proof, let me make a few remarks. First, the opposite algebra Aop is
defined to have the same vector space as A, but with multiplication reversed: xy in Aop is
defined to be the value of yx in A. Then we have an equivalence AModfg ≃ Modfg

Aop : if M is
a right A-module, then the k-linear dual M∗ is a left Aop-module: for x ∈ Aop and m ∈M ,
xm is defined to be whatever mx originally was (and going the other way is similar; double
dual is an equivalence for finite-dimensional spaces).

Note that the 2-sided ideals of A are the same as the 2-sided ideals of Aop. In particular,
if A is quasi-hereditary, then so is Aop.
Finally, we’ll focus on AMod since the proof for ModA is similar but with all instances of

left and right below swapped.

Proof. Let 0 = J0 ⊂ · · · ⊂ Jm = A be a heredity chain for A. We will view it as a heredity
chain for Aop. For i = 1, . . . ,m, let Mi = Ji/Ji−1. Then Mi/ rad(Mi) is a direct sum of
simple left Aop-modules; let Λi denote the isomorphism classes of the modules that appear
and define Λ =

⋃
i Λi. The previous result implies that the Λi are pairwise disjoint and that

Λ exhausts all isomorphism classes of simple left Aop-modules. We define a partial ordering
on Λ by declaring that λ < µ if and only if λ ∈ Λi and µ ∈ Λj such that i > j (in other
words, Λ1 > Λ2 > · · · > Λm).
For λ ∈ Λi, let T (λ) be the corresponding simple left Aop-module. In fact, it is a left

Aop/Ji−1-module. Let P ′(λ) be its projective cover as a module over Aop/Ji−1
3. Then P ′(λ)

is a direct summand of Ji/Ji−1 and every composition factor of P ′(λ) is a composition factor
of Aop/Ji−1 and hence belongs to

⋃
j≥i Λj. Furthermore,

rad(P ′(λ)) = ker(P ′(λ) → T (λ))

and hence every composition factor of rad(P ′(λ)) ⊂ rad(Ji/Ji−1) is in fact a composition
factor of Aop/Ji by the proof of the previous result.

Now define S(λ) = T (λ)∗ and A(λ) = P ′(λ)∗. Then A(λ) is a right A-module containing
S(λ) such that the composition factors S(µ) of A(λ)/S(λ) ∼= rad(P ′(λ))∗ satisfy µ < λ.

Next, let P (λ) be the projective cover of T (λ) as an Aop-module. Then P (λ) is a direct
summand of Aop, and hence, for all i, JiP (λ)/Ji−1P (λ) is a direct summand of Ji/Ji−1.
Since the latter is a projective Aop/Ji−1-module, we conclude that JiP (λ)/Ji−1P (λ) is iso-
morphic to a direct sum of P ′(µ) for µ ∈ Λi. Also, if λ ∈ Λk, then P (λ)/Jk−1 is a direct
summand of Jk/Jk−1, and since J2

k/Jk−1 = Jk/Jk−1, we conclude that JkP (λ) = P (λ) and
that P (λ)/Jk−1P (λ) ∼= P ′(λ).

Finally, I(λ) = P (λ)∗ is an injective envelope of S(λ). Starting with the filtration

0 ⊂ J1P (λ) ⊂ J2P (λ) ⊂ · · · ⊂ JkP (λ) = P (λ),

we get a filtration F ′
1 ⊂ · · · ⊂ F ′

k on I(λ) by taking F ′
k−i = (P (λ)/JiP (λ))

∗. Then

F ′
1 = (P (λ)/Jk−1P (λ))

∗ ∼= A(λ)

and the remaining quotients are direct sums of A(µ) where µ > λ. So we can refine this
filtration to get the kind required by axiom (3) in the definition of highest weight category.

□

3We discussed projective covers in the context of category O, but as was remarked there, the methods
apply equally well to arbitrary modules which are artinian and noetherian, e.g., finitely generated modules
over a finite-dimensional algebra.
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Now we’d like to prove that if ModA is a highest weight category, then A must be quasi-
hereditary. The definition is recursive in nature, so we’ll need some information about
subcategories of highest weight categories.

