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Abstract. A parallel cut-cell algorithm is described to solve the free-boundary problem of the Grad-Shafranov equation.
The algorithm reformulates the free-boundary problem in an irregular bounded domain and its important aspects include a
searching algorithm for the magnetic axis and separatrix, a surface integral along the irregular boundary to determine the
boundary values, an approach to optimize the coil current based on a targeting plasma shape, Picard iterations with Aitken’s
acceleration for the resulting nonlinear problem, and a Cartesian grid embedded boundary method to handle the complex
geometry. The algorithm is implemented in parallel using a standard domain-decomposition approach and a good parallel
scaling is observed. Numerical results verify the accuracy and efficiency of the free-boundary Grad-Shafranov solver.
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1 Introduction Tokamak fusion relies on magnetic confinement of a plasma at a temperature of around
10 keV and a particle density of 1020/m3. The force balance is achieved by running a current inside the plasma
that produces a Lorentz force to counter the plasma pressure gradient. In an axisymmetric configuration like
a Tokamak, such an equilibrium is described by an elliptic equation for the poloidal magnetic flux, commonly
known as the Grad-Shafranov equation. In addition to the plasma current, electrical currents are also carried
in toroidal and poloidal magnetic field coils outside the plasma chamber to produce the confining magnetic
field. The coil current can be individually adjusted to accommodate a variety of plasma pressure and current
profiles in terms of plasma positioning and shaping.

In a fixed-boundary Grad-Shafranov solver, both the location of the computational boundary and the
boundary condition for the poloidal magnetic flux are known. Many numerical approaches, including spectral
elements [36, 24], hybridizable discontinuous Galerkin methods [45, 46], boundary integral approaches [42,
33], Hermite finite element [40, 25], and discontinuous Petrov Galerkin methods [43], have been extended to
solve the fixed-boundary problem. A common use of the fixed-boundary Grad-Shafranov solver is to set the
computational boundary to be the targeted last closed flux surface, so the plasma shaping is enforced by the
computational boundary on which the poloidal flux is a constant. The free-boundary Grad-Shafranov solver
aims to account for the coil currents as well as the plasma current on plasma positioning and shaping. It is
an essential tool for tokamak machine design and specific experimental discharge planning. Most tokamak
facilities around the world have in-house development and/or maintenance of free-boundary Grad-Shafranov
solvers. There have also been more recent interest that have a focus on the numerical aspects of the free-
boundary problem [23, 16, 22].

Computationally the free-boundary problem for the Grad-Shafranov equation is more challenging as
the plasma shape is not known a priori. The general solution strategy involves an iterative approach that
combines a fixed-boundary solver with a Green’s function representation for the contribution to the poloidal
magnetic flux on the computational boundary from the coil current external to the computational boundary.
The solution process is iterative by nature and Picard iteration is usually deployed to drive the convergence of
the poloidal magnetic flux on the computational boundary. The choice of this fiducial computational bound-
ary is constrained by two considerations: (1) the computational boundary shall enclose all chamber volume
where current-carrying plasma can access; and (2) all external currents should be outside the computational
boundary. Figure 1 shows the plasma region (colored by red) and the external currents (coils and solenoids).
The most natural place for such a fiducial computational boundary in a free-boundary Grad-Shafranov solver
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Fig. 1: ITER tokamak geometry. Left: ITER plasma region, external currents, and an exemplar cut-cell
mesh. Right: zoomed-in view. Note there are two types of external currents in ITER, i.e., six coils (point
source) and solenoids of five segments (line source). The geometry uses the actual dimensions from ITER.

is the vacuum vessel (the blue region in Figure 1) of which the poloidal field currents are all outside, or the
first wall (as indicated in Figure 1). Both first wall and vacuum vessel in modern tokamaks are strongly
shaped and give rise to an irregular computational domain, for which some variation of finite element/vol-
ume on an unstructured grid would be a ready choice for the underlying fixed-boundary Grad-Shafranov
solver. It is interesting to note that the essential ingredients of free-boundary Grad-Shafranov solvers, for
example, both the Green’s function formulation and iterative solution procedure, were first developed with
finite difference discretization over a structured grid in a regular domain [32, 30, 27, 28]. This is partly
due to the considerable freedom in the placement of the fiducial computational boundary despite the two
general constraints noted earlier, and partly due to the fact that many tokamaks have enough space between
current-carry plasmas and poloidal field coils for a rectangular computational boundary in-between them.
For some of the next generation tokamaks, it becomes more desirable to have the computational boundary
aligned with the better flux conserver, for example the vacuum vessel in ITER [2], or with the first wall, such
as the case with the SPARC tokamak [13] where the coils are very close to the plasma region. Also, note
that it is desirable to represent the field on a structured grid, which can significantly accelerate the particle
pusher in a particle-in-cell code. We find that for these applications, cut-cells (as indicated in Figure 1) can
be used in combination with finite difference in a structured grid to accommodate an irregular computational
domain for a free-boundary Grad-Shafranov solver.

Numerical solutions to elliptic problems with complex geometry, of which the Grad-Shafranov equilib-
rium is one example, have been considered by many approaches, including finite difference, finite volume,
and finite element using various meshing techniques. Among those numerical approaches, the cut-cell ap-
proach has a number of advantages, which include simplifying the grid generation process for complicated
geometries, enabling fast computation of the solution in parallel, and shifting the complexity of dealing with
complex geometries to the discretization approach. For more details, one can consult the review in [6].
The cut-cell approach, a.k.a. the Cartesian grid embedded boundary method, generates the mesh using a
background regular mesh and taking special care of cut-cells where the geometry intersects the grid. A
variety of work have addressed the successfully use of the cut-cell approach for solving elliptic equations with
finite volume [29, 48, 14, 15] and finite difference discretization [31, 19, 18, 35]. When discretized using the
flux-divergence form, finite volume methods have the advantage of keeping discretely conservative [34], which
is important in solving many problems such as heat and mass transfer. In this work, we employ the cut-cell
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approach with a conservative discretization to address the Grad-Shafranov equation in irregular domains.
The paper is organized as follows. Section 2 gives a brief description of the Grad-Shafranov equation and

the associated fixed-boundary and free-boundary problems. Section 3 discusses the cut-cell algorithm, which
is a Cartesian grid embedded boundary method, as well as a level-set approach to improve the efficiency of
the cut-cell algorithm. This is followed by a detailed description of a free-boundary Grad-Shafranov solver,
focusing on solving the free-boundary problem reformulated on a bounded domain in Section 4. In Section 5,
the parallel implementation is described and some details of the implementation of the free-boundary Grad-
Shafranov solver are presented. Finally, numerical tests are presented in Section 6, demonstrating the
accuracy and efficiency of the free-boundary Grad-Shafranov solver.

2 Grad-Shafranov equation In this section, the Grad-Shafranov equation, fixed-boundary problem,
and free-boundary problem are briefly introduced.

The Grad-Shafranov equation is derived from the MHD equilibrium equations given by

∇p = J×B,(2.1a)

µ0J = ∇×B,(2.1b)

∇ ·B = 0,(2.1c)

where J is the electric current, B is the magnetic field, µ0 is the magnetic permeability, and p is the plasma
pressure. Equation (2.1a) is the force balance equation. Equation (2.1b) is the Ampère’s law. Equation (2.1c)
is the divergence free constraint for the magnetic field. In the case of equilibrium, the above system (2.1)
holds in the entire region R3.

The Grad-Shafranov equation is usually written in a cylindrical coordinate system, denoted by (R,φ, Z),
for an axisymmetric plasma such as those in a tokamak. It is well known that the magnetic field in the
tokamak can be represented by

B = ∇φ×∇ψ + g(ψ)∇φ,

where ψ is commonly referred to as the poloidal flux function and g is a scalar function. The Grad-Shafranov
equation can be derived from Equation (2.1) as

(2.2) ∆∗ψ = µ0RJφ(R,ψ),

where the toroidal elliptic operator is defined as

∆∗ψ ≡ ∂2ψ

∂R2
− 1

R

∂ψ

∂R
+
∂2ψ

∂Z2
,

and the source term satisfies

µ0RJφ(R,ψ) = −
[
µ0R

2 d p(ψ)

dψ
+ g(ψ)

d g(ψ)

dψ

]
,

in which the plasma pressure, p, is a scalar function of ψ. Note that the toroidal elliptic operator can be
rewritten in a divergence form

∆∗ψ = R∇̃ ·
( 1

R
∇̃ψ
)
,

where ∇̃ ≡ [∂R, ∂Z ]T . This conservative form will be used when discretizing the problem with the cut-cell
approach.

