Symmetric Functions

x_1, \ldots, x_n finite set of variables

$\mathbb{Z}[x_1, \ldots, x_n] =$ polynomials w/ \mathbb{Z}-coefficients

S_n acts by permuting variables.

Ring of symmetric polynomials: $\Lambda(n) := \mathbb{Z}[x_1, \ldots, x_n] / S_n$

$\Lambda(n) = \{ f \in \mathbb{Z}[x_1, \ldots, x_n] \mid \sigma.f = f \ \forall \sigma \in S_n \}$

$\Lambda(n)$ subring of $\mathbb{Z}[x_1, \ldots, x_n]$

Consider x_1, x_2, \ldots countable set of variables.

$S_\infty =$ permutations of $\{1, 2, \ldots \}$

$R =$ set of power series in x_1, x_2, \ldots of bounded degree w/ \mathbb{Z}-coeff.

S_∞ acts on R by permuting variables

$\Lambda := R / S_\infty = \{ f \in R \mid \sigma.f = f \ \forall \sigma \in S_\infty \}$

ring of symmetric functions.

R is a ring, Λ is a subring.

For every n, have $\pi_n : \Lambda \rightarrow \Lambda(n)$

$f \rightarrow f(x_1, \ldots, x_n, 0, 0, \ldots)$

For each integer $d \geq 0$, let

$\Lambda(n)_d = \{ f \in \Lambda(n) \mid f \text{ homogeneous of degree } d \}$

$\Lambda_d = \{ f \in \Lambda \mid f \text{ homogeneous of degree } d \}$

$\Lambda(n) = \bigoplus_{d \geq 0} \Lambda(n)_d$, \hspace{1cm} \Lambda = \bigoplus_{d \geq 0} \Lambda_d$

let $\Lambda(n)$ be symmetric polynomials in x_1, \ldots, x_n w/ \mathbb{Z}-coeff.

\Lambda be Symmetric functions w/ \mathbb{Q}-coeff.
\[\text{Ex. } \quad p_k := \sum_{i \geq 1} x_i^k = x_1^k + x_2^k + \ldots \quad \text{(power sum)} \]

\[e_k := \sum_{1 \leq i_1 < i_2 < \ldots < i_k} x_{i_1} x_{i_2} \ldots x_{i_k} \quad \text{(elementary)} \]

\[h_k := \sum_{i_1 \leq i_2 \leq \ldots \leq i_k} x_{i_1} x_{i_2} \ldots x_{i_k} \quad \text{(complete homogeneous)} \]

\[e_1 = h_1, \quad e_2 = x_1 x_2 + x_1 x_3 + \ldots, \quad h_2 = e_2 + p_2 \]

\[h_3 = e_3 + p_3 + \sum_{i \neq j} x_i^2 x_j \]

Monomial symmetric functions

Given sequence \((x_1, x_2, \ldots)\), finitely many nonzero entries

\[x^\alpha := \prod_{i \geq 1} x_i^{a_i} = x_1^{a_1} x_2^{a_2} \ldots \]

Given partition \(\lambda\), define

\[m_\lambda := \sum_{\alpha} x^\alpha \quad \text{permutations of } (\lambda_1, \lambda_2, \ldots) \quad \text{(sum only over distinct values)} \]

Ex.

\[m_1 = x_1 + x_2 + \ldots = p_1 = e_1 = h_1 \]

\[m_{1,1} = \sum_{i < j} x_i x_j = e_2 \]

In general, \(m_\lambda = e_\lambda\) \& \(m_k = p_k\)

\[m_{321} = \sum_{i,j,k} x_i^3 x_j^2 x_k \]

\[i \neq j, \quad i \neq k, \quad j \neq k \]
Thm. \(\{ \lambda \} \) is a basis for \(\Lambda \).

\[
\text{Pf. Linear independence: no } 2 \text{ } \lambda \text{'s share common monomial Span: given } f \in \Lambda, \text{ write } f = \sum c_\lambda x^\lambda, \quad c_\lambda \in \mathbb{Z} \\
& \text{ s.t. } |\lambda| \leq d \\
& \text{if } \alpha \text{ is permutation of } \beta, \text{ so can write } f = \sum c_\lambda x^\lambda \\
& \text{finite sum partitions} \text{ partitions} \rightarrow \text{ finite sum} \quad \square
\]

Cor. \(\Lambda \) has basis \(\{ \lambda \} \mid |\lambda| = d \}, \text{ hence is free abelian group of rank } \text{pld}).

\(\Lambda(n)_d \) has a basis \(\{ \lambda(x_1, \ldots, x_n) \mid |\lambda| = d, \ell(\lambda) \leq n \} \).

