
1

Sofya Raskhodnikova
Penn State University

Property Testing Tutorial

Big Data

2

Do We Have To Read All the Data?

• What can an algorithm compute if it

– reads only a tiny portion of the data?

– runs in sublinear time?

• For most interesting problems sublinear-time
algorithms must be

– approximate

– randomized

Image source: http://apandre.wordpress.com/2011/01/16/bigdata/

A Sublinear-Time Algorithm

4

A - V E R Y - V E R Y - V E R Y - L O N G G G G - S T R I N G

approximate answer

sublinear-time algorithm

? G? R ? E ? T

Quality of

approximation

Resources
• number of queries

• running time

Types of Approximation

• Classical approximation

• need to compute a value

output should be close to the desired value

• Property testing

• need to answer YES or NO

 intuition: only require correct answers on two sets of
instances that are very different from each other

5

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

“in the ballpark” vs. “out of the ballpark”

Does the input satisfy the property
or is it far from satisfying it?

• for some applications, it is the right question (probabilistically
checkable proofs (PCPs), precursor to learning)

• as good when the data is constantly changing

• fast sanity check to rule out inappropriate inputs

(rejection-based image processing)

7

Property Tester

Close to YES

Far from

YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑



Property Testing: Definition

Probabilistic Algorithm

YES Accept with
probability ≥ 𝟐/𝟑

Reject with
probability 2/3

NO



far = differs in many places𝜀- (≥ 𝜀 fraction of places)

𝜀

[Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]

Test (𝑛, 𝑤)

Property Testing: a Toy Example

Input: a string 𝑤 ∈ 0,1 𝑛

Question: Is 𝑤 = 00…0?

Requires reading entire input.

Approximate version: Is 𝑤 = 00…0 or

does it have ≥ 𝜀𝑛 1’s (“errors”)?

1. Sample 𝑠 = 2/𝜀 positions uniformly and independently at random

2. If 1 is found, reject; otherwise, accept

Analysis: If 𝑤 = 00…0, it is always accepted.

If 𝑤 is 𝜀-far, Pr[error] = Pr[no 1’s in the sample]≤ 1 − 𝜀 𝑠 ≤ 𝑒−𝜀𝑠 = 𝑒−2 <
1

3

If a test catches a witness with probability ≥ 𝑝, then

s =
ln 𝑘

𝑝
iterations of the test fail to catch a witness with probability ≤ 1/𝑘.

8

Used: 1 − 𝑥 ≤ 𝑒−𝑥

Witness Lemma

0 0 0 1 … 0 1 0 0

Property Testing

Simple Examples

Example 1: Testing if a List is Sorted

Input: a list of n numbers x1 , x2 ,..., xn

• Question: Is the list sorted?

Requires reading entire list: (n) time

• Approximate version: Is the list sorted or ²-far from sorted?

(An ² fraction of xi ’s have to be changed to make it sorted.)

[Ergün Kannan Kumar Rubinfeld Viswanathan]: O((log n)/²) time

• Attempts:

1. Test: Pick a random i and reject if xi > xi+1 .

Fails on: 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Ã 1/2-far from sorted

2. Test: Pick random i < j and reject if xi > xj.

Fails on: 1 0 2 1 3 2 4 3 5 4 6 5 7 6 Ã 1/2-far from sorted

10

1
2

Is a list sorted or ²-far from sorted?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

• by adding a few “shortcut” edges (𝑖, 𝑗) for i < j

• where each pair of vertices is connected by a path of length at most 2

11

……

≤ n log n edges

1 2 3 … n-1 n

Is a list sorted or ²-far from sorted?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj.

1 2 5 4 3 6 7
Analysis:

• Call an edge (𝑖, 𝑗) violated if xi > xj , and good otherwise.

• If i is an endpoint of a violated edge, call xi it bad. Otherwise, call it good.

Proof: Consider any two good numbers, xi and xj.

They are connected by a path of (at most) two good edges 𝑖, 𝑘 , (𝑘, 𝑗)

) xi ≤ xk and xk ≤ xj

) xi ≤ xj

12

1
2

1
2

5 4 3
xi xj

xk

Claim 1. All good numbers xi are sorted.