Note that in a tokamak plasma, Jφ is carried by the magnetically confined plasma that resides inside the
magnetic separatrix in the formulation of both fixed- and free-boundary Grad-Shafranov equilibria, which
we shall explain next.
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2.1 Fixed-boundary problem The fixed-boundary problem refers to the situation when the boundary
condition for the equilibrium problem is known. Mathematically, the problem can be simply cast as a
boundary value problem given by

(2.3)
∆∗ψ = µ0RJφ(R,ψ), (R,Z) ∈ Ω.

ψ = ψD, (R,Z) ∈ ∂Ω.

where Ω is the physical domain with a Lipschitz boundary ∂Ω. In tokamaks, the physical domain Ω cor-
responds to the cross section of the device bounded by the first wall or more commonly, the last closed
flux surface beyond which Jφ vanishes. In this work, the fixed-boundary problem is also implemented as an
important tool to verify the numerical scheme.

2.2 Free-boundary problem The free-boundary problem refers to the situation when the plasma do-
main, denoted as P(ψ), is unknown. In tokamak, the plasma domain refers to the region inside the device
where the confinement actually happens, and thus P(ψ) is filled with hot plasmas. In a diverted tokamak
plasma, P(ψ) is the magnetic separatrix that demarcates the region of nested closed flux surfaces and the
scrape-off layer that has magnetic field lines intercept the divertor and first wall. For a limited plasma,
∂P(ψ) is the last closed flux surface beyond which the flux surfaces are intercepted by one or multiple lim-
iters that protrude from the chamber wall. It is important to note that P(ψ) is only meaningful when such
an MHD equilibrium exists. Such a constraint poses an extra challenge to numerical algorithms, since the
success of finding a numerical solution to the free-boundary problem implicitly indicates the existence of
such a domain, while a perturbed numerical solution may indicate an unrealistic plasma domain, resulting
into the divergence of algorithms. Therefore, it is necessary to design the numerical algorithm to be robust
with respect to such a perturbation.

Assuming an unbounded domain H := [0,∞)× (−∞,∞), the free boundary problem is given by

(2.4) ∆∗ψ =


µ0RJφ(R,ψ), (R,Z) ∈ P(ψ),

µ0RIi, (R,Z) = (Rci , Z
c
i ), i = 1, 2, · · · , nc.

0, otherwise.

with the asymptotic constraint

(2.5) ψ(0, Z) = 0 and lim
‖(R,Z)‖→∞

ψ(R,Z) = 0.

Here Ii is the external current density in the i-th poloidal field coil located at (Rci , Z
c
i ) ∈ H (see Figure 1 for

the locations of coils; solenoids can be handled similarly), and Jφ(R,ψ) is the prescribed toroidal component
of the plasma current density, generally a non-linear function of ψ, in the plasma domain P(ψ). Note that
the magnetic potential outside of the plasma region simply satisfies Poisson’s equation. We further introduce
the limiter domain L, satisfying P(ψ) ⊂ L ⊂ H. For this purpose, the limiter corresponds to the first wall in
the tokamak device surrounding the confinement region. The limiter domain is the entire region accessible
by the plasma, while the plasma domain P(ψ) is the region bounded by the last closed poloidal flux surface
inside the limiter bounded domain, see the discussion in [16] for instance.

The free-boundary problem is still underdetermined because (a) the source term Jφ (more specifically,
p and g) is typically provided as a function of the normalized ψ̄ ∈ [0, 1] from experiment (its normalization
shall be explained later); (b) the coil currents are not known and in fact they need to be optimized based
on the targeted shape of P(ψ), along with solving the free-boundary problem. Both of the uncertainties
introduce more challenges to solve the free-boundary problem. However, the uncertainties are closely related
to the concept of plasma shape control in tokamaks, which is a critical topic in tokamak discharge design as
well as in tokamak machine design.

To address (a), one can define a normalized flux function,

ψ̄ ≡ ψ − ψo
ψX − ψo

,

where ψX is the value of ψ at the plasma boundary, ∂P(ψ), and ψo is the value at the magnetic axis. In a
diverted tokamak plasma, a magnetic separatrix demarcates the topologically distinct closed and open flux
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regions. Plasmas also reside in the open flux region outside the separatrix, which is known as the scrape-off
layer, but it has relatively small pressure gradient and plasma current. For the purpose of defining a Grad-
Shafranov equilibrium, the plasma boundary is usually given by the separatrix or a closed flux surface in
the immediate vicinity of the separatrix. In this paper, we will set ψX to be the ψ value of the saddle point
that labels the magnetic separatrix. In a limited plasma, ψX labels the last closed flux surface beyond which
magnetic field lines interact a limiter protruded from camber wall. Since ψ is the poloidal flux, it must be a
monotonic function between ψo and ψX in a tokamak. The normalized flux ψ̄ is therefore between 0 and 1
for all ψ values inside P(ψ). Numerical techniques to efficiently locate those points will be discussed in the
following section. Note it is expected that the overall source term can have jumps on the right hand side
in (2.4). The existence of solutions to (2.4) under certain normalization and jump source terms has been
considered in some PDE theory studies, see [1] for instance.

In addressing (b), one usually imposes some constraints based on a targeted plasma shape Ptarget. The
targeted plasma shape is predetermined (up to some small variation) when the fusion device is designed.
The standard approach is to impose a few control points along the desired shape such that the computed
poloidal flux on those points is equal to the value on the separatrix, i.e.,

ψ(Rk, Zk) = ψX , k = 1, · · · , np,

where (Rk, Zk) is selected along the plasma boundary ∂Ptarget and ψX is determined numerically during
the normalization. It essentially means we minimize the distance between the separatrix from the numerical
solution and the targeted plasma shape. In the following section, we will discuss how to impose a proper
optimization problem to determine the coil current based on the above constraints.

3 Cut-cell algorithm A cut-cell algorithm for the free-boundary Grad-Shafranov problem is described
in this section. The basic algorithm closely follows the cut-cell algorithm proposed for Poisson’s equation
in [29]. We further introduce a level set function to improve the efficiency of the cut-cell algorithm and suit
the specific needs of the Grad-Shafranov equation.

Consider a uniform grid defined by

xi,j = (Ri, Zj) = (Rmin + i∆R, Zmin + j∆Z).

Let ψi,j be a grid-point approximation to ψ(xi,j) and rewrite Equation (2.2) as

∇̃ ·
( 1

R
∇̃ψ
)

= µ0Jφ(R,ψ)

Integrating it on the cell corresponding to the grid point (i, j) and applying the divergence theorem give

(3.1)
1

∆R∆Z

∫
∂C

( 1

R
∇̃ψ
)
· n ds =

1

∆R∆Z

∫
C

µ0Jφ(R,ψ) dRdZ, C ∈ Ω

where n denotes the unit outward normal direction vector of ∂C. Assuming C is a full cell, Equation (3.1)
can be discretized as

(3.2)
1

∆R∆Z

[
Fi,j+ 1

2
− Fi,j− 1

2
+ Fi+ 1

2 ,j
− Fi− 1

2 ,j

]
= µ0Jφ(Ri,j , ψi,j),

where Fr,s is the flux along the cell edge, given by

Fi,j+ 1
2

=
∆R

Ri,j+ 1
2

ψi,j+1 − ψi,j
∆Z

, Fi+ 1
2 ,j

=
∆Z

Ri+ 1
2 ,j

ψi+1,j − ψi,j
∆R

.

Note that (3.2) on the full cell is a standard second-order discrete operator.
If C is a cut-cell as shown in Figure 2, introducing a volume fraction Λi,j ∈ [0, 1], the resulting dis-

cretization of (3.1) can be written as

(3.3)
1

∆R∆ZΛi,j

[
Fi,j+ 1

2
− Fi,j− 1

2
+ Fi+ 1

2 ,j
− Fi− 1

2 ,j
− F fi,j

]
= µ0Jφ(Ri,j , ψi,j),
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ψi−1,j−1 ψi,j−1 ψi+1,j−1

ψi−1,j

ψi,j
ψi+1,j

ψi−1,j+1 ψi,j+1 ψi+1,j+1

Ri− 3
2

Ri− 1
2

Ri+ 1
2

Ri+ 3
2

Zj− 3
2

Zj− 1
2

Zj+ 1
2

Zj+ 3
2

Fi− 1
2
,j

Fi,j+ 1
2

Fi+ 1
2
,j

F fi,j

Fig. 2: Grid points and cut-cells. The red region is the computational domain.

where F fi,j is the flux along the boundary in the cut-cell. Note that Fr,s can be 0 if the corresponding edge
is not involved in the control volume.

