Basic Algebra Rules

1. Fractions. Let a, b, c, and d be numbers.
(a) You can break up a fraction from a sum in the numerator, but not in the denominator:

$$
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}
$$

but

$$
\frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c}
$$

(b) Cancellation of the c here requires that it appears in each additive term of the numerator and denominator:

$$
\frac{c a+c b}{c d}=\frac{c(a+b)}{c d}=\frac{a+b}{d}
$$

but

$$
\frac{c a+b}{c d} \neq \frac{a+b}{d}
$$

(c) Compound fractions can be simplified by using the rule "division is the same as multiplication by the reciprocal":

$$
\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

2. Natural Logs. Let a and b be numbers.
(a) Natural logs distribute in a funny way over products and quotients:

$$
\begin{aligned}
& \ln (a b)=\ln a+\ln b \\
& \ln \left(\frac{a}{b}\right)=\ln a-\ln b
\end{aligned}
$$

but they do not distribute over sums:

$$
\ln a+b \neq \ln a+\ln b
$$

(b) Natural logs can help you work with exponents by "bringing them down":

$$
\ln \left(a^{b}\right)=b \ln a
$$

3. Exponents. Let a, b, m, and n be numbers.
(a) Exponents distribute over products, but not over sums:

$$
(a b)^{n}=a^{n} b^{n}
$$

but

$$
(a+b)^{n} \neq a^{n}+b^{n}
$$

(b) A negative exponent can always be viewed as a denominator, and vice versa:

$$
a^{-n}=\frac{1}{a^{n}}
$$

(c) Two terms with exponents can only be multiplied if they share the same base; in that case, the exponents add:

$$
a^{m} a^{n}=a^{m+n}
$$

but $a^{m} d^{n}$ cannot be further simplified, and

$$
a^{m} a^{n} \neq a^{m n}
$$

(d) Similarly for division:

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

4. Roots. Let a, b, m, and n be numbers.
(a) Remember that roots can always be viewed as fractional exponents:

$$
\sqrt[n]{a}=a^{\frac{1}{n}}
$$

With this point of view, we'll inherit all the rules about exponents. In particular, (b) Distributing a root over a product:

$$
\sqrt[n]{a b}=(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} b^{\frac{1}{n}}=\sqrt[n]{a} \sqrt[n]{b}
$$

(c) Multiplying two roots with a common base:

$$
\sqrt[m]{a} \sqrt[n]{a}=a^{\frac{1}{m}} a^{\frac{1}{n}}=a^{\frac{1}{m}+\frac{1}{n}}
$$

