A = alphabet of size k.
Count words of length n up to rotation (cyclic symmetry) the following are same:
Example: a_1, a_2, a_3, a_4, a_5, a_6
 a_2, a_3, a_4, a_5, a_6, a_1

Naïve guess: \(\frac{k^n}{n} \) (wrong)

Refinement: Note that 0101 has only 2 different rotations:
 1010
Given word \(w \), its period is least number of rotations of
\(w \) needed to get \(w \) back.
Ex. period of 0101 is 2.

Let \(w(d) = \# \) of words of period \(d \)

Observations: period has to divide length of word.
 \(w(d) \) does not depend on \(n \)

Def. Equivalence class of word of length \(n \) up to cyclic symmetry
is necklace of length \(n \)

\[
\# \text{necklaces of } \frac{k^n}{d} \quad \frac{w(d)}{d} \quad \text{ex. } \frac{w(1)}{1} + \frac{w(2)}{2} + \frac{w(4)}{4}
\]

Second identity: \(\# \) words of length \(n \) up to cyclic symmetry
by using this identity, can try to solve for \(w(d) \).
Ex. Solve for \(\omega(4) \):

\[
\begin{align*}
\text{Start with} & \quad k^4 = \omega(1) + \omega(2) + \omega(4) \\
& \quad k^2 = \omega(1) + \omega(2) \\
& \quad k^4 - k^2 = \omega(4)
\end{align*}
\]

Solve for \(\omega(6) \):
\[
\begin{align*}
& \quad k^6 = \omega(1) + \omega(2) + \omega(3) + \omega(6) \\
& \quad k^3 = \omega(1) + \omega(3) \\
& \quad k^2 = \omega(1) + \omega(2) \\
& \quad k = \omega(1)
\end{align*}
\]
\[
\omega(6) = k^6 - k^3 - k^2 + k
\]

How to get general equation for \(\omega(n) \)?

Def. Define \(\mu(1) = 1 \). For \(n > 1 \)
\[
\mu(n) = \begin{cases}
0 & \text{if } n \text{ is divisible by } p^2 \text{ for any prime } p \\
(-1)^r & \text{if } n \text{ is a product of } r \text{ different primes.}
\end{cases}
\]

Ex.
\[
\begin{align*}
\mu(1) &= 1 \\
\mu(2) &= -1 \\
\mu(3) &= -1 \\
\mu(4) &= 0 \quad \text{(since } 2^2 \text{ divides } 4) \\
\mu(5) &= -1 \\
\mu(6) &= (-1)^2 = 1 \\
\mu(7) &= -1 \\
\mu(8) &= 0 \quad \text{(since } 2^3 \text{ divides } 8) \\
\mu(9) &= 0 \\
\mu(10) &= (-1)^2 = 1 \\
\mu(11) &= -1 \\
\mu(12) &= 0 \\
12 &= 2^2 \cdot 3
\end{align*}
\]
Lemma. Let \(n \geq 1 \). Then \(\sum_{d \mid n} \mu(d) = 0 \)

Proof. Write prime factorization \(n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} \) \((a_i \geq 1, p_i \text{ s different primes})\)

\[
\sum_{d \mid n} \mu(d) = \sum_{0 \leq e_1 \leq a_1} \mu(p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}) = \sum_{0 \leq e_1 \leq 1} \mu(p_1^{e_1}) \sum_{0 \leq e_2 \leq 1} \mu(p_2^{e_2}) \cdots \sum_{0 \leq e_r \leq 1} \mu(p_r^{e_r})
\]

\[
= \sum_{S \subseteq \{p_1, \ldots, p_r\}} \mu(S) = \sum_{S \subseteq \{p_1, \ldots, p_r\}} (-1)^{|S|} = \sum_{k=0}^{r} \binom{r}{k} (-1)^k = 0 \quad \text{for } r \geq 1.
\]

Theorem (Möbius Inversion). Let \(\alpha, \beta \) be complex-valued functions defined on positive integers.

1. If \(\alpha(d) = \sum_{e \mid d} \beta(e) \) for all \(d \),

Then \(\beta(d) = \sum_{e \mid d} \mu(d/e) \alpha(e) \) for all \(d \).

2. If \(\alpha(d) = \prod_{e \mid d} \beta(e) \) for all \(d \)

and \(\beta(e) \neq 0 \) for all \(e \), then \(\prod_{e \mid d} \mu(d/e) \alpha(e) \) for all \(d \).
Pf. Of C: \[\sum \mu\left(\frac{d}{e}\right) \alpha(e) = \sum \mu\left(\frac{d}{e}\right) \sum \beta(f) \]
\[= \sum \mu\left(\frac{d}{e}f\right) \beta(f) = \sum \mu(f) \sum \mu\left(\frac{d}{e}\right) \]
(f, e, r)
f \mid d
eq \text{ s.t.}
\]

Have bijection:
\[\left\{ e \mid \text{fle} \& \text{eld} \right\} \leftrightarrow \left\{ r \mid r \text{ divides } \frac{d}{f} \right\} \]
\[e \mapsto \frac{d}{e} \]

Write prime factorization:
\[d = p_1^{a_1} \cdots p_r^{a_r} \]
\[f = p_1^{b_1} \cdots p_r^{b_r} \]

Since f \mid d, b_i \leq a_i \text{ for all } i.