Test [Dodis Goldreich Lehman R Ron Samorodnitsky, Bhattacharyya Grigorescu Jung R Woodruff]

Test [Dodis Goldreich Lehman R Ron Samorodnitsky, Bhattacharyya Grigorescu Jung R Woodruff]

1
2

1
2

Is a list sorted or ²-far from sorted?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj.

1 2 5 4 3 6 7
Analysis:

• Call an edge (𝑖, 𝑗) violated if xi > xj , and good otherwise.

• If i is an endpoint of a violated edge, call xi it bad. Otherwise, call it good.

Proof: If a list is ²-far from sorted, it has ¸ ² n bad numbers. (Claim 1)

• Each violated edge contributes 2 bad numbers.

• 2-spanner has ¸ ² n/2 violated edges out of n log n.

13

1
2

1
2

5 4 3
xi xj

xk

Claim 1. All good numbers xi are sorted.

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Test [Dodis Goldreich Lehman R Ron Samorodnitsky, Bhattacharyya Grigorescu Jung R Woodruff]

Is a list sorted or ²-far from sorted?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj.

1 2 5 4 3 6 7
Analysis:

• Call an edge (𝑖, 𝑗) violated if xi > xj , and good otherwise.

Sample (4 log n)/ ² edges (xi ,xj) from the 2-spanner and reject if xi > xj.

Guarantee: All sorted lists are accepted.

All lists that are ²-far from sorted are rejected with probability ¸2/3.

Time: O((log n)/²)

14

1
2

1
2

5 4 3
xi xj

xk

Algorithm

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Testing if a List is Sorted: Summary

We can determine if a list of n numbers is

sorted or ²-far from sorted

in O
log 𝑛

²
time.

• [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01,

Blais R Yaroslavtsev 14]: This cannot be improved.

15

1
2

Basic Properties of
Functions

Example 2

17

f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001

011001

𝑥
𝑦

Testing Monotonicity of Functions

18

[Goldreich Goldwasser Lehman Ron Samorodnitsky,

Dodis Goldreich Lehman R Ron Samorodnitsky

Fischer Lehman Newman R Rubinfeld Samorodnitsky]

• A function 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone

if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).

• Is 𝑓 monotone or 𝜀-far from monotone

(𝑓 has to change on many points to become monontone)?

– Edge 𝑥𝑦 is violated by 𝑓 if 𝑓 (𝑥) > 𝑓 (𝑦).

Time:

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, i.e., 2𝑛

– Ω(𝑛/𝜀) for nonadaptive, 1-sided error tests

– Recent: Θ(𝑛/𝜀2) for nonadaptive tests

[Khot Minzer Safra 15, Chen De Servidio Tang 15]

 Ω(𝑛1/4) [Belov Blais 16]

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

1

2
-far from monotone

Monotonicity Test [GGLRS, DGLRRS]

19

Idea: Show that functions that are far from monotone violate many edges.

Analysis

• If 𝑓 is monotone, EdgeTest always accepts.

• If 𝑓 is 𝜀-far from monotone, by Witness Lemma, it suffices to show that ≥

𝜀/𝑛 fraction of edges (i.e.,
𝜀

𝑛
⋅ 2𝑛−1𝑛 = 𝜀2𝑛−1 edges) are violated by 𝑓.

– Let 𝑉(𝑓) denote the number of edges violated by 𝑓.

Contrapositive: If 𝑉(𝑓) < 𝜀 2𝑛−1,
𝑓 can be made monotone by changing < 𝜀 2𝑛 values.

EdgeTest (𝑓, ε)

1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube.

2. Reject if some 𝑥, 𝑦 is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise, accept.

Repair Lemma

𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Repair Lemma: Proof Idea

20

Proof idea: Transform f into a monotone function by
repairing edges in one dimension at a time.

Repair Lemma

𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

21

Repairing Violated Edges in One Dimension

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping horizontal

dimension

Swap violated edges 10 in one dimension to 01.

