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In this paper, we consider the following higher order Hardy–Hénon type equations 
in Rn:

(−Δ)mu(x) = |x|aup(x), x ∈ Rn (1)

in subcritical cases with a > 0, and in particular, we focus on the non-existence of 
positive solutions.
First, under some very mild growth conditions, we show that problem (1) is 
equivalent to the integral equation

u(x) =
∫
Rn

G(x, y)|y|aup(y)dy (2)

where G(x, y) is the Green’s function associated with (−Δ)m in Rn.
Then by using the method of moving planes in integral forms, we prove that there 
is no positive solution for integral equation (2) in subcritical cases n

n−2m < p <
n+2m+a
n−2m . For the non-existence of positive radially symmetric solutions, we can 

extend the range to subcritical cases 1 < p < n+2m+2a
n−2m . This partially solves an 

open conjecture posed by Quoc Hung Phan and Philippe Souplet [21].
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This article is devoted to the study of positive solutions of the following elliptic equation

(−Δ)mu(x) = |x|aup(x), x ∈ Rn, (3)

where a > 0, 2m < n, and 1 < p < τ := n+2m+2a
n−2m .
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This equation is related to the weighted Hardy–Littlewood inequality which has been widely studied in [1], 
[7], [10], [17], [21]. Recently, the Hardy–Hénon equation has been researched extensively, for example [4], [5], 
[6], [8], [9], [24]. Our primary interest is in the Liouville property, i.e. the non-existence of positive solutions 
in Rn. It is well-known that this kind of Liouville theorem plays an important role in a priori estimates 
of solutions for the corresponding family of equations either on domains or on Riemannian manifolds with 
boundaries. Because of sigficant role the Liouville type theorem plays, there have already existed some 
Liouville type results for Hardy–Hénon equation in [18], [19], [25], [26]. However, the similar results for the 
high order equation are relatively rare, so in this paper we will try to achieve a Liouville type theorem for 
a type of high order equation.

To prove such a non-existence result, an effective approach is to consider the corresponding integral 
equation

u(x) =
∫
Rn

G(x, y)|y|aup(y)dy, (4)

where

G(x, y) = Cn

|x− y|n−2m

is the Green’s function associated with (−Δ)m in Rn.
Whether or not, the results on integral equations can be applied to PDEs, depends on whether one can 

prove the equivalence between the two. We say that (3) and (4) are equivalent, if u is a solution of (3), then 
it is also a solution of (4), and vice versa.

We first establish the equivalence between PDE (3) and integral equation (4).

Theorem 1. If u is a classical positive solution of (3), then u satisfies integral equation (4). If u ∈ C2m(Rn)
is a solution of (4), then u satisfies (3).

The proof of Theorem 1 is based on the following super poly-harmonic property of solutions.

Theorem 2. If u is a positive solution of

(−Δ)mu(x) = |x|aup(x), x ∈ Rn,

then

(−Δ)iu(x) > 0, x ∈ Rn \ {0}, (−Δ)iu(0) ≥ 0, i = 1, · · · ,m− 1. (5)

By the results in [11], [16], [27], it is well-known that the super poly-harmonic property has many 
important applications in PDEs and ODEs.

Due to the equivalence between (3) and (4), in order to derive the properties of solutions of (3), we only 
need to deal with integral equation (4).

By using the method of moving planes in integral forms, we prove

Theorem 3. For a > 0, n
n−2m < p < n+2m+a

n−2m , let |x|aup−1 ∈ L
n

2m
loc (Rn). Assume that u ∈ Lq

loc(Rn) for some 
q > n

n−2m . Then each nonnegative solution u(x) of (4) is radically symmetric and monotone decreasing in 
x about the origin.

Then by using the Pohozaev identity, we prove
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Theorem 4. For 1 < p < n+2m+2a
n−2m , (3) has no radially symmetric nonnegative solutions.

The method of moving planes in integral forms which has been used in [12], [15] has become a powerful 
tool in studying qualitative properties for solutions of integral equations and systems. It is quite different 
from the traditional methods for PDEs. Instead of relying on maximum principles, one estimates integral 
norms. A remarkable advantage is that it treats all powers of Laplacians indiscriminately.

Corollary 1. For n
n−2m < p < n+2m+a

n−2m , let |x|aup−1 ∈ L
n

2m
loc (Rn). Assume that u ∈ Lq

loc(Rn) for some 
q > n

n−2m . If u is a nonnegative solution of (3), then u(x) ≡ 0.

Remark. In particular, the case m = 1 has been widely studied by many authors.
In this case, (3) turns out to be

(−Δ)u(x) = |x|aup(x), x ∈ Rn. (6)

Denote the Sobolev exponent by

ps := N + 2
N − 2 ,

and the Hardy–Sobolev exponent by

ps(a) := N + 2 + 2a
N − 2 (= ∞ if N = 2).

Let us introduce the following results in the case of radial solutions (stated in [23]; see [2] for a detailed 
proof).

