Math 184, Midterm 2
Instructor: Steven Sam
May 16, 2023
9:30AM - 10:45AM

(Try to use the exact name that is in Gradescope, since it will be automatically matched.)

- No books, materials, notes, cell phones, calculators, etc. Consulting other students or any other sources is considered an academic integrity violation and will be treated as such.
- Pages will be separated for scanning. Write your name at the top of each page. Also, make sure to write legibly and dark enough and not too close to the edges of the paper.
- By default, write your answers only in the space provided. The extra blank sheets can be used for your solution, but clearly indicate in the problem if you want the extra sheets to be graded.
- Cross out / erase irrelevant scratch work. If you write incorrect statements without crossing them out, you may lose points. Make clear what your final answer is.
- Answers should always have explanations. You may lose points otherwise.
- If you finish early, double-check your work and make sure you followed the above instructions. When you're ready, you may turn it in and leave.
- To turn in exam, show your ID and make sure your name is checked off the list.

Good luck!

1. (10 points) Let α, β be scalars. What is the coefficient of x^{2} in the following formal power series:

$$
\frac{(x+\alpha)^{17}}{(1+\beta x)^{13}}
$$

2. (10 points) What is the coefficient of $x^{2} y^{6} z$ in $(2 x+y+z)^{9}$?
3. (10 points) List all of the integer partitions of 6 that have ≤ 3 parts.
4. (20 points) Let $\left(a_{n}\right)$ be the sequence defined by

$$
a_{0}=1, \quad a_{1}=0, \quad a_{n}=a_{n-1}+3 a_{n-2}+2^{n} \quad(\text { for } n \geq 2) .
$$

(a) Define $A(x)=\sum_{n \geq 0} a_{n} x^{n}$. Write $A(x)$ as a rational function in x ($=$ polynomial divided by another polynomial). Tip: most of the points are for setting this up correctly, only worry about simplifying when you're finished with the rest of the exam.
(b) Find a homogeneous linear recurrence relation satisfied by $\left(a_{n}\right)$. Make sure to state for which n this relation is valid and give all necessary initial conditions. You don't need to find a closed formula.
5. (15 points) Evaluate (and show relevant work)

$$
\sum_{\substack { 0 \leq i \leq 15 \\
\begin{subarray}{c}{\text { odd }{ 0 \leq i \leq 1 5 \\
\begin{subarray} { c } { \text { odd } } }\end{subarray}} i\binom{15}{i} \cdot 6^{i-1} \cdot 2^{15-i}
$$

6. (15 points) For $n \geq 1$, let w_{n} be the number of set partitions of $[n]$ such that every block has size either 1 or 3 .
(a) Prove that $w_{n}=w_{n-1}+\binom{n-1}{2} w_{n-3}$ for $n \geq 4$.
(b) What is w_{6} ? Show work or reasoning.

Extra scratch paper. If you want this space graded, clearly say so in the problem that you are working on so we know to look here.

Name:

Extra scratch paper. If you want this space graded, clearly say so in the problem that you are working on so we know to look here.

Extra scratch paper. If you want this space graded, clearly say so in the problem that you are working on so we know to look here.