We further introduce a level set function for efficiently distinguishing interior cell, exterior cell, and
cut-cell as well as determining whether a cell edge is a partial edge or a full edge. We first construct a level
set function ρ(R,Z) given by

ρ(R,Z) =

 +d, (R,Z) ∈ Ωc,
0, (R,Z) ∈ ∂Ω,
−d, (R,Z) ∈ Ω,

where d is the shortest distance from the point (R,Z) to the boundary ∂Ω. For convenience, let ρi+ 1
2 ,j+

1
2

denote ρ(xi+ 1
2 ,j+

1
2
), which is evaluated on the corners of each cell.

For the boundary described by an analytical expression, defining a level set value on a given point is
straightforward and therefore it is ignored. However, in a practical problem of a tokamak geometry, the
geometry is described by a set of points on the boundary, and thus it is less obvious to define the value of
level set function on a point. Here, we present how to define the level set function for a general irregular
domain Ω. Given a set of data {(r1, z1), (r2, z2), (r3, z3), · · · , (rn, zn)} which describes the boundary of the
irregular domain, we connect all the points as a polygon. Let

r̄ =

n∑
i=1

ri
n
, z̄ =

n∑
i=1

zi
n
, P̄ = (r̄, z̄), Pi = (ri, zi), i = 1, 2, · · · , n.

To compute d for a given point P = (r, z), we locate the boundary point Pi which has the shortest distance
to P . Then we determine d as the shorter distance between P and the two boundary segments connected
with Pi.

The next step is to decide whether P is in or out of domain if d 6= 0. We choose (r1, z1) as a starting

point and compute the rotated angle θi from
−−→
P̄P1 to

−−→
P̄Pi where θi ∈ (−π, π]. For any given point P = (r, z),

by checking the value of the angle θ rotating from
−−→
P̄P1 to

−−→̄
PP , we can get the interval [θi, θi+1] where θ

belongs. We denote Pintersect as the intersection point of line passing through P and P̄ and the line passing
through Pi and Pi+1. By comparing values of the distance between P̄ and Pintersect and the distance between
P̄ and P , we can determine whether the point P is in or out of domain. Some care is needed for the corner
point where the curve becomes not convex.

The precomputed level set function can be used to distinguish the cell category. For example, in Figure 2,
since ρ at each corner of the cell (i, j−1) is positive, we determine the cell (i, j−1) is an exterior cell. Similarly,
the cell (i, j+1) is an interior cell in the domain Ω, as ρ values at all the corners of the cell are negative. The
cell (i, j) is a cut-cell which contains part of the boundary as signs of ρ value at each corner are not the same.
The precomputed level set function can also be used to evaluate some geometry quantities associated with
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the cut-cells [38, 37]. For a partial edge, we can use the information of the level set function ρ at the two
endpoints to approximate its aperture. Suppose xf = (Ri+ 1

2
, Zf ) ∈ ∂Ω, assuming two points xi+ 1

2 ,j+
1
2
∈ Ω

and xi+ 1
2 ,j−

1
2
∈ Ωc border xf , we use the formula given in [12]

Zi+ 1
2 ,j+

1
2
− Zf =

ρi+ 1
2 ,j+

1
2
4Z

ρi+ 1
2 ,j+

1
2
− ρi+ 1

2 ,j−
1
2

,

Zf − Zi+ 1
2 ,j−

1
2

=
−ρi+ 1

2 ,j−
1
2
4Z

ρi+ 1
2 ,j+

1
2
− ρi+ 1

2 ,j−
1
2

,

to evaluate the distances between xf and two points xi+ 1
2 ,j+

1
2

and xi+ 1
2 ,j−

1
2
. Therefore, as an example, the

fraction of the right edge of the partial cell (i, j) in Figure 2, denoted as ai+ 1
2 ,j

, is given by

ai+ 1
2 ,j

=
ρi+ 1

2 ,j+
1
2

ρi+ 1
2 ,j+

1
2
− ρi− 1

2 ,j+
1
2

.

After calculating the apertures of each cell edge, the area of the front, denoted as Af , in the cut-cells
can be evaluated based on the relationship

Afi,jn
in
i,j = ∆R(ai+ 1

2 ,j
− ai− 1

2 ,j
)̂i+ ∆Z(ai,j+ 1

2
− ai,j− 1

2
)ĵ,

where nin is the inward-facing normal at the boundary in cut-cell. Note that for interior cells, since all
aperture values are 1, Af is also applicable to the interior cells as Af = 0.

Next, we discuss the discretization of Equation (3.3) on cut-cells. Fi,j+ 1
2
, Fi,j− 1

2
, Fi+ 1

2 ,j
, and Fi− 1

2 ,j
are

evaluated at the midpoint of cell edge covered by Ω. To evaluate flux on a partial edge, in order to keep a
second-order accurate approximation of the fluxes through cell edges, a linear interpolation between values
at the midpoints of full edges is used. For example, in Figure 2, the flux Fi+ 1

2 ,j
is evaluated at the midpoint

of the partial edge centered at xi+ 1
2 ,j

by linearly interpolating the flux at neighboring full edge centered at
xi+ 1

2 ,j+1, which is stated as the following

Fi+ 1
2 ,j

=
1

Ri+ 1
2 ,j

∆Z

[
1 + ai+ 1

2 ,j

2

(ψi+1,j − ψi,j)
∆R

+
1− ai+ 1

2 ,j

2

(ψi+1,j+1 − ψi,j+1)

∆R

]
.

The flux F f is evaluated at the midpoint of the boundary covered by the cut-cell. A three-point gradient
stencil is proposed in [29] to evaluate the normal component of the gradient of ψ and deployed in the current
work. The readers are referred to [29] for the details of the discretization and other techniques such as small
cell ignorance, which are also deployed here.

Finally, we discuss how to evaluate the source term of the Grad-Shafranov equation along with the
cut-cells. Note that µ0Jφ(Ri,j , ψi,j) should be evaluated at the centroid of the covered part in each cut-
cell. There are three types of cut-cells covered by the physical domain, triangle, trapezoid, and pentagon,
based on the piecewise-linear representation of the boundary in each cut-cell. With the geometry information
gathered, we can now turn the problem into computing the centroid of a convex and closed polygon. Suppose
a convex and closed polygon is defined by the ordered vertices {(r1, z1), (r2, z2), · · · , (rn+1, zn+1)} with
(rn+1, zn+1) = (r1, z1), the centroid of a convex polygon is computed as the following

Cpolygon =
1

3

(∑n
i=1(ri + ri+1)(rizi+1 − ri+1zi)∑n

i=1(rizi+1 − ri+1zi)
,

∑n
i=1(zi + zi+1)(rizi+1 − ri+1zi)∑n

i=1(rizi+1 − ri+1zi)

)
,

which will be used during the evaluation of the source term.

4 Free-boundary Grad-Shafranov solver A common approach to solve the free-boundary prob-
lem (2.4) is to reformulate the problem in a bounded computational domain Ω, see [26, 16, 28] for instance.
The requirement for Ω is that it should enclose the plasma domain P(ψ), but all the poloidal field coils,
including those for vertical stability control and divertor flux shaping, should be outside Ω. This is to ac-
commodate a Green’s function approach in calculating the coil current contribution to the Grad-Shafranov
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equilibrium through the poloidal flux ψ on ∂Ω. As the plasma domain P(ψ) is unknown a priori, the bounded
domain Ω, in practice, should contain at least the limiter bounded domain L. The precise choice for ∂Ω
constrains the numerical discretization for the Grad-Shafranov solver and motivates the cut-cell approach in
section 3.

In this section we will focus on the overall scheme for the free-boundary Grad-Shafranov solver. The
main algorithm is based on a Picard iteration

∆∗ψ = S(ψold), (R,Z) ∈ Ω,

ψ = D(ψold), (R,Z) ∈ ∂Ω,

where the operators S and D stand for the steps to determine the source term and boundary values from
the old solution ψold, respectively. The details of S and D will be given in the following discussion. Note
that unlike a fixed-boundary problem [43], Newton’s method is challenging to employ here, which will be
further discussed in Subsection 4.2.