Proposition A. Let N ≥ 2, a > −2 and p > 1.

(i) If p < ps(a), then (6) has no positive radial solution in Rn.
(ii) If p ≥ ps(a), then (6) possesses bounded, positive radial solution in Rn.

So far, for the popular radial solutions, the results have been clean and neat. One can see that the 
Hardy–Sobolev exponent ps(a) plays a critical role in the radial case and this leads to the following natural 
conjecture [21]:

Conjecture. If N ≥ 2, a > −2, and 1 < p < ps(a), then (6) has no positive solutions in Rn.

The condition p < ps(a) is the best possible due to Proposition A(ii). However, apart from the radial 
case, the best available non-existence result up to now are the following:

Proposition B. Let N ≥ 2, a > −2 and p > 1.

(i) If

p < min(ps, ps(a)),

then (6) has no positive solution in Rn.
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(ii) The conclusion in Part (i) remains true if

p ≤ N + a

N − 2 .

Proposition B(i) was proved by Marie Françoise Bidaut-Veron and Hector Giacomini in [3]. As for Propo-
sition B(ii), it can be found in e.g. [22, Example 3.2]. For a particular dimension N = 3, Quoc Hung Phan 
and Philippe Souplet [21] proved

Proposition C. Let N = 3,a > 0, p > 1. If p < ps(a), then (6) has no positive bounded solution in Rn.

Here, combining Theorem 3 and Proposition B for m = 1 and a > 0, we conclude the following:

Corollary 2. If N ≥ 2, a > 0, and 1 < p < n+2+a
n−2 , then (6) has no positive solutions in Rn.

The Corollary 2 partially solved the Conjecture. For more related results, please see [2,20,21] and the 
references therein.

This paper is arranged as follows. In Section 2, we will obtain the super poly-harmonic properties of the 
positive solutions of PDEs, and thus prove Theorem 2. In Section 3, based on Theorem 2, we will establish 
the equivalence between the integral equations and PDEs and thus prove Theorem 1. In Section 4, we 
will use the method of moving planes in integral forms and Kelvin transforms to prove Theorem 3 – the 
non-existence of positive solutions for integral equation (4). In Section 5, we will show that in subcritical 
cases, PDEs have no positive radially symmetric solutions and thus prove Theorem 4.

2. Super poly-harmonic properties

In this section, we prove Theorem 2, that is

Theorem 2. If u is a positive solution of

(−Δ)mu(x) = |x|aup(x), x ∈ Rn,

then

(−Δ)iu(x) > 0, i = 1, · · · ,m− 1, x ∈ Rn \ {0},

(−Δ)iu(0) ≥ 0, i = 1, · · · ,m− 1.

In the following, C, c0, c1 and c2 denote positive constants whose values may be different from line to 
line.

Proof. Let

ui(x) = (−Δ)iu(x), i = 1, · · · ,m− 1, x ∈ Rn.

Part 1. We first show that

um−1(x) > 0, x ∈ Rn \ {0}, um−1(0) ≥ 0. (7)

Suppose on the contrary, then there are two possible cases.
Case i) There exists x1 ∈ Rn, such that
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um−1(x1) < 0. (8)

Case ii) um−1(x) ≥ 0, x ∈ Rn, and there exists a point x̃ ∈ Rn \ {0}, such that

um−1(x̃) = 0.

In this case, x̃ is a local minimum of um−1, and we must have −Δum−1(x̃) ≤ 0. This contradicts with

−Δum−1(x̃) = |x̃|aup(x̃) > 0, x̃ ∈ Rn \ {0}.

Therefore we only need to consider Case i).
Step 1. In this step, we will show that m must be even. If not, we assume that m is odd. Let

ū(r) = 1
|∂Br(x1)|

∫
∂Br(x1)

u(x)dσ (9)

be the spherical average of u. Then by the well-known property that

Δu = Δū,

we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δūm−1 = |x|aup(x),
−Δūm−2 = ūm−1,

· · ·
−Δū = ū1.

(10)

From the first equation in (10), by Jensen’s inequality, we have

−Δūm−1 = 1
|∂Br(x1)|

∫
∂Br(x1)

|x|aup(x)dσ

≥ (||r − |x1||)a 1
|∂Br(x1)|

∫
∂Br(x1)

up(x)dσ

≥ (||r − |x1||)a( 1
|∂Br(x1)|

∫
∂Br(x1)

u(x)dσ)p

= (||r − |x1||)aūp(x)

≥ 0, ∀r > 0. (11)

Then integrating both sides from 0 to r yields

ū′
m−1(r) ≤ 0, and ūm−1(r) ≤ ūm−1(0) = um−1(x1) := −c < 0, r > 0. (12)

Then from the second equation in (10), we have

− 1
rn−1 (rn−1ū′

m−2)′ = ūm−1(r) ≤ −c, ∀r > 0.