If fle \& eld, then \[e = p_1^{c_1} \cdots p_r^{c_r} \]
where \[b_i \leq c_i \leq a_i \text{ for all } i. \]

Then:
\[\frac{d}{e} = p_1^{a_1-c_1} p_2^{a_2-c_2} \cdots p_r^{a_r-c_r} \]
\[\frac{d}{f} = p_1^{a_1-b_1} p_2^{a_2-b_2} \cdots p_r^{a_r-b_r} \]

\[\left\{ e \mid \text{fle} \& \text{eld} \right\} \leftrightarrow \left\{ x \mid x \text{ divides } \frac{d}{f} \right\} \]
\[\uparrow \]
\[\left\{ (c_1, \ldots, c_r) \mid b_i \leq c_i \leq a_i \right\} \rightarrow \left\{ (e_1, \ldots, e_r) \mid 0 \leq e_1 \leq a_1-b_1 \right\} \]
\[\left\{ b_1 \leq c_1 \leq a_1 \right\} \rightarrow \left\{ b_2 \leq c_2 \leq a_2 \right\} \rightarrow \left\{ b_r \leq c_r \leq a_r \right\} \]
\[(c_1, \ldots, c_r) \rightarrow (c_1-b_1, \ldots, c_r-b_r) \]
\[
\sum_{\text{f,l.d.}} \sum_{\text{f,e,l.d.}} p(f) \mu\left(\frac{d}{e}\right) = \sum_{\text{f,l.d.}} p(f) \mu(x) \left[\right] \quad \text{if } \frac{d}{e} > 1,
\]

\[\beta(d) \sum_{x \mid 1} \mu(11) = \beta(d) \]

For our problem: let \(p = 0 \).

\(\alpha(d) = k^d \)

Then \(\alpha(d) = \sum_{\text{e,l.d.}} \beta(e) \)

Höbius \(\beta(d) = \sum_{\text{e,l.d.}} \mu\left(\frac{d}{e}\right) \alpha(e) \)

Cor. For any positive integer \(d \),

\(\omega(d) = \sum_{\text{e,l.d.}} \mu\left(\frac{d}{e}\right) k^{e} \)

Ex. \# necklaces of length \(q \):

\[\omega(1) = \sum_{\text{e,l.d.}} \mu\left(\frac{1}{e}\right) k^{e} = \mu(1) k = k \]

\[\omega(2) = \mu\left(\frac{2}{1}\right) k^{1} + \mu\left(\frac{2}{2}\right) k^{2} = \mu(2) k + \mu(1) k^{2} = -k + k^{2} \]

\[\omega(4) = \mu\left(\frac{4}{1}\right) k^{1} + \mu\left(\frac{4}{2}\right) k^{2} + \mu\left(\frac{4}{4}\right) k^{4} = \mu(4) k + \mu(2) k^{2} + \mu(1) k^{4} \]

\[= \mu(4) k + \mu(2) k^{2} + \mu(1) k^{4} = k^{4} - k^{2} \]

\# necklaces of length \(q \) = \(\frac{\omega(1) + \omega(2) + \omega(4)}{2} = k + \frac{k^{2} - k}{2} + \frac{k^{4} - k^{2}}{4} \)
\[\omega^6(b) = \mu(b) \frac{b}{1} + \mu(b) \frac{b}{2} k^2 + \mu(b) \frac{b}{3} k^3 + \mu(b) \frac{b}{6} k^6 = k - k^2 - k^3 + k^6\]

Notation: \(\epsilon = \sqrt{-1}\)

Euler’s identity: \(e^{2\pi i} = 1\).

So solutions to \(x^n - 1 = 0\) are \(e^{2\pi i/n}, e^{2\pi i(1-1)/n}, \ldots, e^{2\pi i(n-1)/n}\), which are the \(n^{th}\) roots of unity.

If \(k, n\) have common factor \(r\), then \(e^{2\pi i k/n}\) is also \((\frac{n}{r})^{th}\) root of unity.

If \(k, n\) are relatively prime, then \(e^{2\pi i k/n}\) is called primitive \(n^{th}\) root of unity.

Definition: The \(n^{th}\) cyclotomic polynomial is

\[\Phi_n(x) = \prod_{k \text{ odd}, 0 \leq k \leq n-1 \land k, n \text{ relatively prime}} (x - e^{2\pi i k/n})\]

By definition, \(x^n - 1 = \prod_{d|n} \Phi_d(x)\)

By Möbius inversion, \(\Phi_n(x) = \prod_{d|n} (x^{d-1})^\mu(n/d)\)
EX: \(n=6: \Phi_6(x) = \prod_{d|6} (x^{a_d-1})^{\mu(d/6)} = \frac{(x^6-1)(x-1)}{(x^2-1)(x^3-1)} = x^2 - x + 1. \)

\(n=8: \Phi_8(x) = \prod_{d|8} (x^{a_d-1})^{\mu(d/8)} = \frac{x^8-1}{x^4-1} = x^4 + 1 \)

Crazy dice:

Roll 2 6-sided dice, distribution for sum:

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Question: Can we relabel sides of dice so that the distribution of sum is as above?

Constraints must use positive integers.

One other solution:

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>