Elementary symmetric functions

For partition \(\lambda = (\lambda_1, \ldots, \lambda_k) \), define

\[
e_\lambda = e_{\lambda_1} \cdots e_{\lambda_k}
\]

\(e_\lambda \in \Lambda(1x_1) \).

\(\exists \text{ coeff. } M_{\lambda \mu} \in \mathbb{Z} \text{ s.t.} \)

\[
e_\lambda = \sum M_{\lambda \mu} \mu_m
\]

Given infinite matrix \(A \) with finitely many nonzero entries,

\[
\text{row}(A) = \left(\sum_{i \geq 1} A_{i1}, \sum_{i \geq 1} A_{i2}, \ldots \right)
\]

\[
\text{col}(A) = \left(\sum_{j \geq 1} A_{j1}, \sum_{j \geq 1} A_{j2}, \ldots \right)
\]

\(A \) is \((0,1)\)-matrix if every entry is 0 or 1.
Lemma. \(M_{\lambda, \mu} \) is \# of \((0,1)\)-matrices w/ \(\text{row}(A) = \lambda \), \(\text{col}(A) = \mu \).

Proof. \(e_{\lambda} = e_{\lambda_1}e_{\lambda_2} \cdots e_{\lambda_k} = (\sum x_{i_1} x_{i_2} \cdots x_{i_{\lambda_1}})(\sum x_{j_1} \cdots x_{j_{\lambda_2}}) \cdots \)

\[M_{\lambda, \mu} = \text{coeff. of } x^\mu \text{ in } e_{\lambda} \]

= sum over all choices of monomials \(x_i \) whose product is \(x^\mu \)

Given monomial \(x_i \), encode as sequence \((a_1, a_2, \ldots)\)

where \(a_i = \text{exponent of } x_i \)

gives \((0,1)\)-matrix \(A \) by letting row \(i \) be sequence for monomial chosen from \(e_{\lambda} \) s.t. \(\text{col}(A) = \mu \) & \(\text{row}(A) = \lambda \).

Cor. \(M_{\lambda, \mu} = M_{\mu, \lambda} \)

Proof. Get bijection between matrices by taking transpose.

Proof. If \(M_{\lambda, \mu} \neq 0 \), then \(\mu \leq \lambda^T \). Also, \(M_{\lambda, \lambda^T} = 1 \).

In particular, \(\{e_{\lambda^T} \mid \lambda \text{ partition} \} \) is basis for \(A \).

Proof. Suppose \(M_{\lambda, \mu} \neq 0 \). Then \(\exists A \ (0,1)\)-matrix w/ \(\text{row}(A) = \lambda \), \(\text{col}(A) = \mu \).

Let \(A' \) be result of left-justifying all 1's in each row

\[\text{row}(A') = \lambda, \quad \text{col}(A') = \lambda^T. \]

For each \(i \), number of 1's in first\(i \) columns of \(A' \)

\[\geq \lambda_1^T + \cdots + \lambda_i^T \geq \mu_1 + \cdots + \mu_i \]

\[A_i \Rightarrow \mu \leq \lambda^T. \]

Also note if \(\mu = \lambda^T \), then 1's must already be left-justified

\[\Rightarrow \text{only one way}, \quad \text{so } M_{\lambda, \lambda^T} = 1. \]
Lemma. Let \(a_{\lambda, \mu} \) be integers indexed by partitions of size \(n \).

Assume that:
- \(a_{\lambda, \lambda} = 1 \) \(\forall \lambda \)
- \(a_{\lambda, \mu} \to 0 \Rightarrow \mu \leq \lambda \)

For any ordering of \(\lambda \) in \(\mathcal{P}(n) \), \((a_{\lambda, \mu})_{\mu} \) is invertible (over \(\mathbb{N} \)), i.e. has \(\det = \pm 1 \).

Same conclusion if instead we have \(a_{\lambda, \lambda} = 1 \), \(a_{\lambda, \mu} \to 0 \Rightarrow \mu \leq \lambda \).

\[\Rightarrow \det (M_{\lambda, \mu}) = \pm 1 \]

Then, \(\{ e_\lambda(x_1, \ldots, x_n) \mid \lambda \leq n \} \) is basis for \(\Lambda(n) \).

Rank. \(\{ e_\lambda \} \) basis for \(\Lambda \Rightarrow e_1, e_2, \ldots \) are algebraically independent. All nontrivial polynomial expressions in \(e_1, e_2, \ldots \) are nonzero.

\(\{ e_\lambda(x_1, \ldots, x_n) \mid \lambda \leq n \} \) basis for \(\Lambda(n) \).

\[\Rightarrow e_1(x_1, \ldots, x_n), \ldots, e_n(x_1, \ldots, x_n) \text{ are algebraically independent.} \]

Fundamental theorem of symmetric polynomials / functions.