The discussions will start from determining the source term from an old solution, i.e., the operator
S, which includes a search algorithm to locate ψo and ψX and a barycentric interpolation to interpolate
the given source profile. After the source term is determined, the approaches to determine the boundary
condition, i.e., the operator D, are discussed. Then a minimization problem is introduced to optimize the coil
current density based on the old solution. Finally, the full algorithm based on Picard iteration with Aitken’s
acceleration is summarized. Note that all the approaches in this section are applicable to a free-boundary
solver on a rectangular domain and some of them were actually initially proposed for the rectangular domain.

4.1 Evaluate the source term Evaluating the source term in the free-boundary problem is a multi-step
process. Since ψo and ψX are to be found from the solution, Grad-Shafranov equilibria are usually specified
by prescribing the source term as functions of ψ̄, which is always well-defined for any trial solution that has
varying ψo and ψX . The most straightforward case has known g(ψ̄) and p(ψ̄) profile, often supplemented by
integral constraints of specified plasma beta and plasma toroidal current. A practically useful alternative is
to specify the safety factor profile, q(ψ̄), for ψ̄ ∈ [0, 0.95].

Search for magnetic axis and saddle points. Since the trial solution of Grad-Shafranov equation gives ψ
on grid points, it is necessary to locate ψo and ψX first. As discussed in Section 2, ψo and ψX correspond to
the critical points where ‖∇ψ‖ = 0. Therefore, a simple minimization problem can be defined to find them,

(4.1) min
R,Z
‖∇ψ‖2.

To simplify the procedure, we use a two-step search algorithm to locate those points. We first evaluate
numerical gradient on all the grid points in order to identify several candidate points with small gradient
values. We choose 10 candidate points in our solver (here 10 points are chosen to locate all the saddle points
and magnetic axis and they often converge to one of those points. During the searching process, if the point
locates out of the computational domain, we delete the corresponding candidate). Newton’s method for
optimization is then used to solve Equation (4.1) using the candidate points as the initial guess. During
the optimization, the Newton’s method needs a continuous representation of ψ for any (R,Z), for which
a barycentric interpolation formula is used. Since the initial guesses are very good, the Newton’s method
typically only needs a few iterations to converge. After all the critical points are found, a further check is
performed to remove the duplicate critical points. Finally, ψo and ψX are determined based on the Hessian
of ψ. If the critical point has ∂rrψ ∂zzψ−(∂rzψ)2 > 0, it is a local minimum or maximum, which corresponds
to the magnetic axis (ψo), and if it has ∂rrψ ∂zzψ − (∂rzψ)2 < 0, it is a saddle point corresponding to the
separatrix (ψX). We comment that the above algorithm does not guarantee to find a global minimum for a
general solution. However, for a physical MHD equilibrium, the solution has a well-defined local minimum
problem as we shall see in the numerical section, and thus the above algorithm works well. In the case
when multiple local minimum/maximum points are found, we determine the solution is invalid. When that
happens in the free-boundary solver, it means the solver has diverged and the iteration will stop. In the case
when multiple saddle points are found, if the poloidal flux is convex inside the plasma region, we choose the
smallest (or largest if ψ is concave) value among all the saddle points. Note the algorithm described above
is a critical piece in the free-boundary solver and the subroutine has to be called routinely in the solver. As
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long as all the saddle points and magnetic axis are successfully located, this ensures an accurate evaluation of
the source term. Therefore, the number of candidate points (10 in our case) has no impact on the accuracy.

Given the plasma pressure profile and the toroidal field function profile as functions of the poloidal
flux on a set of known points, finding a proper interpolation method to describe the source term in the
Grad-Shafranov equation is very important. We note however, at least on equispaced case, polynomial
interpolation is not proper, no matter what form we use, due to Runge Phenomenon of high order. It is
reasonable to shift to rational interpolation [7, 8, 17, 47]. In our work, the barycentric rational interpolation
(a 4th-order rational interpolation) is employed to evaluate the plasma pressure and the toroidal field function
of the poloidal flux. This should allow highly accurate representation of the source term on grid points from
numerical data profiles of p(ψ̄) and g(ψ̄).

4.2 Determine ψb on ∂Ω The approach to determine the boundary condition value from the external
coil source is well known [26, 16, 28]. We give a brief discussion on two choices we have experimented. Note
that there is a known Green’s function for the toroidal elliptic operator ∆∗

G(R; R′) =
1

2π

√
RR′

k
[(2− k2)K(k)− 2E(k)],

where K(k) and E(k) are complete elliptic integrals of the first and second kind [44] and k is given by

k2 =
4RR′

(R+R′)2 + (Z − Z ′)2
.

A straightforward approach based on the Green’s third identity defines the boundary value as

(4.2) ψb(R
′, Z ′) = −

∫
Ω

µ0G(R,Z;R′, Z ′) J̃φ(R,Z) drdz −
nc∑
i=1

µ0G(Rci , Z
c
i ;R

′, Z ′)Ii,

where the source is given by J̃φ(R,Z) = Jφ(R,ψold). A more efficient approach that only computes a line
integral was proposed in [49]. It involves solving the elliptic problem with the same source term but a
homogenous boundary condition,

(4.3)
∆∗U = µ0R J̃φ(R,Z), (R,Z) ∈ Ω,

U = 0, (R,Z) ∈ ∂Ω.

Integrating the following identity

∇ · [U 1

R2
∇G(x; x′)]−∇ · [G(x; x′)

1

R2
∇U ] =

1

R2
U∆∗G(x; x′)− 1

R2
G(x; x′)∆∗U

over the computational domain Ω leads to the formulations for both boundary and interior points,

ψb(R
′, Z ′) = −

∫
∂Ω

dl

R
G(R,Z;R′, Z ′)

∂U

∂n
−

nc∑
i=1

µ0G(Rci , Z
c
i ;R

′, Z ′)Ii,(4.4)

ψinterior(R
′, Z ′) = −

∫
∂Ω

dl

R
G(R,Z;R′, Z ′)

∂U

∂n
−

nc∑
i=1

µ0G(Rci , Z
c
i ;R

′, Z ′)Ii + U(R′, Z ′).(4.5)

The second approach comes at the cost of inverting an elliptic operator, which only accounts for an extra
cost of O(N logN) thanks to the algebraic multigrid (AMG) preconditioner we used. Thus, we typically
choose the second approach in our solver for its efficiency. The second approach can also provide an initial
guess on the entire domain through (4.5) in the initialization stage, which is useful to provide a better initial
guess and speed up the convergence. One issue is that the Green’s function is singular when R′ = R, which
is more problematic in the line integration of the second approach. In the implementation, when R′ is too
close to R, we perturb R′ with a small distance of ε, which typically happens in one or two cells. It appears
to be sufficient to produce a smooth boundary condition.
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Note that when Newton’s method is applied to the free-boundary problem, (4.2) is more suitable to use
in its nonlinear residual. This, however, results into a globally coupled system due to the global operator
in (4.2). The Jacobian matrix assembly and its inversion are thus expensive. Moreover, AMG typically
cannot solve such a system involving non-local boundary conditions. All those facts contribute to the
challenge of employing Newton’s method here. To resolve the issue due to ψb, Ref. [21] proposed to extend
the computational domain to include all the external currents. This results into a much less banded system,
which is easier to assemble, and the success of Newton’s method but at the cost of solving on a domain much
larger than that in the current work.

4.3 Determine coil currents The last important piece in the algorithm is to determine the coil current
after a solution ψ is given. It is important to adjust the coil current based on the solution so that the
resulting plasma has the intended position and shape. We therefore optimize the current density through
a minimization problem based on some constraints imposed through the targeted plasma shape. Given nc
coils in the device and the desired plasma region Ptarget, we first select np points along its boundary ∂Ptarget

such that the points are evenly spaced and np > nc. Equation (4.5) provides a good approximation to ψ at
those points for any current density. The search algorithm on the other hand provides the current separatrix
value ψX . Minimizing the ψ values at those points with respect to ψX gives a minimization problem to find
the required coil currents,

(4.6)

Ic = arg min
Ic

{
γ

nc∑
k=1

Ik
2+

np∑
j=1

[
−
∫
∂Ω

dl

R
G(R,Z;R′j , Z

′
j)
∂U

∂n
−

nc∑
i=1

µ0G(Rci , Z
c
i ;R

′
j , Z

′
j)Ii + U(R′j , Z

′
j)− ψX

]2}
,

where Ic is a vector of size nc, consisting of the current values Ii, and the first term is a penalty term to
prevent the system from becoming ill-posed.