That is
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(rn−1ū′
m−2)′ ≥ rn−1c, ∀r > 0.

Integrating yields

ū′
m−2(r) ≥

c

n
r, and ūm−2(r) ≥ ūm−2(0) + c

2n
r2, ∀r > 0. (13)

Hence, ∃r1 > 0, such that

ūm−2(r1) > 0.

Making average at a new center x2 with |x1 − x2| = r1, i.e.

¯̄u(r) = 1
|∂Br(x2)|

∫
∂Br(x2)

ū(x)dσ,

we have

¯̄um−2(0) = ūm−2(x2) = ūm−2(r1) > 0. (14)

Then by (11), we chose r = |x1 − x2|, then (¯̄u, ̄̄u1, · · · , ̄̄um−1) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δ¯̄um−1 ≥ (||x1 − x2| − |x1||)aūp(x),
−Δ¯̄um−2 = ¯̄um−1,

· · ·
−Δ¯̄u = ¯̄u1.

(15)

By (15) and Jensen’s inequality, we obtain

−Δ¯̄um−1(r) ≥ (||x− x1| − |x1||)aūp(x)

= 1
|∂Br(x2)|

∫
∂Br(x2)

(||x− x1| − |x1||)aūp(x)dσ

≥ C∗a ¯̄up(x)

≥ 0, ∀r > 0.

Here C∗ is a constant and C∗ ≥ 0. By the same arguments as in deriving (13), we conclude

¯̄um−2(r) ≥ ¯̄um−2(0) + c0
2nr

2, ∀r ≥ 0. (16)

By (12), (14), and (16), we have

¯̄um−1(r) < 0,

barūm−2(r) > 0, ∀r ≥ 0.

Continuing this way, after m − 1 steps of re-centers (denotes the results by ũ), we conclude, for any r ≥ 0,

−Δũm−1(r) ≥ C∗aũp(r) ≥ 0 (17)

and
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(−1)iũm−i(r) > 0, i = 1, · · · ,m− 1, ∀r ≥ 0. (18)

Since m is odd, (18) implies

(−1)m−2ũ2(r) > 0, i.e. ũ2(r) < 0, ∀r ≥ 0.

And then we derive

ũ′
1(r) > 0, and ũ1(r) ≥ ũ1(0) := c1 > 0, ∀r ≥ 0.

From the last equation in (15), we deduce

ũ(r) ≤ ũ(0) − c1
2nr

2 → −∞ as r → ∞.

Which contradicts to the positivity of u. Hence m must be even.
Step 2. Let

uλ(x) = λ
2m+a
p−1 u(λx)

be the rescaling of u. It can be easily checked that

(−Δ)muλ(x) = |x|aup
λ(x), ∀λ > 0.

By (18), we derive

ũ(r) ≥ ũ(0) > 0, ∀r ≥ 0.

Then we choose a sufficiently large λ such that for any a0 > 0

ũ(r) ≥ a0 ≥ a0r
σ0 , ∀r ∈ [0, 1], (19)

where σ0 > 1 and σ0p ≥ 2m + n. By (17) and (19), we have

−Δũm−1(r) ≥ C∗aũp(r)

≥ C∗aap0r
pσ0

:= Cap0r
pσ0 .

It follows that

ũm−1(r) ≤ ũm−1(0) − Cap0r
σ0p+2

(σ0p + n)(σ0p + 2) .

Since m is even, by (18), we obtain

ũm−1(r) ≤ − Cap0r
σ0p+2

(σ0p + n)(σ0p + 2) ≤ −Cap0r
σ0p+2

(2σ0p)2
, ∀r ∈ [0, 1]. (20)

Similar to (20), by the second equation in (15), (18) and (20), we deduce

ũm−2(r) ≥
Cap0r

σ0p+4

4 , ∀r ∈ [0, 1].
(2σ0p)
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Continuing this way, we derive

ũ(r) ≥ Cap0r
σ0p+2m

(2σ0p)2m
≥ Cap0r

2σ0p

(2σ0p)2m
, ∀r ∈ [0, 1].

Set

σ1 = 2σ0p, σk = 2σk−1p, k = 2, · · · ,

a1 = Cap0
(2σ0p)2m

, ak =
Capk−1

(2σk−1p)2m
, k = 2, · · · .

Repeating the above arguments, by the induction, one can prove

ũ(r) ≥ akr
σk , ∀r ∈ [0, 1]. (21)

Through elementary calculations, we have

σk = 2σk−1p = (2p)2σk−2 = · · · = (2p)kσ0,

ak = C · Cp · Cp2 · · · · · Cpk−1
ap

k

0

(2p)2m(k+(k−1)p+(k−2)p2+···+pk−1)σ
2m(pk−1)

p−1
0

≥ C · Cp · Cp2 · · · · · Cpk−1
ap

k

0

(2p)2m
pk+1−p

(p−1)2 σ
2m(pk−1)

p−1
0

≥ C
−1
p−1 ( C

1
p−1 a0

(2p)
2mp

(p−1)2 σ
2m
p−1
0

)p
k

, k = 1, · · · .

