Math 184, Winter 2022
Homework 4
Due: Friday, Feb. 11 by 11:59PM via Gradescope (late homework will not be accepted)

Explanations should be given for your solutions. Use complete sentences.

1. If \(\sum_{n \geq 0} a_n x^n = \frac{2 + 3x^2 - 2x^3}{(1 - 5x)^5} \), find a closed formula for \(a_n \).
2. Define a sequence by
 \[
 a_0 = 1, \quad a_1 = 3, \quad a_n = 8a_{n-1} - 16a_{n-2} + 3^n \text{ for } n \geq 2.
 \]
 (a) Express \(A(x) = \sum_{n \geq 0} a_n x^n \) as a rational function in \(x \).
 (b) Find a closed formula for \(a_n \).
3. Let \(S(n, k) \) be the Stirling number of the second kind. For each \(k \geq 1 \), define the ordinary generating function
 \[
 S_k(x) = \sum_{n \geq 0} S(n, k)x^n.
 \]
 (a) For \(k \geq 2 \), translate the identity from lecture
 \[
 S(n, k) = S(n - 1, k - 1) + k \cdot S(n - 1, k)
 \]
 into an identity involving \(S_k(x) \) and \(S_{k-1}(x) \).
 (b) Use the identity you found in (a) and induction on \(k \) to show that for all \(k \geq 1 \):
 \[
 S_k(x) = \frac{x^k}{(1 - x)(1 - 2x) \cdots (1 - kx)}.
 \]
4. You want to build a stack of blocks that is \(n \) feet high. You have 3 different kinds (unlimited of each): green blocks are 1 foot high, while red and blue blocks are 2 feet high. Blocks of the same color are considered indistinguishable. Let \(a_n \) be the number of ways to stack these blocks.
 Find a linear recurrence relation and initial conditions satisfied by \(a_n \).
5. You are designing a race that takes place over \(n \) blocks in a city. It will consist of 3 portions: running, followed by biking, and ending with another running portion. The end of a portion should match up with the end of a block. The first running portion needs to designate 3 blocks to have a first aid tent, and the biking portion needs to designate 4 blocks to have a first aid tent. The second running portion doesn’t need anything, but must have positive length. Use generating functions to find a formula for the number of ways to design a race under these conditions.
6. Let \(n \) be a positive integer and let \(a_n \) be the number of different ways to pay \(n \) dollars using only 1, 2, 5, 10, 20 dollar bills in which at most three 20 dollar bills are used. Express \(A(x) = \sum_{n \geq 0} a_n x^n \) as a rational function.