We found that the resulting current density is sensitive to the choice of γ. Part of the reason is that
the problem setup is based on practical units and the density values can be dramatically different from each
other in different coils. To address that, we found the Generalized Cross validation (GCV) approach in [20]
provides a good estimate of γ. To utilize GCV, the minimization problem (4.6) is written in the form of

Ic = arg min
Ic

(
γ ‖Ic‖2 +

1

np
‖X Ic − y‖2

)
,

where (4.6) indicates X is a matrix of size np×nc, and y is a vector of size np. The GVC approach suggests
the best γ should be computed as the minimizer of V (γ), given by

V (γ) =
1

np
‖(I −A(γ))y‖2

/[
1

np
Trace(I −A(γ))

]2

,

where A(γ) ≡ X(XTX + npγI)−1XT and I is an identity matrix of size np × np. In the initial experiment,
we implement a simple search algorithm to locate the optimized value of γ in each iteration for determining
the current. We found that the optimized γ falls within the range of [10−16, 10−13] for the practical ITER
equilibrium problem. Therefore, to avoid recalculating γ in each iteration, we fix γ = 10−15 in all of our
numerical examples, which is sufficient to provide less sensitive current values in the final solver. The current
values of the equilibrium are found in the range of [103, 107], and thus the regularization term is not negligible
with the given γ value.

4.4 Full algorithm With all the important pieces laid out in the previous sections, a full algorithm for
the free-boundary Grad-Shafranov equation will be described. In particular, two versions of the algorithm
will be discussed and an additional acceleration technique will be adopted to improve the robustness and
efficiency of the solver.

Three-loop algorithm. The first version of the algorithm would consist of three loops as the main
steps (Figure 3a): the most inner loop inverts the operator ∆∗ with a given boundary condition ψb; the
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(a) Three-loop algorithm
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(b) Two-loop algorithm

Fig. 3: Flowcharts for the free-boundary Grad-Shafranov solvers.

outer loop will adjust ψb until some convergence threshold is reached for some fixed current density {Ii} (see
Figure 1 for the current locations); then the most outer loop would adjust the coil currents such that the
magnetic separatrix will align with the control points. Although this idea appears to be plausible and in
fact it is the first algorithm we implemented, we found that this version of the algorithm is sensitive to a
small perturbation of the current, which could easily result into the failure of convergence of the two inner
loops. One of the fundamental issues in this approach is that there is an underlying assumption that for any
given current density, there exists a corresponding equilibrium, despite not satisfying the plasma domain
constraint. This, however, may not be true in general, and even if there exists such an equilibrium, its g and
p profiles could be very different from the profiles being used, and therefore the evaluated source term could
be very inaccurate, which could contribute to the divergence of the solver. Therefore, we do not pursue
further using this version of the algorithm in the current work.

Two-loop algorithm [30]. The second version of the algorithm consists of two loops as the main steps (Fig-
ure 3b): the inner loop still inverts the operator ∆∗ with a given boundary condition ψb while the outer
loop simultaneously updates ψb and {Ii} until some threshold with respect to ψb is reached. This version
turns out to be much more robust than the previous version, which is the main algorithm we used in the
free-boundary solver. Its robustness can be further improved by the acceleration techniques discussed below.

Aitken’s acceleration As previously discussed, the general procedure of the algorithm is a Picard iteration,
and its drawback is its slow convergence. A common approach to accelerate its convergence is through under-
relaxation, i.e.,

ψnew = (1− α)ψold + αψ̃new.

where α is the under-relaxation coefficient, typically between 0 and 1. The optimal value of α, however, is
problem dependent and for nonlinear problems it can vary during the iterations. The optimal relaxation
value can be approximated through the well known Aitken’s acceleration [41]. The version we adopted is
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given by

(4.7)

Dψn+1 = ψn − ψ̃n+1,

λn+1 = λn + (λn − 1)
(Dψn −Dψn+1)TDψn+1

‖Dψn −Dψn+1‖2
,

α = 1−max(min(λn+1, λmax), λmin),

ψn+1 = (1− α)ψn + αψ̃n+1,

where ψ̃n+1 is the solution directly solved from the Picard iteration, and λmin = 0 and λmax = 0.95 are
typically chosen. Ref. [9] suggests a preset value of λ = 0.3 in the first iteration, which is adopted in the
current work. Note that the technique fits into the current framework very well due to its simplicity and
computational expedience, and we use it to accelerate both the inner and outer loops. It is found that the
Aitken’s acceleration greatly improves the convergence of the full algorithm, which will be demonstrated in
the numerical section. We note however that there are other techniques such as Anderson’s acceleration and
nonlinear GMRES available for the Picard iteration. We plan to explore more acceleration techniques in
future work.

Finally, we summarize the full algorithm in Algorithm 4.1, which consists of two main loops, Aitken’s
accelerations and all the important steps described in the previous sections. Note that Step 2 corresponds
to all the steps related to the cut-cell algorithm, which will be addressed carefully in the next section. In
the nonlinear solver, we set the relative difference of the boundary values εout = 1e−4 as the convergence
criterion for the outer loop and the relative difference of the solution values εin = 1e−3 as the convergence
criterion for the inner loop. For Krylov linear solvers in PETSc, we set the relative tolerance of convergence
as 1e−5, and the absolute tolerance of convergence as 1e−8.

5 Parallel implementation Some aspects of the implementation of the free boundary Grad-Shafranov
solver with the cut-cell algorithm will be discussed in this section. The free boundary Grad-Shafranov solver
described in this work is implemented in parallel under the PETSc framework [3] using a standard domain
decomposition approach. All the vectors, arrays and matrices use the parallel distributed data structure
provided by PETSc and its communication between sub-domains is based on the message-passing interface
(MPI). All the linear and nonlinear solvers described in this work are implemented through PETSc and the
elliptic operator, ∆∗h, is preconditioned with algebraic multigrid preconditioners to improve its efficiency and
scalability.

The data structure is based on a Cartesian structured mesh (DMDA) provided by PETSc. The solution
is stored as grid points while its control volume is straightforwardly implied. This is a common approach
to adapt a finite volume algorithm in a finite difference code, see [10] for instance. To develop a cut-cell
algorithm based on DMDA, all the grid points are distinguished into three categories of active points, inactive
points and cut-cell points, based on its underlying control volume. If the control volume has the full cell size,
then it is an active point, otherwise it is either a cut-cell point (if the volume fraction is between 0 and 1)
or an inactive point (if the volume fraction is 0). Note that the approach distinguishing active and inactive
grid points is commonly used in overlapping grids, where some of the grid points are not involved in the
discretization, see [4, 5] for instance. Since the scheme is based on a five-point stencil, the discrete operator
on the active points is well-defined, and meanwhile a redundant equation is imposed on all the inactive
points when discretizing the elliptic operator on those points (simply solving aψinactive = 0 where a is a large
constant). The main difference between the free-boundary solvers on a standard Cartesian mesh and on cut
cells thus lies in the additional treatment related to the cut-cell points. Involving a redundant equation into
the discretization leads to an operator of the same size as the standard operator on a Cartesian grid. All the
approaches described above guarantee many PETSc functions for DMDA can be directly used in the cut-cell
algorithm, which eases some data structure allocations and implementations of linear or nonlinear operators.
It also provides a rather straightforward path for the future improvement through geometry multigrid.