Let 𝑉𝑗 = # of violated edges in dimension 𝑗

Enough to prove the claim for squares

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If no horizontal edges are violated, no action is taken.

22

Swapping horizontal

dimension

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If both horizontal edges are violated, both are swapped, so the
number of vertical violated edges does not change.

23

Swapping horizontal

dimension

i

j

01 10

1 0 0 1

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges
get swapped.

24

i

j

Swapping horizontal

dimension

1 0 0 1

𝒗𝒗 𝒗𝒗

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges
get swapped.

• Otherwise, the bottom vertices are labeled 01, and the
vertical violation is repaired.

25

i

j

Swapping horizontal

dimension

1 0 0 1

10 10

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

After we perform swaps in all dimensions:
• 𝑓 becomes monotone

• # of values changed:
2 ⋅ 𝑉1 + 2 ⋅ (# violated edges in dim2 after swapping dim1)

+ 2 ⋅ (# violated edges in dim3 after swapping dim1 and 2)
+ … ≤ 2 ⋅ 𝑉1 + 2 ⋅ 𝑉2 +⋯2 ⋅ 𝑉𝑛 = 2 ⋅ 𝑉 𝑓

26

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Repair Lemma

𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Testing if a Functions 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone

27

Monotone or

𝜀-far from monotone?

O(n/𝜀) time

(logarithmic in the size

of the input)

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

1

2
-far from monotone

Generalizations

• [Dodis Goldreich Lehman R Ron Samorodnitsky,
Chakrabarty Seshadhri]:

generalization to testing monotonicity of discrete
𝑑-dimensional functions in polylogarithmic time.

• [Jha R, Chakrabarty Dixit Jha Sesh]: generalization to
testing other properties of functions in polylog time.

28

1
2

x y

Example 3: Testing Properties of Images

29

Pixel Model

30

Query: point (𝑖1, 𝑖2)

Answer: color of (𝑖1, 𝑖2)

Input: 𝑛 × 𝑛 matrix of pixels

(0/1 values for black-and-white pictures)

Testing if an Image is a Half-plane

A half-plane or

𝜀-far from a half-plane?

O(1/𝜀) time [R 03]

O(1/𝜀) time with uniform samples

[Berman Murzabulatov R 16]

31

Half-plane Instances

32

A half-plane 1

4
-far from a half-plane

Half-plane Instances

33

A half-plane 1

4
-far from a half-plane

Half-plane Instances

34

A half-plane 1

4
-far from a half-plane

Half-plane Instances

35

A half-plane 1

4
-far from a half-plane

Half-plane Instances

36

A half-plane 1

4
-far from a half-plane

Half-plane Instances

37

A half-plane 1

4
-far from a half-plane

Half-plane Instances

38

A half-plane 1

4
-far from a half-plane

39

Half-Plane Tester

1. Sample 𝐬 = 𝚯
𝟏

𝛆
pixels uniformly

and independently.
2. Find convex hull of black samples
and convex hull of white samples.

3. If the two hulls intersect, reject;
otherwise, accept.

Correctness Theorem

If an image is 𝜀-far from being a half-plane, it is rejected w.p. ≥ 2/3.

 The tester always accepts half-plane images.

Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection
of two lines such that each quadrant formed
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 A point does not have to correspond to a pixel.

 A white-central point is defined analogously.

Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection
of two lines such that each quadrant formed
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 If we sample a black pixel (``witness’’) from each quadrant, then
the black-central point is in the convex hull of black pixels.

We say ``we captured the black-central point’’.

Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection
of two lines such that each quadrant formed
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 By Witness Lemma, if we sample
ln 100

𝜀/4
random pixels, we fail to

find a witness from a quadrant w.p. ≤
1

100
.

 By the union bound, we fail to capture a black-central w.p. ≤
4

100

Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection
of two lines such that each quadrant formed
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 Analogously, we fail to capture a white-central w.p. ≤
4

100

The Ham Sandwich Theorem

In 𝑛 dimensions, any 𝑛 measurable sets can be simultaneously
bisected (w.r.t. their measure) by an (𝑛 − 1)-dimensional hyperplane.