A subset Γ ⊂ Λ is a lower ideal if x ∈ Γ and y ≤ x implies that y ∈ Γ. It is finitely
generated there is a finite list of elements x1, . . . , xn such that every y ∈ Γ satisfies y ≤ xi
for some i. We define C[Γ] to be the full subcategory of C consisting of modules M such that
every composition factor S of M is indexed by an element in Γ.

Proposition 10.3.8. If Γ is a finitely generated lower ideal of Λ, then C[Γ] is a highest
weight category and each injective envelope has a good filtration of finite length.

Proof. We take Γ as our partially ordered set indexing simple objects with the induced partial
ordering. If λ ∈ Γ, then A(λ) belongs to C[Γ] since Γ is a lower ideal, so we take these objects
to satisfy axiom (2). Next, let I(λ) be the injective envelope of S(λ) in C, and define I(λ)Γ
to be the maximal submodule of I(λ) that belongs to C[Γ].

We claim that I(λ)Γ is the injective envelope of S(λ) in C[Γ]. First, if M → N is an
injection of modules in C[Γ], andM → I(λ)Γ is any homomorphism, then it can be extended
to a homomorphism N → I(λ). However, by definition of I(λ)Γ, its image lies in I(λ)Γ,
so that I(λ)Γ is injective in the subcategory C[Γ]. Second, the only simple submodule of
I(λ)Γ is S(λ) by definition, and so S(λ) ⊂ I(λ)Γ is an essential submodule, and the claim is
proven.

Finally, let F• be a good filtration of I(λ). Since Λ is interval-finite and Γ is finitely
generated, the number µ ∈ Γ such that A(µ) is a quotient of the form Fi/Fi−1 is finite. By
Proposition 10.1.5, we can pick a new good filtration F ′ such that there exists n such that
if F ′

i+1/F
′
i
∼= A(µ(i)), then µ(i) ∈ Γ if and only if i ≤ n. Then F ′

1 ⊂ · · · ⊂ F ′
n+1 = I(λ)Γ is a

good filtration for I(λ)Γ in C[Γ]. □

Now we come to the last part of the theorem. For two modules M,N , define the trace
TrM(N) to be the submodule of N generated by all images of homomorphisms M → N .

Proposition 10.3.9. If A is finite-dimensional and AMod is a highest weight category, then
A is quasi-hereditary.

Proof. Let Λ be the poset associated some highest weight structure on AMod. Since A is
finite-dimensional, it has finitely many simple modules, so the poset Λ is finite. If |Λ| = 1,
then A is a semisimple algebra, so there is nothing to show.

Otherwise, let λ ∈ Λ be any maximal element. Then I(λ) = A(λ) is an injective right
A-module. Its dual P = I(λ)∗ is the projective cover of the simple left Aop-module S(λ)∗. In
particular, P (λ) is a summand of Aop, so we have P = Aope for some idempotent e. Define
J = AopeAop = AeA, which is also the trace TrP (A

op).
Since HomAop(P,−) is exact and any nonzero map P → P is an isomorphism, we conclude

that for any indecomposable projective P (µ) = I(µ)∗, the trace TrP (P (µ)) is isomorphic to
P⊕rµ , where rµ is the number of times that A(µ) appears in a good filtration for I(µ). In
particular, since trace distributes over direct sums and Aop is a direct sum of the P (µ), we
conclude that J is a direct sum of copies of P , and hence is projective.
Next, J2 = (AeA)(AeA) = AeA = J (since e2 = e).
Finally, since all simples in the composition series of radP = (P/S(λ))∗ are different from

S(λ)∗, we have HomAop(P, radP ) = 0. Finally, radP = (radAop)Aope, so we conclude that
e(radAop)Aope = 0. This implies that J(radAop)J = 0. In conclusion, J is a heredity ideal
of Aop, and hence also of A.
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To finish, note that if µ ̸= λ, then eS(µ)∗ = 0, and so J annihilates any simple other than
S(λ). In particular, if we set Γ = Λ \ {λ}, then every module in C[Γ] is annihilated by a
power of J , and hence by J itself since J2 = J . We conclude that A/J Mod can be identified
with C[Γ] which is a highest weight category, and so we are done. □

Finally, let’s conclude with one more related statement.

Proposition 10.3.10. Let C be a highest weight category such that Λ finite. Let I =⊕
λ∈Λ I(λ) and let A = EndC(I). Then A is quasi-hereditary and AMod ≃ C.

We mentioned the dual version of this for projective covers earlier.
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