Math 190A, Fall 2022
Homework 6
Due: Friday, December 2, 2022 11:59PM via Gradescope
(late submissions allowed up until December 3, 2022 11:59PM with −25% penalty)

Solutions must be clearly presented. Incoherent or unclear solutions will lose points.

(1) Let \(X \) and \(Y \) be spaces and set \(\{ p \} = X^* \setminus X \) and \(\{ q \} = Y^* \setminus Y \). Prove that
\[
(\mathbb{R} \coprod Y^*)^* \cong (X^* \coprod Y^*)/\sim
\]
where the only nontrivial relation is \(p \sim q \).

[Recall that \(\coprod \) means “disjoint union”, and if \(A \) and \(B \) are spaces, then a subset \(U \) of \(A \coprod B \) is open if and only if \(U \cap A \) and \(U \cap B \) are open in \(A \) and \(B \), respectively.]

(2) Let \(X = \mathbb{Z}_{>0} \) be the set of positive integers with the discrete topology.
(a) Prove that \(X \) is locally compact, Hausdorff, and not compact.
(b) Prove that \(X^* \) is homeomorphic to the subspace \(\{0\} \cup \{1/d \mid d \in \mathbb{Z}_{>0} \} \) of \(\mathbb{R} \).

(3) Let \(Y \) be a Hausdorff space and let \(X \subseteq Y \) be a locally compact subspace such that \(X = Y \). Prove that \(X \) is an open subset of \(Y \). Hints at end.

(4) Let \(n \geq 1 \) be an integer. Recall that \(\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\})/\sim \) where \(x \sim y \) if there exists \(\lambda \in \mathbb{R} \setminus \{0\} \) such that \(x = \lambda y \). Write \([x_1 : \cdots : x_{n+1}]\) for the equivalence class of \((x_1, \ldots, x_{n+1})\). Our goal is to show that \(\mathbb{RP}^n \) is a compactification of \(\mathbb{R}^n \); since it’s a bit lengthy this problem will be worth 40 points rather than the usual 20.
Define \(U \subseteq \mathbb{RP}^n \) to be the subset of equivalence classes of the form \([x_1 : \cdots : x_{n+1}]\) where \(x_{n+1} \neq 0 \) (this makes sense since whether or not \(x_{n+1} \) is 0 does not depend on the actual representative).
(a) Prove that the function \(g: U \to \mathbb{R}^n \) given by
\[
g([x_1 : \cdots : x_{n+1}]) = \left(\frac{x_1}{x_{n+1}}, \ldots, \frac{x_n}{x_{n+1}} \right)
\]
is well-defined (i.e., does not depend on the choice of representative for the equivalence class) and is a homeomorphism. Hint at end.
(b) Prove that \(U = \mathbb{RP}^n \).
(c) Finally, prove that \(\mathbb{RP}^n \) is Hausdorff.
[You may use that the restriction \(\pi|_{S^n}: S^n \to \mathbb{RP}^n \) is a quotient map, i.e., \(U \subseteq \mathbb{RP}^n \) is open if and only if \((\pi|_{S^n})^{-1}(U) \) is open. This does not follow from definitions and requires a proof, but you can take it for granted for this problem.]
(d) When \(n = 1 \), explain why \(\mathbb{RP}^1 \setminus U \) is a single point and explain how this implies that \(\mathbb{RP}^1 \cong S^1 \).
Hints

3: Hint 1: By Proposition 4.3.19 (taking $U = X$), each $x \in X$ has a neighborhood $V \subseteq X$ which is open in X such that $\text{Cl}_X(V)$ is compact. Prove that V is also open in Y (see next hint for more help).

Hint 2: Continuing from hint 1, $V = X \cap W$ for some open set W in Y. Explain why each of the following equalities holds:

$$W \subseteq \text{Cl}_Y(W) = \text{Cl}_Y(V) = \text{Cl}_X(V) \subseteq X.$$

4a: To show that g is continuous: let $\widetilde{U} = \pi^{-1}(U)$ where $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$ is the quotient map. Define $f: \widetilde{U} \to \mathbb{R}^n$ by the same formula as g and show that $f = (\pi|_{\widetilde{U}}) \circ g$. Now use an argument very similar to the proof of Proposition 2.4.5.

Optional problems (don’t turn in)

(5) How do you describe $(X \times Y)^*$ in terms of X^* and Y^*?

(6) Prove that $\mathbb{C}P^n$ is a compactification of \mathbb{C}^n and that $\mathbb{C}P^1 \cong S^2$.

(7) Pick $0 < k < n$. Prove that $\text{Gr}_k(\mathbb{R}^n)$ is a compactification of \mathbb{R}^n and that $\text{Gr}_k(\mathbb{C}^n)$ is a compactification of \mathbb{C}^n.