labeled graphs: nodes 1,...,n w/ edges connecting them
\(\rightarrow \) \(2 \) many
labeled forests: graphs w/ no cycles.
labeled trees: connected forests. \(t_n = \# \text{labeled trees} \)

Cayley: \(t_n = n^{n-2} \) for \(n \geq 1 \).

\[t_n = \begin{cases} \text{for } n=3 & 1-2-3 \\ 2-1-3 \\ 2-3-1 \end{cases} \]

Ex: \(n=3 \)

\[\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array} \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array} \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array} \]

\(n=4 \)

\[\begin{array}{c}
\circ \\
\circ \\
\circ \\
\circ \\
\end{array} \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\circ \\
\end{array} \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\circ \\
\end{array} \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\circ \\
\end{array} \]

\(4! / 2 \) = 12

Rooted labeled tree = pair \((T, i)\) \(T = \text{labeled tree on } n \text{ vertices} \)
\(1 \leq i \leq n \)

\(\# \text{rooted labeled trees} = n t_n \)

Planted labeled forest = labeled forest + choice of root for each connected component

= disjoint union of labeled trees

(union of labels is \([n]\))

\(f_n := \# \text{planted labeled forests w/ } n \text{ vertices.} \quad (f_0 = 1) \)

\[F(x) := \sum_{n=0}^{\infty} f_n \frac{x^n}{n!} \quad R(x) := \sum_{n=0}^{\infty} (n t_n) \frac{x^n}{n!} \]

Identity \(1: \quad F(x) = e^{R(x)} \)
RF: To build planted labeled forest on \(n \) vertices:

1. Pick set partition \(X_1, \ldots, X_k \) of \([n] \)
2. Put structure of rooted labeled tree on each \(X_i \)

This gives every planted labeled forest exactly once.

Exponential formula: \(F(x) = e^{R(x)} \)

Identity 2: \(R(x) = x F(x) \)

Claim: For \(n \geq 1 \), \(t_n = f_{n-1} \). Use bijection.

\[
\begin{align*}
\text{labeled trees on } [n] & \overset{f}{\longrightarrow} \text{planted labeled forests on } [n-1] \\
\text{on } [n] & \overset{g}{\longleftarrow}
\end{align*}
\]

Let \(T \) be labeled tree with vertices \(1, \ldots, n \).

Delete vertex labeled \(n \) and all edges containing \(n \).

Result \(T' \) has no cycle, hence is a labeled forest on \([n-1] \).

For each connected component of \(T' \), there is a unique vertex that was connected to \(n \) by an edge in \(T \). Let that be the root of the component.

Now I have planted labeled forest, call it \(f(T) \).
Let U be planted labeled forest on $[n-1]$. Add vertex n. For each root in each component of U, add edge between n and that root. Get labeled tree on $[n]$, call it $g(n)$.

$\Rightarrow f_g$ inverse, get bijection that proves $t_n = f_{n-1}$.

$$R(x) = \sum_{n\geq 1} (nt_n) \frac{x^n}{n!} = \sum_{n\geq 1} f_{n-1} \frac{x^n}{n!} = x \sum_{n\geq 1} \frac{x^{n-1}}{(n-1)!} = x F(x). \quad \square$$

$$R(x) = x F(x) = xe^{R(x)}$$

$$\Rightarrow \begin{cases} R(x) = x e^{R(x)} \end{cases}$$

Try to solve for cofficients of $R(x)$.

Let $r_n = \sum_{n\geq 0} \frac{nt_n}{n!}$ for $n > 0$, so $R(x) = \sum_{n\geq 0} r_n x^n$

$$r_0 = [x^0] R(x) = [x^0] (xe^{R(x)}) = [x^0] e^{R(x)}$$

Notes: Constant term of $R(x)$ is 0

so $[x^0] e^{R(x)} = [x^0] (1 + \frac{R(x)}{1!} + \frac{R(x)^2}{2!} + \cdots) = 1$
\[r_2 = [x^2] R(x) = [x^2] (x e^{R(x)}) = [x^1] e^{R(x)} \]
\[= [x^1] \left(1 + R(x) + \frac{R(x)^2}{2!} + \frac{12R(x)^3}{3!} + \ldots \right) = r_1 = 1 \]
\[r_3 = [x^3] R(x) = [x^3] (x e^{R(x)}) = [x^2] e^{R(x)} \]
\[= [x^2] \left(1 + R(x) + \frac{R(x)^2}{2!} + \frac{R(x)^3}{3!} + \ldots \right) \]
\[= r_2 + \frac{1}{2!} (r_0 r_2 + r_1^2 + r_2 r_3) = 1 + \frac{1}{2} (0 + 1 + 3) = \frac{3}{2} \cdot \]

Lagrange Inversion Formula: Let \(G(x) \) be FPS with nonzero constant term. Then there is a unique FPS \(A(x) \) s.t.
\[A(x) = x G(A(x)) \).
Furthermore, \([x^0] A(x) = 0 \) and for \(n > 0 \),
\[[x^n] A(x) = \frac{1}{n} [x^{n-1}] (G(x)^n) \).