To further ease the treatment related to cut-cells, several 2D arrays are precomputed to store the
geometry information and the information related to level set function. For example, volume fractions and
area fractions of each cell, apertures of each edge and midpoint values of each cut edge and interpolation
points are precomputed before performing the Picard iterations, which greatly improves the solver efficiency.
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Algorithm 4.1 Free-boundary Grad-Shafranov solver

1: Choose an irregular domain Ω to reformulate the free boundary problem (2.4) and (2.5)
2: Construct a level set function φ̃ and prepare a cut-cell mesh
3: Given an initial equilibrium ψ0, solve Equation (4.3) for U(R,Z)
4: Calculate coil currents I0i according to Equation (4.6)
5: Determine boundary value ψ0

b according to Equation (4.4)

6: //Outer loop

7: for m = 0 to mmax do

8: //Inner loop

9: for n = 0 to nmax do
10: Search ψo and ψX in ψn

11: Solve ∆∗hψ̃
n+1 = S(ψn) with the boundary condition ψmb

12: if n=0 then
13: λ0

in=0.3
14: αin = 1− λ0

in

15: else
16: λn+1

in = λnin + (λnin − 1) (Dψn−Dψn+1)TDψn+1

‖Dψn−Dψn+1‖2 with Dψn+1 = ψn − ψ̃n+1

17: αin = 1−max(min(λn+1
in , λmax), λmin)

18: end if
19: ψn+1 = (1− αin)ψn + αinψ̃

n+1

20: Check convergence by ∆ψ =
‖ψn+1−ψn‖∞,Ω

‖ψ0‖∞,Ω

21: if (∆ψ < εin) then
22: break
23: end if
24: end for

25: Given ψn+1, solve Equation (4.3) for U(R,Z)
26: Update coil currents Imi according to Equation (4.6)
27: Determine boundary value ψ̃mb according to Equation (4.4)
28: if m=0 then
29: λ0

out=0.3
30: αout = 1− λ0

out

31: else

32: λm+1
out = λmout + (λmout − 1)

(Dψm
b −Dψ

m+1
b

)TDψm+1
b

‖Dψm
b
−Dψm+1

b
‖2

with Dψm+1
b = ψmb − ψ̃m+1

b

33: αout = 1−max(min(λm+1
out , λmax), λmin)

34: end if
35: ψm+1

b = (1− αout)ψmb + αoutψ̃
m+1
b

36: Check convergence by ∆ψb =
‖ψm+1

b
−ψm

b ‖∞,∂Ω

‖ψ0
b
‖∞,∂Ω

37: if ∆ψb < εout then
38: break
39: end if
40: end for

There are some details associated with the main algorithm worthwhile to mention. The search algorithm
in parallel needs first identify candidate points through performing search on the sub-domain and then gather
all the candidate points into the root processor to finalize the locations of ψx and ψo. Some MPI collective
communications are necessary to successfully locate those points. Another important aspect is to perform
an efficient line integral along the boundary. The efficiency of computing the line integral can be improved
by precomputing certain weights associated with the Green’s function and the quadratures. For instance,
the terms changing in Equation (4.4) in each iteration are ∂U

∂n and Ii, and we therefore precompute the

weights associated with dl
RG(R,Z;R′, Z ′) and µ0G(Rci , Z

c
i ;R

′, Z ′) and store them in two distributed dense
matrices. Parallel matrix-vector operations are called to evaluate the boundary values ψb efficiently during
the iterations.

Finally, to verify the performance of the full free-boundary Grad-Shafranov solver, a strong scaling



14 SHUANG LIU, QI TANG, AND XIAN-ZHU TANG

100 101

102

103

# of CPUs

T
im

e

Free-boundary solver
Linear scaling

Fig. 4: Strong scaling result of the free-boundary cut-cell Grad-Shafranov solver. The computational times
of one and up to 32 CPUs are presented. A good parallel scaling up to 32 processors is observed. A cut-cell
mesh based on a Cartesian mesh of 512 × 1024 is used in the strong scaling study. Details of the problem
setup can be found in the last free-boundary example in the numerical section.

study is performed. In the study, a cut-cell mesh based on a Cartesian mesh of size 512 × 1024 is used.
We verify the performance of the solver using different numbers of processors up to 32. Figure 4 shows the
strong scaling result and a good scaling is observed. The corresponding parallel efficiency for 2, 4, 8, 16,
and 32 processors are 83.9%, 71.1%, 52.9%, 44.9%, and 33.2%. Note that since the algorithm is based on
Picard iteration fundamentally, we do not expect such an algorithm would be scalable when the number
of processors increase to some large number. Nevertheless, the performance of the algorithm is decent and
32 processors are likely sufficient for a 2D steady-state problem. In the scaling study, the full algorithm
described in Algorithm 4.1 is used and all the elliptic operators use an algebraic multigrid preconditioner
provided by PETSc. Details of the problem setup can be found in the free-boundary cut-cell example in the
numerical section later.

6 Numerical results The performances of the cut-cell algorithm, the free-boundary Grad-Shafranov
solver and Aitken’s acceleration are demonstrated through several numerical tests. We start with the accu-
racy test of the cut-cell solver through two examples: Grad-Shafranov equation with a linear source term
and Grad-Shafranov equation with a nonlinear source term. Numerical examples of the free-boundary prob-
lem in a rectangular domain and in the limiter-bounded domain L are presented separately to show the
performance of the free-boundary Grad-Shafranov solver and cut-cell algorithm. Finally, we compare the
performance of Picard iteration with different under-relaxation coefficients and Aitken’s acceleration.

6.1 Convergence study for the fixed-boundary cut-cell solver In this section, two numerical
examples are presented to demonstrate the accuracy of the cut-cell algorithm. Here we use two fixed-
boundary problems with cut-cells to verify its accuracy. These cases are chosen for the known analytical
solutions. Note that compared with a free-boundary solver, the fixed-boundary solver do not have the surface
integral and the barycentric interpolation, both of which can be verified easily through standalone tests.

In the first example, we consider the linear Soloviev profiles from [11]. This test is used to compare the
accuracy of the solution ψ solved by our fixed boundary Grad-Shafranov solver and the analytical solution.
The second example considers a manufactured solution with a nonlinear source. We use it to demonstrate
the accuracy of our scheme in nonlinear problems.

6.1.1 Linear case Consider a linear Grad-Shafranov equation of

∆∗ψ = − 1

R

∂ψ

∂R
+
∂2ψ

∂R2
+
∂2ψ

∂Z2
= R2,
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Fig. 5: Linear accuracy test. Left: cut-cell mesh on a base mesh of 121× 161 (only active points are shown)
and geometry. Right: corresponding numerical solution ψ.

which has an exact solution in the form of

ψ(R,Z) =
R4

8
+D1 +D2R

2 +D3(R4 − 4R2Z2),

where the parameters D1, D2, and D3 are determined so that the contour φ = 0 represents a reasonable
plasma cross section.

Table 1: L1-errors, L2-errors, L∞-errors and corresponding convergence rates of ψ in the linear accuracy
test using the cut-cell mesh. The grid points in the meshes represent all the grid points in a Cartesian grid
including both active and inactive points.

Nx ×Ny L1-Error Order L2-Error Order L∞-Error Order

31×41 2.310e-01 1.276e-02 1.519e-03
61×81 5.925e-02 1.96 3.361e-03 1.92 5.513e-04 1.46

121×161 1.467e-02 2.01 8.327e-04 2.01 9.177e-05 2.59
241×321 3.774e-03 1.96 2.155e-04 1.95 2.229e-05 2.04
481×641 1.086e-03 1.80 6.198e-05 1.80 5.422e-06 2.04

Ref. [42] introduced three characteristic quantities describing the shape of the cross section in a magnetic
confinement device: the inverse aspect ratio ε, the elongation κ, and the triangularity δ. We adopt the same
manufactured solutions in the accuracy test. The parameters are determined by the following linear system 1 (1 + ε)2 (1 + ε)4

1 (1− ε)2 (1− ε)4

1 (1− δε)2 (1− δε)4 − 4(1− δε)2κ2ε2

D1

D2

D3

 = −1

8

 (1 + ε)4

(1− ε)4

(1− δε)4

 ,
of which the equations correspond to the boundary conditions of ψ(1 + ε, 0) = 0, ψ(1 − ε, 0) = 0, and
ψ(1 − δε, κε) = 0, respectively. The test is taken with the ITER-like configuration of ε = 0.32, κ = 1.7,
δ = 0.33. In particular, the computational boundaries are described by Chebyshev nodes along the R
direction and Z coordinates are then determined by solving ψ = 0. The cut-cell meshes are then accordingly
generated.
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Numerical errors and corresponding convergence rates are reported in Table 1. The numerical solution
and an example cut-cell mesh are presented in Figure 5. We observed a second-order accuracy for all the
error norms.

6.1.2 Nonlinear case We consider the same ITER geometry as for the linear test in the previous section
but with a nonlinear source term. A manufactured solution

ψ(R,Z) = sin(KR(R+R0)) cos(KZZ),

can be constructed for the nonlinear Grad-Shafranov equation of

∆∗ψ = −F (R,Z, ψ),

where the source term F (R,Z, ψ) is given by

F (R,Z, ψ) = (K2
R +K2

Z)ψ +
KR

R
cos(KR(R+R0)) cos(KZZ) +R

[
sin2(KR(R+R0)) cos2(KZZ)

− ψ2 + exp(− sin(KR(R+R0)) cos(KZZ))− exp(−ψ)
]
,

and the coefficients are KR = 1.15π, KZ = 1.15, and R0 = −0.5.