 If an image is 𝜀-far from being a half-plane,

it contains at least 𝜀𝑛2 pixels of each color.
 By continuity, there is a line that bisects all

pixels of the same color into two sets.
 By the Ham Sandwich Theorem (for 𝑛 = 2),

there is another line that bisects both sets.

Central Points Exist

Hulls of Black- and White-Central Points

Main Lemma

If the image is 𝜀-far from being a half-plane

then the convex hull of black-centrals

intersects the convex hull of white-centrals.

white-centrals

black-centrals

Main Lemma

If the image is 𝜀-far from being a half-plane

then the convex hull of black-centrals

intersects the convex hull of white-centrals.

Proof: For the sake of contradiction,
assume they do not intersect.

 Then some line ℓ separates white-central and black-central points.

Hulls of Black- and White-Central Points

Main Lemma

If the image is 𝜀-far from being a half-plane

then the convex hull of black-centrals

intersects the convex hull of white-centrals.

𝑾ℓ

𝑩ℓ

ℓ

Proof: For the sake of contradiction,
assume they do not intersect.

 Then some line ℓ separates white-central and black-central points.
 Let 𝐵ℓ and 𝑊ℓ be the closed half-planes formed by ℓ, with black-

central and white-central points, respectively.

Hulls of Black- and White-Central Points

Main Lemma

If the image is 𝜀-far from being a half-plane

then the convex hull of black-centrals

intersects the convex hull of white-centrals.

𝑾ℓ

𝑩ℓ

ℓ

Proof: For the sake of contradiction,
assume they do not intersect.

 There are ≥
𝜀𝑛2

2
black pixels in 𝑊ℓ or white pixels in 𝐵ℓ.
W.l.o.g. suppose the latter holds.

 Let ℓ′ be the line parallel to ℓ and furthest from ℓ s.t. there ≥
𝜀𝑛2

2
white pixels in closed half-plane to the left of ℓ′.

• There are ≥
𝜀𝑛2

2
white pixels in closed half-plane to the right of ℓ′.

• By Ham Sandwich Theorem, there is a white-central point on ℓ′.
Contradiction!

Hulls of Black- and White-Central Points

ℓ′

Completing the Analysis

Main Lemma

If the image is 𝜀-far from being a half-plane

then the convex hull of black-centrals

intersects the convex hull of white-centrals.

 Then some point v is in both hulls.
 Moreover, v is in the convex hull of

• (at most) 3 black-central points;
• (at most) 3 white-central points.

 If we capture all 6, then v is in the hull of black samples and in
the hull of white samples.

 Recall: we fail to capture a central point w.p. ≤
4

100

 By union bound, we fail to capture one or more of the 6 central

points w.p. ≤
24

100
<

1

3
.

𝒗

50

Summary: Half-plane Testing

• O(𝟏/𝜺) uniform samples are sufficient for testing the
half-plane property with 1-sided error.

• It is easy to show that Ω(𝟏/𝜺) queries are necessary
for even 2-sided error, adaptive testers.

Testing if an Image is a Half-plane

A half-plane or

𝜀-far from a half-plane?

O(1/𝜀) time

51

Other Results on Properties of Images

• Pixel Model
Convexity [R 03, Berman Murzabulatov R 16]

Convex or 𝜀-far from convex?

O(1/𝜀) time

Connectedness [R 03, Berman Murzabulatov R 16]

Connected or 𝜀-far from connected?

O(1/𝜀3/2 log 1/𝜀) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template

or is 𝜀-far?

time independent of image size

• Properties of sparse images [Ron Tsur 10]
52

Summary of Examples We Have Seen

• Properties of number sequences
– sortedness

• Properties of functions
– monotonicity

• Visual properties
– half-plane

53

In some cases, the exact versions

of these problems are NP-complete!

Property Testing: State of the Art

For many properties
of many types of objects

(images, number sequences, functions, graphs,
codes, …),

there are testers that run in polylogarithmic time.