Conclusion of Cayley's Formula:
Use Lagrange inversion w/ \(G(x) = e^x \).
For \(n > 0 \),
\[[x^n] R(x) = \frac{1}{n} [x^{n-1}] e^x = \frac{1}{n} [x^{n-1}] \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \]
Set \(k = n - 1 \):
\[= \frac{1}{n} \frac{n^{n-1}}{(n-1)!} \]
By definition, \[\binom{n^m}{n} = \frac{n^m}{m!} \]

\[\Rightarrow \quad \frac{n^m}{m!} \quad \Rightarrow \quad t_n = n^{n-2} \]

(Other method: Prüfer encoding)

Catalan numbers (again)

Recall: \[C(x) = \sum_{n \geq 0} C_n x^n \]

We showed: \[C(x) = 1 + x C(x)^2 \]

Define \[A(x) = C(x) - 1 \]

\[\Rightarrow \quad A(x) \neq \mathbf{1} + x (A(x) - 1)^2 \]

\[\Rightarrow \quad A(x) = x (A(x) + 1)^2 \]

Can apply Lagrange inversion w/ \(G(x) = (x+1)^2 \)

For \(n > 0 \),

\[[x^n] A(x) = \frac{1}{n} \left[x^{n-1} \right] (x+1)^{2n} = \frac{1}{n} \left[x^{n-1} \right] \sum_{k=0}^{2n} \binom{2n}{k} x^k \]

\[= \frac{1}{n} \left(\binom{2n}{n-1} \right) \]

Note: \[\frac{1}{n} \left(\binom{2n}{n-1} \right) = \frac{(2n)!}{n!(n-1)!(n+1)!} = \frac{1}{n+1} \left(\frac{(2n)!}{n! \cdot n!} \right) = \frac{1}{n+1} \binom{2n}{n} . \]

Also, for \(n > 0 \), \[[x^n] A(x) = [x^n] C(x) . \]
Generalized Catalan:

Recall: \(C_n = \# \text{ rooted binary trees w/ } n+1 \text{ leaves} \)
\[= \# \text{ rooted binary trees w/ } n \text{ internal vertices} \]

Let \(k \geq 2 \) integer.

Consider \(\# \text{ rooted } k\text{-ary trees w/ } n \text{ internal vertices} \)

Let's call this \(\alpha_n \)

\[\Rightarrow \alpha_n = \sum_{(i_1, i_2, \ldots, i_k)} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k} (x) \text{ for } n \geq 0 \]

\[i_1 + \cdots + i_k = n-1 \]

\[\Rightarrow \text{ Define } B(x) = \sum_{n \geq 0} \alpha_n x^n. \]

(*) Translates to
\[B(x) = 1 + x B(x)^k \]

Define \(A(x) = B(x) - 1 \):

\[A(x) = x (A(x) + 1)^k \]

Use Lagrange w/ \(G(x) = (x+1)^k. \)

\[[x^n] A(x) = \frac{1}{n} \left[x^{n-1} \right] (x+1)^{nk} = \frac{1}{n} \left[x^{n-1} \right] \sum_{i=0}^{nk} \binom{nk}{i} x^i \]

\[= \frac{1}{n} \binom{nk}{n-1} \]
\[B(x) = \sum_{n \geq 0} b_n x^n. \]

What is coeff of \(x^n \) in \(B(x)^k \)?

Claim: \(\sum_{i+j=n} b_i b_j \)

When \(k=2 \), \(\sum_{i=0}^{n} b_i b_{n-i} = \sum_{(i,j)} b_i b_j \)

Prove by induction.

For \(k > 2 \), \(B(x)^k = B(x)^{k-1} B(x) \)

\[(x^n) B(x)^k = (x^n) (B(x)^{k-1} B(x)) \]

\[= \sum_{j=0}^{n} [x^j] B(x)^{k-1} b_{n-j} \]

\[= \sum_{j=0}^{n} \sum_{(i_1, \ldots, i_{k-1})} b_{i_1} \cdots b_{i_{k-1}} b_{n-j} \]

Every weak composition of \(n \) into \(k \) parts is of the form \((i_1, \ldots, i_{k-1}, n-j) \) where \(i_1 + \cdots + i_{k-1} = j \) for some \(0 \leq j \leq n \).