Littlewood–Richardson coefficients

\[C^\nu_{\lambda \mu} \] \(\lambda, \mu, \nu \) partitions \((\nu) = m \nu \)
\[| \lambda | = m \]
\[| \mu | = n \]

They appear in these contexts:

- Multiplication of Schur functions:
 \[S^\lambda \cdot S^\mu = \sum C^\nu_{\lambda \mu} S^\nu \]

- Expansion of skew Schur function:
 \[S_{\nu/\mu} = \sum C^\lambda_{\nu/\mu} S^\lambda \]

- Induction of Specht modules:
 \[\text{Ind}_{G_{|\lambda|+|\mu|}}^{G_{|\lambda|+|\mu|+1}} (S^\lambda \otimes S^\mu) \cong \bigoplus \binom{\nu}{\lambda} C^\nu_{\lambda \mu} S^\nu \]

- Restriction of Specht modules
 \[\text{Res}_{G_{|\lambda|}}^{G_{|\lambda|+|\mu|}} (S^\lambda \otimes S^\mu) \cong \bigoplus C^\nu_{\lambda \mu} S^\nu \]

Let \(w = w_1 w_2 \ldots w_n \) sequence of positive integers.

Let \(m_i(w) = \# j \mid w_j = i \)

A prefix of \(w \) is sequence \(w_1 \ldots w_m \) for some \(m \leq n \).

\[m_i(w) \]

Def. \(w \) is a lattice permutation / Yamanouchi word / ballot sequence

- if, for every prefix \(v \) of \(w \), we have \(m_i(v) \geq m_{i+1}(v) \) for all \(i \).

Def. \(T \) = tableau, its reverse reading word is sequence of its entries reading right to left starting from first row, and moving down.

Def. A SSYT \(T \) is a L-R tableau if its reverse reading word is a lattice permutation.

Thm. \(C^\nu_{\lambda \mu} = \#

Ex. \(\lambda = (4, 2, 1) \), \(\mu = (5, 2) \), \(\nu = (6, 5, 2, 1) \)

\[C^\nu_{\lambda \mu} = 3 \]
Remark: This rule generalizes Pieri's rule:

Suppose $\lambda = (d)$. Then $C^{(d)}_{\mu} = \# L-R tableaux of shape μ^d of type (d), i.e., only using $1's$.

rem (in the rule): no two boxes in same column

\[C^{(d)}_{\mu} = \begin{cases} 1 & \text{if μ^d is horizontal strip of size d} \\ 0 & \text{otherwise} \end{cases} \]

Now suppose $\lambda = (1^d)$. Then $C^{(1^d)}_{\mu} = \# L-R tableaux of shape μ^d of type (1^d), i.e., using $1, \ldots, d$ each exactly once.

reverse reading word must be $12\ldots d$

\[C^{(1^d)}_{\mu} = \begin{cases} 1 & \text{if μ^d is a vertical strip} \\ 0 & \text{otherwise} \end{cases} \]

This rule shows:

\[C^{\nu}_{\lambda^d} > 0 \iff \text{for any integer } d > 0, \]

\[d \nu > d \lambda^d > 0. \]

$C^{\nu}_{\lambda^d} > 0$ \iff there exists $d > 0$ s.t. $\frac{d\nu}{d\lambda^d} > 0$.

yes, "saturation property"