54

Goal

Understanding sublinear algorithms and their limitations

• Algorithmic techniques

(like dynamic programming for P)

• Lower bound techniques

(like NP-completeness for NP)

55

Testing World ≠ Classical World

The approximate testing world is fascinating and
different from the world of exact problems

56

Problem Exact Testing

Is a 3CNF satisfiable?

(3SAT)

NP-complete easy

[Alon Shapira]

Does an assignment

satisfy a fixed 3CNF?

easy hard

[Ben-Sasson Harsha R]

Limitations of Property Testing Algorithms

General lower bound methods:

• Yao’s Minimax Principle

• Reductions from hard communication
complexity problems [Blais Brody Matulef 11]

57

Yao’s Minimax Principle

58

The following statements are equivalent.

• Need for lower bounds

Yao’s Minimax Principle (easy direction): Statement 2 ⇒ Statement 1.

Statement 1

For any probabilistic algorithm A of complexity q there exists an input x s.t.

Pr
𝑐𝑜𝑖𝑛 𝑡𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝐴

[A(x) is wrong] > 1/3.

Statement 2

There is a distribution D on the inputs,
s.t. for every deterministic algorithm of complexity q,

Pr
𝑥←𝐷

[A(x) is wrong] > 1/3.

Toy Example: Lower Bound for Testing 1*

Input: string of n bits

Question: Does the string contain only 1’s or is it 𝜀-far form the all-1 string?

Proof: By Yao’s Minimax Principle, enough to prove Statement 2.

59

Distribution D on n-bit strings

• Divide the input string into 1/𝜀 blocks of size 𝜀𝑛.

• Let yi be the string where the ith block is 0’s and remaining bits are 1.

• Distribution D gives the all-1 string w.p. 1/2 and yi with w.p. 1/2,

where 𝑖 is chosen uniformly at random from 1, …, 1/𝜀.

1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝜺𝒏𝜺𝒏 𝜺𝒏 𝜺𝒏

Claim. Any algorithm needs (1/𝛆) queries to answer this question w.p. ≥ 𝟐/𝟑.

A Lower Bound for Testing 1*

Proof (continued): Now fix a deterministic tester A making q < 1/3𝜀 queries.

1. A must accept if all answers are 1. Otherwise, it would be wrong on all-1
string, that is, with probability 1/2 with respect to D.

2. Let i1, . . . , iq be the positions A queries when it sees only 1s. The test can
choose its queries based on previous answers. However, since all these
answers are 1 and since A is deterministic, the query positions are fixed.

• At least 1/𝜀 − q > 2/3𝜀 of the blocks do not hold any queried indices.

• Therefore, A accepts > 2/3 of the inputs yi. Thus, it is wrong with probability

> 2/3𝜀 ⋅
𝜀

2
= 1/3

Context: [Alon Krivelevich Newman Szegedy 99]

Every regular language can be tested in O(1/𝜀 polylog 1/𝜀) time

60

Claim. Any 𝜀-test for 1* needs (1/𝛆) queries.

(Randomized) Communication Complexity

61

Compute 𝐶 𝑥, 𝑦

0100

11

001

⋯

0011

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑥 Input: 𝑦

1101000101110101110101010110…

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal: minimize the number of bits exchanged.

• Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

• Communication complexity of a function 𝐶, denoted 𝑅(𝐶), is the
communication complexity of the best protocol for computing C.

Example: Set Disjointness 𝐷𝐼𝑆𝐽𝒌

62

Theorem [Kalyanasundaram Schnitger 92]

𝑅 DISJ𝑘 ≥ Ω 𝑘 for all 𝑘 ≤
𝑛

2
.