Table 2: L1-errors, L2-errors, L∞-errors and corresponding convergence rates of ψ in the nonlinear accuracy
test using cut-cell algorithm. The grid points in the meshes represent all the grid points in a Cartesian grid
including both active and inactive points.

Nx ×Ny L1-Error Order L2-Error Order L∞-Error Order

31×41 1.486e+00 8.493e-02 1.359e-02
61×81 4.476e-01 1.73 2.584e-02 1.72 4.480e-03 1.60

121×161 1.340e-01 1.74 7.688e-03 1.75 8.288e-04 2.43
241×321 3.371e-02 1.99 1.912e-03 2.01 2.154e-04 1.94
481×641 7.825e-03 2.11 4.429e-04 2.11 4.148e-05 2.38

A nonlinear solver (Picard iteration accelerated with Aitken’s) is used in this example. Numerical errors
and corresponding convergence rates are reported in Table 2. The solution and an example cut-cell mesh
are presented in Figure 6. Again, as expected, we observe a second-order accuracy of space discretization.

6.2 Examples of the free-boundary solver In this section, numerical solutions from the free-boundary
Grad-Shafranov solver are presented. One particular interest will be the performance of the solver in keep-
ing the targeted shape of P(ψ), i.e., the shape control. Numerical tests are scattered into the following two
examples, a rectangular domain and a limiter-bounded domain.

The problem is based on prescribed numerical p(ψ̄) and g(ψ̄) profiles for a proposed ITER discharge
at 15 MA toroidal plasma current [39], which carries the ITER reference number “ABT4ZL”. In addition
to the numerical p(ψ̄) and g(ψ̄) profiles, there is also the numerical solution for ψ(R,Z) from a different
Grad-Shafranov solver [39], which we will use for the initial data. The coil currents corresponding to the
equilibrium were not given and they will be found by our free-boundary Grad-Shafranov solver in this test.
The ITER poloidal field coil locations, however, are fixed and given in Table 3. We will solve or more
accurately, resolve this free-boundary Grad-Shafranov equilibrium problem in two ways. One is based on a
Cartesian mesh over a rectangular domain and the other one is based on a cut-cell mesh that has the first
wall as the computational boundary.

6.2.1 Rectangular domain The first example uses a rectangular computational domain that contains
the limiter regions but excludes the current regions. This is a conventional approach implemented in many
practical Grad-Shafranov solvers. We present this case to verify our implementation of the full solver as well
as to compare the results with the solutions from the cut-cell solver, which will be discussed in the next
section.
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Fig. 6: Nonlinear accuracy test. Left: cut-cell mesh on a base mesh of 121 × 161 (only active points are
shown) and geometry. Right: corresponding numerical solution ψ.

Table 3: Coil Information for the free-boundary problem. The data is based on the ITER configurations.
The total current in the coil is set to current timing the value of turns. The type “coil” refers to a point
source. The type “solenoid” refers to a coil with a positive length for which the range of length is also given.
The units is meter.

Coils Type R Z Turns

PF1 Coil 3.9431 7.5741 248.6
PF2 Coil 8.2851 6.5398 115.2
PF3 Coil 11.9919 3.2752 185.9
PF4 Coil 11.9630 -2.2336 169.9
PF5 Coil 8.3908 -6.7269 216.8
PF6 Coil 4.3340 -7.4665 459.4

Coils Type R (Zmin, Zmax) Turns

CS1 Solenoid 1.696 (-5.415, -3.6067) 553
CS2 Solenoid 1.696 (-3.6067, -1.7983) 553
CS3 Solenoid 1.696 (-1.7983, 1.8183) 1106
CS4 Solenoid 1.696 (1.8183, 3.6267) 553
CS5 Solenoid 1.696 (3.6267, 5.435) 553

The computational domain is Ω = {(R,Z) ∈ H | 3.55 ≤ R ≤ 8.88,−3.84 ≤ Z ≤ 4.92} and the grid used
in this case is a Cartesian grid of size 196×375. The proposed free-boundary Grad-Shafranov solver is used to
solve the problem on the rectangular domain Ω. The converged magnetic flux from the free-boundary Grad-
Shafranov solver and magnetic flux from the equilibrium data file are presented in Figure 8. Black dots in
Figure 8a represent the shape control points on targeted magnetic separatrix of the fixed plasma shape from
the initial data. Twenty one points are selected along ψ = ψX in the initial data as the control points. We can
observe from Figure 8a that the converged magnetic flux from free-boundary Grad-Shafranov solver keeps
the predetermined plasma shape very well. The solution is comparable to the initial data and its difference
is presented in Figure 8c. Note that the largest difference is around the corner points. This is expected
since the computational domain is very close to two current coils at (8.3908,−6.7269) and (8.2851, 6.5398).
The magnetic axes ψo are presented in Figure 8a and Figure 8b as red cross points, which are clearly local
minima in the solutions. There are two candidate of ψX points shown in Figure 8a and Figure 8b, using
blue cross points. It is clear that those are saddle points of the solutions. Based on the criteria we discussed
in the algorithm section, the point in the bottom portion of the domain is chosen as ψX . It is seen that the
selected ψX point in the solution is very close to the control points. Both ψo and ψX points are found to
change slightly throughout the iterations.

Another interesting question to investigate is whether the converged magnetic flux from the free-
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(a) Pressure (p) profile of normalized ψ (b) Poloidal current (g) profile of normalized ψ

Fig. 7: Numerical p(ψ̄) and g(ψ̄) profiles from the equilibrium data generated in Ref. [39].

(a) Converged ψ (b) ψ0 from initial data (c) ψ − ψ0

Fig. 8: Rectangular geometry: (a) converged magnetic flux from free-boundary Grad-Shafranov solver, (b)
magnetic flux from initial equilibrium data file, (c) the difference between magnetic flux from free-boundary
Grad-Shafranov solver and initial equilibrium data.

boundary Grad-Shafranov solver can keep the predetermined plasma shape if we modify the source term of
the Grad-Shafranov equation. This is a test to verify the effectiveness of the shape control techniques we
implemented in the solver. As an example, we drop the pressure to 80% of the original pressure profile and
solve the same free-boundary problem using the solver. Its results are presented in Figure 9. The converged
magnetic flux from the free-boundary Grad-Shafranov solver and magnetic flux from the equilibrium data
file are also compared in Figure 9. It indicates that the converged magnetic flux still keeps the predetermined
plasma shape. It also suggests that the free-boundary Grad-Shafranov solver performs well in keeping the
targeted shape of P(ψ) in the rectangular domain.

6.2.2 Limiter-bounded domain L In the second example, by combining cut-cell algorithm, we directly
choose the irregular limiter-bounded domain L as Ω to solve the free boundary problem. The domain L
consists of a bunch of straight lines due to the design of ITER, which will be used to construct the cut-cell
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(a) Converged ψ (b) ψ0 from initial data (c) ψ − ψ0

Fig. 9: Rectangular geometry: (a) converged magnetic flux from free-boundary Grad-Shafranov solver, (b)
magnetic flux from initial equilibrium data file, (c) the difference between magnetic flux from free-boundary
Grad-Shafranov solver and the initial data. The pressure is dropped to 80% of the given profile.

mesh. This example is used to verify the full algorithm we proposed in this work.
We create a Cartesian mesh of size 216 × 493 in the domain {(R,Z) ∈ H | 3.0 ≤ R ≤ 8.88,−5.53 ≤

Z ≤ 6.0}, which contains the irregular limiter-bounded domain L. The cut-cell mesh is created accordingly,
and the total number of active cell is 44668, which includes 1266 cut-cells. The proposed free-boundary
Grad-Shafranov solver combining the cut-cell algorithm is used to solve the problem on the limiter-bounded
domain L. The converged magnetic flux from the solver and magnetic flux from the equilibrium data file are
presented in Figure 10. Black dots in Figure 10a represent the shape control points on targeted magnetic
separatrix of the fixed plasma shape from the initial data. The same 21 points in subsection 6.2.1 are
selected along ψ = ψX in the initial data as the control points. We can observe from Figure 10a that the
converged magnetic flux from free-boundary Grad-Shafranov solver keeps the predetermined plasma shape
very well. The solution is comparable to the initial data and its difference is presented in Figure 10c. Note
that the largest difference is around the bottom corner, which is due to the non-smooth boundary in the
computational domain. The magnetic axes ψo are presented in Figure 10a and Figure 10b as red cross points,
which are clearly local minima in the solutions. Different from the example in the rectangular domain, only
one ψX point is shown in Figure 10a and Figure 10b, using a green cross point. This is caused by the choice
of the limiter-bounded domain L, as the initial plasma domain is bounded by the last closed poloidal flux
line inside the limiter-bounded domain. It is clear that the ψX point is the saddle point of the solutions.
Both ψo and ψX are found to change slightly throughout the iterations.

