Algebraic Integers

An algebraic integer α is a complex number which is a solution to an integer monic polynomial, i.e., $\exists c_0, \ldots, c_n \in \mathbb{Z}$ for some $n \in \mathbb{N}$ such that $\alpha^n + \sum_{i=0}^{n-1} c_i \alpha^i = 0$.

Prop. 1 Algebraic integers form a subring of \mathbb{C}.

Closed under addition, subtraction, multiplication.

Prop. 2 $\{\text{Rational numbers}\} \cap \{\text{algebraic integers}\} = \mathbb{Z}$

Ex. Roots of unity: solutions to $\alpha^n - 1 = 0$.

- $\chi_V(g)$ is algebraic integer for all $g \in G$ and rep. V of G.

Prop. Suppose for all integers m coprime to $|G|$, and all $g \in G$ that g is conjugate to g^m. Then $\chi_V(g) \in \mathbb{Z}$ for all $g \in G$, reps. V.

Pf. Suffices to show $\chi_V(g) \in \mathbb{Q}$.

Let L be field gen. by \mathbb{Q} and a primitive $|G|$th root of unity ω. For every m coprime to $|G|$, there is an automorphism Γ_m of L given by $\omega \mapsto \omega^m$, and $x \in L$ belongs to $\mathbb{Q} \iff \Gamma_m(x) = x \forall$ coprime m.

$$\Gamma_m(\chi_V(g)) = \chi_V(g^m) \Rightarrow \chi_V(g) \in \mathbb{Q}. \quad \square$$

Ex. Every character of G_n is integer-valued.

Pick m coprime to $n! \Rightarrow m$ coprime to $1, \ldots, n$.

$g \in G_n$. need: g^m has same cycle type as g.

mth power of an i-cycle is still an i-cycle, so $\sigma \sim \sigma^m$ for all $\sigma \in G_n$.

let d_1, \ldots, d_c be dims of irreducible reps of G.

We showed that $d_1^2 + \ldots + d_c^2 = |G|$. Goal: $d_i | |G| \forall i$.

If k commutative ring, definition of $k[G]$ still makes sense:

$k[G]$ is free k-module w/ basis $\{e_g \mid g \in G\}$ and $e_g e_h = e_{gh}$.

Lemma. For $x = \sum_{g \in G} x_g e_g \in k[G]$ ($x_g \in k$) and rep. V of G,

the eigenvalues of $\sum_{g \in G} x_g \rho_V(g)$ are algebraic integers.

Proof. Consider the integer span of powers $\{x, x^2, x^3, \ldots\}$.

Subgroup of finitely generated abelian group is again finitely generated \Rightarrow some power of x can be expressed as linear combination of lower powers.

\Rightarrow integer monic polynomial $p(t)$ s.t. $p(x) = 0$.

\Rightarrow If λ eigenvalue of $\sum_{g \in G} x_g \rho_V(g)$, then $p(\lambda) = 0$.

$\Rightarrow \lambda$ is algebraic integer. \(\square\)

(Burnside). $d_i | |G|$ divides $|G|$ for each irreducible rep. V of G.

Proof. Let Y_1, \ldots, Y_c be conj. classes of G.

Let Y_i. Let V_i be irreducible reps of Y_i.

For $i = 1, \ldots, c$, define $f_i \in CF(G)$ by $f_i(g) = 1$ if $g \in Y_i$.

Lemma. Let $\rho: G \to GL(V)$ be rep, $f \in CF(G)$. Define

$\rho f = \sum_{g \in G} f(g) \rho(g)$ linear operator on V.

If V is irreducible, then ρf is scalar $= \lambda \cdot id_V$ where

$\lambda = \frac{|G|}{\dim V} \sum_{g \in V} \overline{(f, \overline{\rho(g)})}$.

Hence w/ $f = f_i$: $\rho f_i = \sum_{g \in Y_i} \rho(g)$ is scalar $\lambda_i \cdot id_V$, where
\[\lambda_i = \frac{|G|}{\dim V} \langle f_i, X_V \rangle = \frac{|G|}{\dim V} - \frac{1}{|G|} \sum_{g \in G} X_V(g) = \frac{|G|}{\dim V} \chi_V(x_i) \]

Previous lemma \(\Rightarrow \lambda_i \) algebraic integers

\[\Rightarrow \sum_{i=1}^{ \text{algebraic integer} } \lambda_i X_V(x_i) = \frac{1}{\dim V} \sum_{i=1}^{c \in \mathbb{Q}} \chi_V(x_i) \overline{\chi_V(x_i)} = \frac{|G|}{\dim V} \sum_{g \in G} X_V(g) X_V(\overline{g}) = \frac{|G|}{\dim V} \langle X_V, X_V \rangle \]

\[\Rightarrow \frac{|G|}{\dim V} \in \mathbb{Q} \Rightarrow \frac{|G|}{\dim V} \in \mathbb{Z} \]

\[\Rightarrow \dim V \text{ divides } |G| \]

\(\square\)