We take

a0 = 2C− 1
p−1 (2p)

2mp

(p−1)2 σ
2m
p−1
0 .

Then by (21), we deduce

ũ(1) ≥ C
−1
p−1 2p

k → ∞, as k → ∞.

This is impossible. Hence (7) must hold.
Part 2. Now we show that all other uk(x) must be nonnegative, where k = 1, 2, · · · , m − 2, x ∈ Rn. On 

the contrary, suppose for some i, 2 ≤ i ≤ m − 1, ∃x0 ∈ Rn, such that

um−1(x) ≥ 0, um−2(x) ≥ 0, · · · , um−i+1(x) ≥ 0, x ∈ Rn, (22)

um−i(x0) < 0. (23)

Repeating the similar arguments as in Step 1 of Part 1, we conclude that m − i must be odd and thus derive

(−1)m−j ũm−j(r) > 0, j = i, · · · ,m− 1, ∀r ≥ 0.

Then
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ũ1(r) < 0, ∀r ≥ 0.

Therefore

ũ(r) ≥ ũ(0) := c > 0 ∀r ≥ 0.

By (17), we obtain

−Δũm−1(r) ≥ C∗aũp(r)

≥ c0c
p := C > 0.

Integrating both sides from 0 to r yields

ũm−1(r) ≤ ũm−1(0) − Cr2

2n → −∞, as r → ∞.

This contradicts with (7), and therefore (5) must be true. This completes the proof of Theorem 2.

3. The proof of the equivalence between (3) and (4)

We now prove the equivalence between (3) and (4). Here, the proof consists of two steps. In step (i), we 
show that if u is a positive solution of (3), then u satisfies (4). In step (ii), we prove that if u ∈ C2m(Rn) is 
a solution of (4), then u satisfies (3).

(i) We first assume that u is a positive solution of

(−
)mu(x) = |x|aup(x), x ∈ Rn, (24)

where m is a positive integer and 2m < n.
Let δ(x − y) be the Dirac Delta function for fixed x. Gr(x, y) is the Green’s function{

(−
)mGr(x, y) = δ(x− y), in Br(x)
Gr(x, y) = 
Gr(x, y) = · · · = 
m−1Gr(x, y) = 0, on ∂Br(x).

(25)

By the Hopf Lemma, one can easily verify that the outward normal derivative

∂

∂νy
[(−
)iGr(x, y)] ≤ 0, i = 0, . . . ,m− 1, on ∂Br(x). (26)

Multiply both sides of (24) by Gr(x, y) and integrate on Br(x). After integrating by parts, and due to 
Theorem 3, (25) and (26), we arrive at∫

Br(x)

Gr(x, y)|y|aup(y)dy =
∫

Br(x)

Gr(x, y)(−
)mu(y)dy

= u(x) +
m−1∑
i=0

∫
∂Br(x)

[(−
)iu] ∂

∂νy
[(−
)m−1−iGr(x, y)]dσ

≤ u(x). (27)

Solving equations (25) directly and letting r → ∞, we have
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Gr(x, y) →
C

|x− y|n−2m , (28)

(−
)iGr(x, y) →
C

|x− y|n−2m+2i , i = 1, · · · ,m− 1, (29)

and

| ∂

∂νy
[(−
)m−1−iGr(x, y)]| ≤

C

|x− y|n−2i−1 , i = 0, · · · ,m− 1. (30)

It follows from (27) that ∫
Rn

1
|x− y|n−2m |y|aup(y)dy < ∞. (31)

By (31), there exists rk → ∞, such that

0 <
|rk − |x||a
rn−2m−1
k

∫
∂Brk

(x)

up(y)dσ ≤ 1
rn−2m−1
k

∫
∂Brk

(x)

|y|aup(y)dσ → 0.

We further deduce that

1
rn−2m−1−a
k

∫
∂Brk

(x)

up(y)dσ → 0, as rk → ∞.

Then by Jensen’s inequality, we have

1

r
n−1− 2m+a

p

k

∫
∂Brk

(x)

u(y)dσ → 0, as rk → ∞. (32)

For rn−1− 2m+a
p < rn−1, it is easy to see

1
rn−1
k

∫
∂Brk

(x)

u(y)dσ → 0, as rk → ∞. (33)

Set

(−
)iu = ui, i = 1, · · · ,m− 1, (34)

(−
)iGr(x, y) = Gi(x, y), i = 1, · · · ,m− 1. (35)

Multiply both sides of (34) by Gm−i(x, y) and integrate on Br(x). After integrating by parts, by Theorem 3
and (26) again, we deduce

∫
Br(x)

ui(y)Gm−i(x, y)dy = u(x) +
i−1∑
j=0

∫
∂Br(x)

[(−
)ju] ∂

∂νy
[(−
)m−1−jGr(x, y)]dσ

≤ u(x), i = 1, · · · ,m− 1. (36)

Equations (29) and (36) imply
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∫
Rn

ui(y)
|x− y|n−2m+2(m−i) dy =

∫
Rn

ui(y)
|x− y|n−2i dy < ∞, i = 1, · · · ,m− 1.

