What is this case about?

3 sample problems

1. Linear recurrence relations:
 Fibonacci sequence: 0, 1, 2, 3, 5, 8, 13, ...
 Can I find formula (non-recursive)?

2. Counting # ways to write n pairs of balanced parentheses
 \(n=2: \ (() \) \ (()) \)
 \(n=3: \ (() () \) \ (() ()) \ ((()) \ (()) \) \ (()) \ (()) \ (() ()) \)
 general \(n \)?

3. How many permutations of \(n \) things have no fixed points?

 Bijection
 Given sets \(X, Y \), functions \(f: X \rightarrow Y \)
 \(g: Y \rightarrow X \)

 we say inverses of each other if
 \(f \circ g = id_Y \) & \(g \circ f = id_X \)

 i.e., For all \(y \in Y \), \(f(g(y)) = y \), For all \(x \in X \), \(g(f(x)) = x \)

 If so, \(f \) and \(g \) are bijections.

 Prop. If a bijection exists between \(X, Y \) then \(|X| = |Y| \).

 If \(f \) is bijection, then it is
 - one-to-one (injective), i.e., if \(f(x) = f(x') \), then \(x = x' \)
 - onto (surjective), i.e., for all \(y \in Y \), there is some \(x \)
 so that \(f(x) = y \)

 \(f \) is bijection \(\iff \) injective & surjective.
For injective \(f \Rightarrow |X| \leq |Y| \)

For surjective \(f \Rightarrow |X| \geq |Y| \)

Sum principle: X, Y sets w/ no overlap.

Then \(|X \cup Y| = |X| + |Y| \).

Product principle: \(X \times Y = \{ (x, y) \mid x \in X, y \in Y \} \)

\(|X \times Y| = |X| \cdot |Y| \)

12 -fold way: Assigning \(k \) balls to \(n \) boxes.

1. Subject to some condition:
 Think of assignment as function \(f: \{ \text{balls} \} \rightarrow \{ \text{boxes} \} \)
 Conditions on \(f \):
 1. \(f \) is injective
 2. \(f \) is surjective
 3. no condition

 Conditions on \text{balls}:
 1. all identical
 2. considered different

 Conditions on \text{boxes}:
 1. all identical - indistinguishable
 2. considered different - distinguishable
<table>
<thead>
<tr>
<th>balls/boxes</th>
<th>f arbitrary</th>
<th>f injective</th>
<th>f surjective</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist/dist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indist/dist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist/indist</td>
<td>{ 1 if n \geq k }</td>
<td>0 if n < k</td>
<td></td>
</tr>
<tr>
<td>indist/indist</td>
<td>{ 1 if n \geq k }</td>
<td>0 if n < k</td>
<td></td>
</tr>
</tbody>
</table>

Weak Induction: Prove sequence of statements \(P(0), P(1), P(2), \ldots \)

Strategy:
1. Prove \(P(0) \) is true. **Base case**
2. Use \(P(n) \) to prove \(P(n+1) \) is true. **Inductive step**

Example: \(P(n) \) is statement \(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \)

1. \(P(0): \left(\sum_{i=0}^{0} i = \frac{0(0+1)}{2} = 0 \right) \) \(\checkmark \)
2. \(\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = (n+1) \left(\frac{n}{2} + 1 \right) = (n+1) \left(\frac{n+2}{2} \right) \)
 \(P(n) \Rightarrow P(n+1) \) \(\checkmark \)

Subsets. A set, \(T \) is a subset of every element of \(T \) belongs to \(S \).

Note: \(T \) could be empty, and also \(T = S \) \(\checkmark \).
Thm. If \(|S| = n\), there are \(2^n\) subsets of \(S\).

Proof:
Base case: \(n = 0\), \(S = \emptyset\), only subset is \(T = \emptyset\)
\[2^0 = 1 \quad \checkmark\]

Inductive step: Suppose \(|S| = n+1 > 0\).

Pick some element \(x \in S\). Consider 2 kinds of subsets:

1: \(T\) contains \(x\)
2: \(T\) does not contain \(x\)

How many of type II?

Define \(f: \) subsets of \(S\) \(\rightarrow\) subsets of \(S \setminus \{x\}\)
\[f(T) = T \setminus \{x\}\]
get bijection \(g\)
\[g(T) = T\]

\(\Rightarrow 2^n\) subsets of type II.

Ex. \(S = \{a, b, c\}\), \(x = b\)

Subsets of \(S\) not containing \(b\):
- \(\emptyset\)
- \(\{a\}\)
- \(\{b, c\}\)
- \(\{c\}\)

Subsets of \(S \setminus \{x\}\):
- \(\emptyset\)
- \(\{a\}\)
- \(\{c\}\)

How many of type I?

\[f(T) = T \setminus \{x\}\]
\[g(U) = U \cup \{x\}\]

bijection \(\Rightarrow 2^n\) type I subsets.

\[\#\text{subsets} = \#\text{type I} + \#\text{type II} = 2^n + 2^n = 2(2^n) - 2^{n+1}\]
\[g(f(T)) = g(T \setminus x) = (T \setminus x) \cup \{x\} \]

\[f(g(U)) = f(U \cup \{x\}) = U \]

Ex.

\[\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

\[\sum_{i=0}^{n} i^3 = ?? \quad \text{deg 4 polynomial in } n \]

\[\sum_{i=0}^{n} i^d = \text{deg } d+1 \text{ polynomial in } n. \]

\[S = \{a, b, c\}, \quad x = b \]

\[\{\} \]

\[\{a\} \]

\[\{c\} \]

\[\{a, c\} \]

\[\{a, b, c\} \]

\[\{a, c\} \]