Compute 𝐷𝐼𝑆𝐽𝑘 𝑆, 𝑇

=
𝒂𝒄𝒄𝒆𝒑𝒕 if 𝑆 ∩ 𝑇 = ∅
𝒓𝒆𝒋𝒆𝒄𝒕 otherwise

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘. Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘

1101000101110101110101010110…

Time to test:

O 𝑘 log 𝑘 [Chakraborty Garcia−Soriano Matsliah]

 min(𝑘, 𝑛 − 𝑘) [Blais Brody Matulef 11]

• Today: Ω(𝑘) for 𝑘 ≤ 𝑛/2

• Today’s bound implies  min(𝑘, 𝑛 − 𝑘)

Testing if a Function is a k-Parity

63

𝑘-Parity Functions

A function 𝑓 ∶ 0,1 𝑛 → {0,1} is a 𝑘-parity if

𝑓 𝑥 = 𝜒𝑆 𝑥 = 𝑖∈𝑆 𝑥𝑖 𝑚𝑜𝑑 2 .
for some set 𝑆 ⊆ 𝑛 of size 𝑆 = 𝑘.

Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

• Let 𝑇 be the best tester for the 𝑘-parity property for 𝜀 = 1/2
– query complexity of T is 𝑞 testing 𝑘−parity .

• We will construct a communication protocol for 𝐷𝐼𝑆𝐽𝒌/𝟐 that runs

𝑇 and has communication complexity 2 ⋅ 𝑞(testing 𝑘−parity).

• Then 2 ⋅ 𝑞(testing 𝑘−parity) ≥ 𝑅 DISJ𝑘/2 ≥ Ω 𝑘/2 for 𝑘 ≤ 𝑛/2

⇓

𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

64

holds for CC of every

protocol for 𝐷𝐼𝑆𝐽𝒌 [Kalyanasundaram Schnitger 92]

Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

65

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘/2.

Compute: 𝑓 = 𝜒𝑆

Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘/2
Compute: 𝑔 = 𝜒𝑇

1101000101110101110101010110…

Output T’s answer

T

ℎ = 𝑓 + 𝑔 (𝑚𝑜𝑑 2)

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕

ℎ 𝑥 ? 𝑓 𝑥 + 𝑔 𝑥 𝑚𝑜𝑑 2

𝑓(𝑥)
𝑔(𝑥)

• 𝑇 receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by 𝑇

Correctness:

• ℎ = 𝑓 + 𝑔 𝑚𝑜𝑑 2 = 𝜒𝑆 + 𝜒𝑇 𝑚𝑜𝑑 2 = 𝜒𝑆Δ𝑇

• 𝑆Δ𝑇 = 𝑆 + 𝑇 − 2 𝑆 ∩ 𝑇

• SΔ𝑇 =
𝑘 if S∩T = ∅

≤ 𝑘 − 2 if S∩T ≠ ∅

ℎ is
𝑘−parity if S∩T = ∅

𝑘′−parity where 𝑘′ ≠ 𝑘 if S∩T ≠ ∅

Summary: 𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

66

1/2-far from every 𝑘-parity

Current Directions

• Characterization
– Which classes of properties are testable?

• Relationships with other computational tasks
– e.g., learning, tolerant testing, local property

reconstruction

• Simpler access to the input
– e.g., nonadaptive and sample-based testers

• Relaxing the oracle assumption
– distributional erasure-resilient testers

• New distance measures

– 𝐿𝑝-testing

67

68

Tolerant Property Tester

[Parnas Ron Rubinfeld 06]

Reject with
probability 2/3

Accept with
probability ≥ 𝟐/𝟑



Tolerant Testing

Equivalent to tolerant testing: estimating distance to the property.

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

Close to YES

Far from

YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑



𝜀
Close to

YES

Far from

YES

YES

Don’t care 𝜀2

𝜀1

Sublinear-Time “Restoration” Models

• Local Decoding

• Program Checking

• Local Reconstruction

69

Input: Function 𝑓 nearly satisfying some property 𝑃
Requirement: Reconstruct function 𝑓 to ensure that
the reconstructed function 𝑔 satisfies 𝑃, changing
𝑓 only when necessary. For each input 𝑥, compute
𝑔(𝑥) with a few queries to 𝑓.

𝑓

𝑃
Input: A program 𝑃 computing 𝑓 correctly on most
inputs.
Requirement: Self-correct program 𝑃: for a given
input 𝑥, compute 𝑓(𝑥) by making a few calls to P.

Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest
codeword with a constant number of queries per
recovered bit.

𝑓

New models for data access

Relaxing the Oracle Assumption

A Sublinear-Time Algorithm

71

sublinear-time algorithm

Is it always possible to be able to read

any location of the input?

A - V E R Y - V E R Y - V E R Y - L O N G G G G - S T R I N G

? G? R ? E ? T

Distributional Assumptions on the Access

72

sublinear-time algorithm

• Sample-based testers [Goldreich Goldwasser Ron, Goldreich Ron]

can access only independent (labeled) samples from the domain

• Blocks-sample-based testers [Berman Murzabulatov R]

can access uniformly random blocks of pixels from input image

• Active testers [Balcan Blais Blum Yang]

get a small sample of domain points
can request labels only on points from the sample

A - V E R Y - V E R Y - V E R Y - L O N G G G G - S T R I N G

GR E T

Testing with Faulty Oracles

73

sublinear-time algorithm

• Erasure oracles

• Approximate oracles

• Malicious oracles

A - V E R Y - V E R Y - V E R Y - L O N G G G G - S T R I N G

? G? R ? E ?

Erasure-Resilient Testing [Dixit R Thakurta Varma]

74

⊥ ⊥ A - B L ⊥ ⊥ B L A - B L A - ⊥ L A - B L A - B L ⊥ - B L A

sublinear-time algorithm

? L? B ? L ?

• 𝛼 fraction of the input is erased adversarially

• Algorithm does not know in advance what’s erased

• Is it possible that the input satisfied the property?

Automatic Erasure-Resilience?

Is every sublinear-time algorithm automatically
erasure resilient?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj.

1 1 1 1 0 0 0

• This test detects a mistake only if midpoint is picked.

• If it is erased, it will fail.

• Not resilient even to 1 erasure!

75

1
2

1
2

⊥

2-Spanner-Based Test for Sortedness

Erasure-Resilient Property Testers

• We designed an tester for sortedness resilient to an 𝛼

fraction of erasures that runs in time 𝑶
𝐥𝐨𝐠 𝒏

𝟏−𝜶 𝜺

• It is based on a binary search with random pivots

• Erasure-resilient algorithms for monotonicity,
Lipschitz, convexity, bounded-derivative properties

Can all testable properties be tested in the
presence of erasures?

• Separation between standard and erasure-resilient
model

76

New measures of accuracy guaranties

𝐿𝑝-testing [Berman R Yaroslavtsev 14]

Which Stocks Grew Steadily?

Source: http://finance.google.com

For some application with real-valued data

we should use 𝑳𝟏 or 𝑳𝟐 instead of Hamming distance

New 𝐿𝑝-Testing Model for Real-Valued Data

• Generalizes standard testing

• Compatible with existing PAC-style learning models
(preprocessing for model selection)

• Our 𝑳𝒑-testers beat lower bounds for standard testers

 E.g., 𝑳𝟏-testing sortedness takes time 𝚯
𝟏

𝜺
instead of Θ

log 𝑛

𝜺

 𝑳𝟏-distance to nearest monotone function (𝑳𝟏-isotonic

regression) can be estimated within ±𝜺 in time Θ
1

𝜺𝟐

79

Open:

Can we perform other computational tasks

on real data

(such as local reconstruction)

with accuracy measured w.r.t. 𝐿𝑝 distances?

Current Directions

• Characterization
– Which classes of properties are testable?

• Relationships with other computational tasks
– e.g., learning, tolerant testing, local property

reconstruction

• Simpler access to the input
– e.g., nonadaptive and sample-based testers

• Relaxing the oracle assumption
– distributional erasure-resilient testers

• New distance measures

– 𝐿𝑝-testing

81

Conclusion

• Properties that admit sublinear-time testers are
everywhere

• Algorithms are often simple

• Analysis requires creation of interesting
combinatorial, geometric and algebraic tools

• Unexpected connections to other areas

• Many open questions

82