Then there exists rk → ∞, such that

1
rn−2i−1
k

∫
∂Brk

(x)

ui(y)dσ → 0, i = 1, · · · ,m− 1. (37)

From equation (27), by (30), (31), (33) and (37), there exists rk → ∞, such that

u(x) = C

∫
Rn

1
|x− y|n−2m |y|aup(y)dy. (38)

Here we finish the proof that if u is a positive solution of (3), then u satisfies (4). (ii) If u ∈ C2m(Rn) is a 
solution of (4), then

(−
)mu(x) =
∫
Rn

(−
)mG(x, y)|y|aup(y)dy

=
∫
Rn

δ(x− y)|y|aup(y)dy

= |x|aup(x).

It’s easy to conclude the proof that if u ∈ C2m(Rn) is a solution of (4), then u satisfies (3). This completes 
the proof of Theorem 1.

4. The proof of Theorem 3

For any real number λ, let the moving plane be

Tλ = {x = (x1, · · · , xn)|x1 = λ}.

We denote

Σλ = {x = (x1, · · · , xn)|x1 ≤ λ}.

Set xλ = (2λ − x1, x2, · · · , xn), uλ(x) = u(xλ), and wλ(x) = uλ(x) − u(x).
The following lemma is key inequality in integral estimates.

Lemma 1 (An equivalent form of the Hardy–Littlewood–Sobolev inequality). Let g ∈ Lp for n
n−α < p < ∞. 

Define

Tg(x) =
∫
Rn

1
|x− y|n−α

g(y)dy,

then

‖Tg‖Lp ≤ C(n, p, α)‖g‖
L

np
n+αp

.
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For n
n−2m < p < n+2m+a

n−2m , let

v(x) = 1
|x|n−2mu( x

|x|2 ) (39)

be the Kelvin transform of u. We calculate y = ỹ
|ỹ|2 , dy = dỹ

|ỹ|2n , and

v(x) = 1
|x|n−2mu( x

|x|2 )

= 1
|x|n−2m

∫
Rn

1∣∣∣ x
|x|2 − y

∣∣∣n−2m |y|au(y)pdy

= 1
|x|n−2m

∫
Rn

1∣∣∣ x
|x|2 − ỹ

|ỹ|2

∣∣∣n−2m

∣∣∣∣ ỹ

|ỹ|2

∣∣∣∣a up( ỹ

|ỹ|2 ) 1
|ỹ|2n dỹ

=
∫
Rn

1∣∣∣ x
|x|2 − ỹ

|ỹ|2

∣∣∣n−2m
|ỹ|a

|x|n−2m|ỹ|n−2m

[
u( ỹ

|ỹ|2 )
|ỹ|n−2m

]p

1
|ỹ|b dỹ

=
∫
Rn

1
|ỹ − x|n−2m vp(ỹ) 1

|ỹ|b−a
dỹ,

where b = (n − 2m)(τ − p) > a, τ = n+2m+2a
n−2m .

Then we deal with v(x). By our assumption on u that |x|aup−1 ∈ L
n

2m
loc (Rn), we can derive that 

|x|a−bvp−1 ∈ L
n

2m
loc (Rn\0). Equivalently for any domain Ω of a positive distance away from the origin, 

we have ∫
Ω

(
vp−1(y)|y|a

|y|b
) n

2m

dy < ∞. (40)

Let p = n+2m+a−ε
n−2m , where 0 < ε < 2m + a, we have v(x) =

∫
Rn

1
|x−y|n−2m

vp(y)
|y|ε dy.

Since

v(x) =
∫
Σλ

G(x, y) 1
|y|ε v

p(y)dy +
∫
Σλ

G(xλ, y) 1
|yλ|ε v

p
λ(y)dy

v(xλ) =
∫
Σλ

G(xλ, y) 1
|y|ε v

p(y)dy +
∫
Σλ

G(xλ, yλ) 1
|yλ|ε v

p
λ(y)dy

then we have

v(x) − vλ(x) =
∫
Σλ

[G(x, y) −G(xλ, y)] 1
|y|ε v

p(y)dy +
∫
Σλ

[G(xλ, y) −G(xλ, yλ)] 1
|yλ|ε v

p
λ(y)dy

=
∫
Σλ

[G(x, y) −G(xλ, y)]
[

1
|y|ε v

p(y) − 1
|yλ|ε v

p
λ(y)

]
dy (41)

We now prove that v(x) must be radially symmetric and decreasing about O. Here, the proof consists of 
two steps. In step 1, we show that for any sufficiently negative λ,
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v(x) ≤ v(xλ) in Σλ\Bδ(0λ). (42)

In step 2, we move the plane Tλ along the x1 direction continuously from near negative infinity to the right 
as long as (42) holds. We show that the plane can be moved all the way to x1 = 0. Hence

v(x) ≤ v(x0), ∀x ∈ Σ0.