In Figure 10d, the converged magnetic fluxes of the free-boundary problem on the regular domain and
the limiter-bounded domain are compared to each other. It is found that the difference is small, which
indicates both solvers produce the same equilibrium. When solving on the rectangular domain, the outer
iteration is 12, and the average inner iteration is 32, while on the limiter-bounded domain the outer iteration
is 11, and the average inner iteration is 9.

In this example, we again investigate whether the converged magnetic flux from the solver can keep the
predetermined plasma shape in the limiter-bounded domain L when we modify the source term of the Grad-
Shafranov equation. Similarly, we drop the pressure to 80% of the original pressure profile and solve the
same free-boundary problem using the solver combining with the cut-cell algorithm. Its results are presented
in Figure 11. The converged magnetic flux from the free-boundary Grad-Shafranov solver and the magnetic
flux from the equilibrium data file are also presented in Figure 11. It indicates that the converged magnetic
flux still keeps the predetermined plasma shape. It also suggests that the free-boundary Grad-Shafranov
solver performs well in keeping the targeted shape of P(ψ) in the limiter-bounded domain L.
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(a) Converged ψcut−cell (b) ψ0 from initial data (c) ψcut−cell − ψ0 (d) ψbox − ψcut−cell

Fig. 10: Limiter geometry: (a) converged magnetic flux from the free-boundary Grad-Shafranov solver with
the cut-cell algorithm, (b) magnetic flux from the initial equilibrium data file, (c) difference between magnetic
flux from the free-boundary Grad-Shafranov solver with the cut-cell algorithm and the initial equilibrium
data file, (d) difference between the solutions of the rectangular domain and the limiter-bounded domain.

(a) Converged ψcut−cell (b) ψ0 from initial data (c) ψcut−cell − ψ0

Fig. 11: Limiter geometry: (a) converged magnetic flux from the free-boundary Grad-Shafranov solver with
the cut-cell algorithm, (b) magnetic flux from the initial equilibrium data file, (c) difference between magnetic
flux from the free-boundary Grad-Shafranov solver with the cut-cell algorithm and the initial equilibrium
data file.The pressure is dropped to 80% of the given profile.

6.3 Performance of Aitken’s acceleration In the final examples, we focus on the demonstration of
the efficiency of Aitken’s acceleration. Results from Aitken’s acceleration are compared to results from Picard
iteration with fixed under-relaxation coefficients α in the free-boundary Grad-Shafranov solver. As presented
in Algorithm 4.1, both inner and outer loops use under-relaxations, either through Aitken’s acceleration or
a fixed under-relaxed parameter. We consider both the rectangular geometry and the geometry with the
limiter-bounded domain in the previous test. Aitken’s acceleration is found to converge much faster than
Picard iterations with fixed under-relaxation coefficients in the both inner and outer loops.

6.3.1 Rectangular domain In this example, we test the efficiency of Aitken’s acceleration when com-
pared with Picard iteration with fixed under-relaxation coefficients α on the rectangular domain with mesh
size of 196× 375. Here we set the range [λmin, λmax] = [0, 0.95].

Figure 12 shows the convergence histories of Picard iteration with different under-relaxation coefficients
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Fig. 12: Comparison of convergence history of the free-boundary solver algorithm with Aitken’s acceleration
and Picard iterations. Left: convergence history of the outer loop. Right: convergence history of the first
inner loop. The convergence histories of two fixed under-relaxation parameter, α = 0.3 and α = 0.4, are also
presented. The problem is solved on a rectangular computational domain with mesh size of 196× 375. Note
that Aitken’s acceleration significantly improve the convergence of Picard iterations with a predetermined
under-relaxation.

α and Aitken’s acceleration. The results of two parameters, α = 0.3 and α = 0.4, are presented for
comparison. The left figure shows that the free-boundary Grad-Shafranov solver algorithm with under-
relaxed Picard iterations need to take 16 or 20 outer loops to satisfy the desired convergent threshold for
the boundary value ψb, while Aitken’s acceleration only needs 11 iterations. On the other hand, the right
figure shows the convergence histories in the first inner loop. To have a fair comparison, the first inner loop
is chosen since all the first inner loops use the same initial guess. It is found that the Aitken’s acceleration
only needs 2 iterations to satisfy the the desired convergence tolerance for the magnetic flux ψ, while the
under-relaxed Picard iterations need to take 2 to 3 times more iterations. Therefore, the performance of
Aitken’s acceleration in the inner loops is also better than that of Picard iterations.

6.3.2 Limiter-bounded domain L The final example focuses on the efficiency of Aitken’s acceleration
on the limiter-bounded domain L with a cut-cell mesh of size 216× 493 (base Cartesian mesh). Here we set
the range [λmin, λmax] = [0, 0.7].

Figure 13 shows the convergence histories of Picard iterations with different under-relaxation coefficients
α and Aitken’s acceleration. The results of two parameters, α = 0.7 and α = 0.5 are presented for comparison.
We set the the maximum iteration to be 40 for the outer loop. The under-relaxed Picard iterations fail to
reach the desired tolerance before reaching the maximum iteration, while the Aitken’s acceleration only
needs 6 iterations to reach the same tolerance. The left figure presents the maximum relative difference of
ψb in the first 20 iterations. The right figure shows the first inner loop, for which the Aitken’s acceleration
only needs 6 iterations, while the under-relaxed Picard iterations take 12 or 21 iterations.

In conclusion, we find that the Aitken’s acceleration could significantly accelerate Picard iterations in
both inner and outer loops. Other acceleration techniques may also show similar performance, which will be
studied in the future work.

7 Conclusions This work discusses the development of a parallel free-boundary Grad-Shafranov solver.
As traditionally done, the free-boundary problem is reformulated in a bounded computational domain that
encloses all current-carrying plasmas. The coil current contribution to the plasma equilibrium enters through
the value of the magnetic flux that is evaluated by Green’s function methods. The main focus here is to solve
the free boundary problem of the nonlinear Grad-Shafranov equation in an irregular computational domain
by combining the cut-cell algorithm with a regular mesh. A key application of free-bounday Grad-Shafranov
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Fig. 13: Comparison of convergence history of the free-boundary solver algorithm with Aitken’s acceleration
and Picard iterations. Left: convergence history of the outer loop. Right: convergence history of the first
inner loop. The convergence histories of two fixed under-relaxation parameter, α = 0.7 and α = 0.5, are also
presented. The problem is solved on the limiter-bounded domain L with a cut-cell mesh of size 216 × 493
(base Cartesian mesh). Note that Aitken’s acceleration significantly improve the convergence of Picard
iterations with a predetermined under-relaxation.

solvers is to find the required coil currents for precision plasma positioning and shaping. This is cast into
a proper optimization problem that determines the coil current with targeted plasma shape and for which
a cut-cell algorithm is described. To accelerate Picard iterations commonly used in previous works, we also
propose an improvement based on Aitken’s acceleration. This is applied to both the inner and outer loops
of the algorithm. The proposed algorithm is implemented in parallel under the PETSc framework. Strong
scaling study of the free-boundary Grad-Shafranov solver with cut-cell algorithm demonstrates its parallel
performance.

A series of numerical tests is presented to demonstrate the accuracy of the cut-cell algorithm and the effi-
ciency of the free-boundary Grad-Shafranov solver. In particular, a refinement study based on manufactured
solutions confirms a second-order accuracy of the cut-cell implementation and tokamak examples, including
that of ITER, are presented to verify the effectiveness and efficiency fo the full algorithm. Moreover, numer-
ical results demonstrate that the converged magnetic flux keeps the predetermined plasma domain shape
even with different pressure profile in the source term of the Grad-Shafranov equation both in the rectan-
gular domain and the irregular limiter-bounded domain. It is also found that the Aitken’s acceleration we
employed in the algorithm is more efficient than Picard iteration with fixed under-relaxation. In conclusion,
numerical results shows a good performance of the free-boundary cut-cell Grad-Shafranov solver.
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