If we move the plane from positive infinity to the left and carry on the same procedure as in step 1 and 
step 2, we can also prove that

v(x) ≥ v(x0) in Σ0.

Therefore v(x) is symmetric about the plane T0. Since the direction of x1 can be chosen arbitrarily, we 
deduce that v(x) is symmetric and decreasing about O. It follows that u(x) is also symmetric about O. For 
more related results and details, please see [13,14,27] and the references therein.

Step 1. Define

Σ−
λ = {x ∈ Σλ\Bδ(xλ)|wλ(x) < 0}.

We show that for λ sufficiently negative, Σ−
λ must be measure zero. By the Mean Value Theorem, we have, 

for sufficiently negative values of λ, and for any x ∈ Σ−
λ ,

0 < v(x) − vλ(x) =
∫
Σλ

[G(x, y) −G(xλ, y)]
[

1
|y|ε v

p(y) − 1
|yλ|ε v

p
λ(y)

]
dy

=
∫

Σ−
λ

[G(x, y) −G(xλ, y)]
[

1
|y|ε v

p(y) − 1
|yλ|ε v

p
λ(y)

]
dy

+
∫

Σλ\Σ−
λ

[G(x, y) −G(xλ, y)]
[

1
|y|ε v

p(y) − 1
|yλ|ε v

p
λ(y)

]
dy

≤
∫

Σ−
λ

[G(x, y) −G(xλ, y)]
[

1
|y|ε v

p(y) − 1
|yλ|ε v

p
λ(y)

]
dy

≤
∫

Σ−
λ

[G(x, y) −G(xλ, y)]
[
vp(y) − vpλ(y)

|y|ε
]
dy

= p

∫
Σ−

λ

[G(x, y) −G(xλ, y)]ψ
p−1(y)
|y|ε [v(y) − vλ(y)]dy

≤ p

∫
Σ−

λ

G(x, y)v
p−1(y)
|y|ε [v(y) − vλ(y)]dy.

Here the value of ψp−1(y) is between the value of vp−1
λ (y) and that of vp−1(y). We apply Hardy–Littlewood–

Sobolev inequality to obtain for any q > n
n−2m ,

‖wλ‖Lq(Σ−
λ ) ≤ ‖C

∫
−

G(x, y)v
p−1(y)
|y|ε [v(y) − vλ(y)]dy‖Lq(Σ−

λ )
Σλ
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≤ C

∥∥∥∥vp−1wλ

|y|ε

∥∥∥∥
L

nq
n+2mq (Σ−

λ )
. (43)

Then we apply Hödler inequality to (43), we first choose the appropriate number

s = n + 2mq

n

such that

nq

n + 2mq
· s = q,

then we choose

r = n + 2mq

2mq

to ensure that

1
r

+ 1
s

= 1.

We can get the following

‖wλ‖Lq(Σ−
λ ) ≤ C

∥∥∥∥vp−1

|y|ε

∥∥∥∥
L

n
2m (Σ−

λ )
‖wλ‖Lq(Σ−

λ ). (44)

We can choose N sufficiently large, such that for λ ≤ −N ,

C

∥∥∥∥vp−1

|y|ε

∥∥∥∥
L

n
2m (Σ−

λ )
≤ 1

2 .

Now inequality (44) implies ‖wλ‖Lq(Σ−
λ ) = 0, and therefore Σλ− must be measure zero.

This implies

ωλ(x) ≥ 0, a.e.x ∈ Σλ. (45)

Step 2. Move the plane to the origin to derive symmetry.
Inequality (45) provides a starting point to move the plane

Tλ = {x ∈ Rn|x1 = λ}.

Now we start from the neighborhood of x1 = −∞ and move the plane to the right as long as (44) holds. We 
can see that by moving the plane this way, the plane will not stop before hitting the origin of Rn. Define

λ0 = sup{λ≤ 0|wρ(x) ≥ 0, ρ≤ λ, ∀x ∈ Σρ \ {0ρ}},

where 0ρ is the reflection of 0 about the plane Tρ. We will prove that

λ0 = 0. (46)

Suppose λ0 < 0, we first show that v(x) is symmetric about the plane Tλ0 , i.e.
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wλ0 ≡ 0, a.e. ∀x ∈ Σλ0 . (47)

Suppose the contrary, then we have wλ0 ≥ 0, but wλ0 �= 0 a.e. on Σλ0 \ {0λ0}. We show that the plane 
can be moved further. More precisely, there exists an ε > 0 such that for all λ ∈ [λ0, λ0 + ε),

v(x) ≤ vλ(x) a.e. on Σλ\{0λ}.

By inequality (44), we have

‖wλ‖Lq(Σ−
λ ) ≤ C

∥∥∥∥vp−1

|y|ε

∥∥∥∥
L

n
2m (Σ−

λ )
‖wλ‖Lq(Σ−

λ ). (48)

Again by (40), we choose ε sufficiently small so that for all λ ∈ [λ0, λ0 + ε),

C

∥∥∥∥vp−1

|y|ε

∥∥∥∥
L

n
2m (Σ−

λ )
≤ 1

2 . (49)

We postpone the proof of (49) for a moment. Now by (48) and (49), we have ‖wλ‖Lq(Σ−
λ ) = 0, therefore Σ−

λ

must be measure zero. Hence for these values of λ > λ0, we have

wλ(x) ≥ 0 a.e. ∀x ∈ Σλ\{0λ}.

This contradicts with the definition of λ0, therefore (47) must hold.
Next, we show that (46) is true. Otherwise, if the plane stops at x1 = λ0 < 0, then

vλ0(x) = v(x) ∀x ∈ Σλ0\{0λ0}.

Then it is easy to see that

0 = v(x) − vλ0(x) =
∫

Σλ0

[G(x, y) −G(xλ0 , y)]
[
vp(y)
|y|ε −

vpλ0
(y)

|yλ0 |ε
]
dy > 0.

This is obviously a contradiction. Hence

w0(x) ≥ 0 a.e. ∀x ∈ Σ0.

If we move the plane from the positive infinity to the left and carry on the same procedure as done above in 
steps 1 and 2, we can also prove that w0(x) ≤ 0 a.e. ∀x ∈ Σ0. Therefore v(x) is symmetric about the plane 
T0, then we deduce that (47) must hold.

Since the direction of x1 in Rn can be chosen arbitrarily, we deduce that v(x) must be radically symmetric 
in x ∈ Rn about x = 0 and decreasing about the origin in Rn. By expression (39), we conclude that u(x)
must be radially symmetric in x ∈ Rn about x = 0.

We further deduce that u(x) decreases about the origin in Rn. Suppose on the contrary, then there exists 
r2 > r1, s.t. u(r2) > u(r1), where r1 �= 0, we deduce that the minimum value must be in Br2 . While, 
according to Theorem 3 −Δu(x) > 0, by the maximum principle, we conclude that it is impossible for u(x)
to have a minimum in Br2 . This leads to contradiction, and therefore the conclusion that u(x) decreases 
about the origin in Rn is true.

Now we prove inequality (49). For any small η > 0, we can chose r sufficiently large so that
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∥∥∥∥vp−1

|y|ε

∥∥∥∥
L

n
2m (Rn\{0}\Br(0))

< η. (50)

Fix this r and then we show that the measure of Σ−
λ

⋂
Br(0) is sufficiently small for λ close to λ0. Then by 

Lemma 1, it is easy to see

wλ0 > 0 in the interior of Σλ0\{0}. (51)

For any γ > 0, let

Eγ = {x ∈ (Σλ0\{0}) ∩Br(0)|wλ0(x) > γ}, Fγ = ((Σλ0\{0}) ∩Br(0))\Eγ .

It is obvious that

lim
γ→0

μ(Fγ) = 0. (52)

For λ > λ0, let

Dλ = ((Σλ\{0})\Σλ0) ∩Br(0).

Then it is obvious that

(Σ−
λ ∩Br(0)) ⊂ (Σ−

λ ∩ Eγ) ∪ Fγ ∪Dλ. (53)

It is easy to see that, the measure of Dλ is small for λ close to λ0. Then we only need to show that the 
measure of Σ−

λ ∩ Eγ can be sufficiently small as λ close to λ0. In fact, for any x ∈ Σ−
λ ∩ Eγ , we have

wλ(x) = vλ(x) − v(x) = vλ(x) − vλ0(x) + vλ0(x) − v(x) < 0.

Hence

vλ0(x) − vλ(x) > vλ0(x) − v(x) = wλ0(x) > γ.

It follows that

(Σ−
λ ∩ Eγ) ⊂ Gγ ≡ {x ∈ BR(0)|vλ0(x) − vλ(x) > γ}. (54)

By the well-known Chebyshev inequality, we have

μ(Gγ) ≤ 1
γp+1

∫
Gγ

|vλ0(x) − vλ(x)|p+1dx

≤ 1
γp+1

∫
BR(0)

|vλ0(x) − vλ(x)|p+1dx.

For each fixed γ, as λ close to λ0, the right hand side of the above inequality can be made as small as we 
wish. Therefore by (53) and (54), the measure of Σ−

λ ∩Br(0) can also be made sufficiently small. Combining 
this with (50), we obtain (49).

This completes the proof of Theorem 3. For more related results and details, please see [13,14,27] and 
the references therein.
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5. The proof of Theorem 4

Now, we consider

u(x) =
∫
Rn

up(y)|y|a
|x− y|n−2m dy, x ∈ Rn. (55)

From (55), we have

u(μx) =
∫
Rn

up(y)|y|a
|μx− y|n−2m dy. (56)

Since

d

dμ
(|μx− y|2m−n) = d

dμ
(|μx− y|2) 2m−n

2

= 2m− n

2 (|μx− y|2) 2m−n
2 −1 d

dμ
|μx− y|2

= 2m− n

2 (|μx− y|2) 2m−n
2 −1(2(μx1 − y1)x1 + · · · + 2(μxn − yn)xn)

= (2m− n)|μx− y|2m−n−2
n∑

i=1
(μxi − yi)xi

= (2m− n)|μx− y|2m−n−2x · (μx− y).

We derivative (56), with respect to μ:

x · ∇u(μx) = (2m− n)
∫
Rn

x · (μx− y)up(y)|y|a
|μx− y|n−2m+2 dy, x �= 0.

Letting μ = 1 yields

x · ∇u(x) = (2m− n)
∫
Rn

x · (x− y)up(y)|y|a
|x− y|n−2m+2 dy, x �= 0. (57)

Multiplying both sides of (57) by |x|aup(x) and integrating on Br \ Bε := Br(0) \ Bε(0), we integrate by 
parts to obtain

The left =
∫

Br\Bε

up(x)|x|a(x · ∇u(x))dx

=
r∫

ε

∫
∂BR

up(R)Ra(x · x
R

∂u(R)
∂R

)dσdR

= 1
p + 1

r∫
ε

nwnR
n+adup+1(x)

= 1
p + 1

∫
up+1(x)ra+1dσ + 1

p + 1

∫
up+1(x)εa+1dσ
∂Br ∂Bε
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− 1
p + 1

r∫
ε

nwnu
p+1(x)dRn+a

= 1
p + 1

∫
∂Br

up+1(x)ra+1dσ + 1
p + 1

∫
∂Bε

up+1(x)εa+1dσ

− n + a

p + 1

∫
Br\Bε

up+1(x)|x|adx (58)

and

The right = (2m− n)
∫

Br\Bε

∫
Rn

x · (x− y)up(y)|y|a|x|aup(x)
|x− y|n−2m+2 dydx. (59)

By (55), we have

u(r) = u(re) =
∫
Rn

up(y)|y|a
|x− y|n−2m dy

≥
r∫

0

∫
∂Bs

up(y)|y|a
|re− y|n−2m dσds

≥ C

r∫
0

∫
∂B1

up(r)
|re− sω|n−2m sn−1+adωds

= C
up(r)
rn−2m

r∫
0

∫
∂B1

sn−1+a

|e− s
rω|n−2m dωds

=: C up(r)
rn−2m

r∫
0

∫
∂B1

sn−1+af(s)ds. (60)

Obviously, for each fixed 0 ≤ s ≤ r, f(s) > 0. Set t = s
r , then 0 ≤ t ≤ 1, g(t) := f(s). Since [0, 1] is a 

compact set, g(t) is continuous in t, we must have g(t) ≥ C0 > 0. Then by (60), we deduce

u(r) ≥ cup(r)r2m+a.

This implies

u(r) ≤ c

r
2m+a
p−1

, as r → ∞, (61)

and by (61), we deduce

∫
Rn

up+1(y)|y|ady < ∞. (62)

Then there exists a sequence rj → ∞ as j → ∞, such that
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r1+a
j

∫
∂Brj

up+1(x)dσ → 0. (63)

Since

x(x− y) + y(y − x) = |x− y|2.

By symmetry, we have

2m− n

2

∫
Rn

up+1(x)|x|adx = 2m− n

2

∫
Rn

∫
Rn

up(y)up(x)|x|a|y|a
|x− y|n−2m dxdy

= 2m− n

2

∫
Rn

∫
Rn

x · (x− y)up(y)up(x)|x|a|y|a
|x− y|n−2m+2 dxdy

+ 2m− n

2

∫
Rn

∫
Rn

y · (y − x)up(y)up(x)|x|a|y|a
|x− y|n−2m+2 dxdy

= (2m− n)
∫
Rn

∫
Rn

x · (x− y)up(y)up(x)|x|a|y|a
|x− y|n−2m+2 dxdy.

Letting ε → 0 in (58) and (59), we derive

1
p + 1

∫
∂Br

r1+aup+1(x)dσ − n + a

p + 1

∫
Br

up+1(x)radx

= (2m− n)
∫
Br

∫
Rn

x · (x− y)up(y)up(x)|x|a|y|a
|x− y|n−2m+2 dydx.

We arrive at

−n + a

p + 1

∫
Br

up+1(x)|x|adx = 2m− n

2

∫
Rn

up+1(x)|x|adx. (64)

Letting r → ∞,

p + 1 <
2(n + a)
n− 2m ,

n + a

p + 1 >
n− 2m

2

(64) implies u ≡ 0 in Rn. This completes the proof of Theorem 4.
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