
1

Sofya Raskhodnikova
Penn State University

Property Testing Tutorial



Big Data
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Do We Have To Read All the Data?

• What can an algorithm compute if it

– reads only a tiny portion of the data?

– runs in sublinear time?

• For most interesting problems sublinear-time 
algorithms must be

– approximate

– randomized

Image source: http://apandre.wordpress.com/2011/01/16/bigdata/



A Sublinear-Time Algorithm
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approximate answer

sublinear-time algorithm
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Quality of 

approximation 

Resources
• number of queries

• running time



Types of Approximation

• Classical approximation

• need to compute a value

output should be close to the desired value

• Property testing

• need to answer YES or NO

 intuition: only require correct answers on two sets of 
instances that are very different from each other
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Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

“in the ballpark” vs. “out of the ballpark”

Does the input satisfy the property 
or is it far from satisfying it?

• for some applications, it is the right question (probabilistically 
checkable proofs (PCPs), precursor to learning)

• as good when the data is constantly changing

• fast sanity check to rule out inappropriate inputs 

(rejection-based image processing)
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Property Tester

Close to YES

Far from

YES

YES

Reject with 
probability    2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑



Property Testing: Definition

Probabilistic Algorithm

YES Accept with 
probability ≥ 𝟐/𝟑

Reject with 
probability     2/3 

NO



far = differs in many places𝜀- (≥ 𝜀 fraction of places)

𝜀

[Rubinfeld Sudan 96, Goldreich Goldwasser Ron 98]



Test (𝑛, 𝑤)

Property Testing: a Toy Example

Input: a string 𝑤 ∈ 0,1 𝑛

Question: Is  𝑤 = 00…0?

Requires reading entire input.

Approximate version: Is 𝑤 = 00…0 or

does it have ≥ 𝜀𝑛 1’s (“errors”)?

1. Sample 𝑠 = 2/𝜀 positions uniformly and independently at random

2. If 1 is found, reject; otherwise, accept

Analysis: If 𝑤 = 00…0, it is always accepted. 

If 𝑤 is 𝜀-far, Pr[error] = Pr[no 1’s in the sample]≤ 1 − 𝜀 𝑠 ≤ 𝑒−𝜀𝑠 = 𝑒−2 <
1

3

If a test catches a witness with probability ≥ 𝑝, then

s =
ln 𝑘

𝑝
iterations of the test fail to catch a witness with probability ≤ 1/𝑘.
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Used: 1 − 𝑥 ≤ 𝑒−𝑥

Witness Lemma

0 0 0 1 … 0 1 0 0



Property Testing

Simple Examples



Example 1: Testing if a List is Sorted

Input: a list of n numbers  x1 , x2 ,..., xn

• Question: Is the list sorted?

Requires reading entire list: (n) time 

• Approximate version: Is the list sorted or ²-far from sorted?

(An ² fraction of xi ’s have to be changed to make it sorted.)

[Ergün Kannan Kumar Rubinfeld Viswanathan]: O((log n)/²) time 

• Attempts:

1. Test:  Pick a random i and reject if xi > xi+1 .

Fails on:  1 1 1 1 1 1 1 0 0 0 0 0 0 0 Ã 1/2-far from sorted

2. Test:  Pick random i < j and reject if xi > xj.

Fails on:  1 0 2 1 3 2 4 3 5 4 6 5 7 6             Ã 1/2-far from sorted
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Is a list sorted or ²-far from sorted?

Idea:  Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

• by  adding a few “shortcut” edges (𝑖, 𝑗) for i < j

• where each pair of vertices is connected by a path of length at most 2
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……

≤ n log n edges

1    2     3            …                                                    n-1 n



Is a list sorted or ²-far from sorted?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj. 

1             2            5            4            3            6             7
Analysis:

• Call an edge (𝑖, 𝑗) violated if xi > xj , and good otherwise.

• If i is an endpoint of a violated edge, call xi it bad. Otherwise, call it good.

Proof: Consider any two good numbers, xi and xj. 

They are connected by a path of (at most) two good edges 𝑖, 𝑘 , (𝑘, 𝑗)

) xi ≤ xk and xk ≤ xj

) xi ≤ xj
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1
2

1
2

5            4            3
xi                                                                                               xj

xk

Claim 1. All good numbers xi  are sorted.

Test [Dodis Goldreich Lehman R Ron Samorodnitsky, Bhattacharyya Grigorescu Jung R Woodruff]



Test [Dodis Goldreich Lehman R Ron Samorodnitsky, Bhattacharyya Grigorescu Jung R Woodruff]

1
2

1
2

Is a list sorted or ²-far from sorted?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj. 

1             2            5            4            3            6             7
Analysis:

• Call an edge (𝑖, 𝑗) violated if xi > xj , and good otherwise.

• If i is an endpoint of a violated edge, call xi it bad. Otherwise, call it good.

Proof: If a list is ²-far from sorted, it has  ¸ ² n bad numbers.  (Claim 1)

• Each violated edge contributes 2 bad numbers.  

• 2-spanner has  ¸ ² n/2 violated edges out of n log n.
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1
2

5            4            3
xi                                                                                               xj

xk

Claim 1. All good numbers xi  are sorted.

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.



Test [Dodis Goldreich Lehman R Ron Samorodnitsky, Bhattacharyya Grigorescu Jung R Woodruff]

Is a list sorted or ²-far from sorted?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj. 

1             2            5            4            3            6             7
Analysis:

• Call an edge (𝑖, 𝑗) violated if xi > xj , and good otherwise.

Sample (4 log n)/ ² edges (xi ,xj) from the 2-spanner and reject if xi > xj. 

Guarantee: All sorted lists are accepted.

All lists that are ²-far from sorted are rejected with probability ¸2/3.

Time: O((log n)/²)               
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1
2

5            4            3
xi                                                                                               xj

xk

Algorithm

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.



Testing if a List is Sorted: Summary

We can determine if a list of n numbers is

sorted or ²-far from sorted

in O
log 𝑛

²
time. 

• [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01, 

Blais R Yaroslavtsev 14]: This cannot be improved.

15
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Basic Properties of 
Functions

Example 2
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f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by 
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001 

011001  

𝑥
𝑦



Testing Monotonicity of Functions
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[Goldreich Goldwasser Lehman Ron Samorodnitsky, 

Dodis Goldreich Lehman R Ron Samorodnitsky

Fischer Lehman Newman R Rubinfeld Samorodnitsky]

• A function 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone

if increasing a bit of 𝑥 does not decrease 𝑓(𝑥). 

• Is 𝑓 monotone or 𝜀-far from monotone

(𝑓 has to change on many points to become monontone)?

– Edge 𝑥𝑦 is violated by  𝑓 if  𝑓 (𝑥) > 𝑓 (𝑦).

Time: 

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, i.e., 2𝑛

– Ω( 𝑛/𝜀) for nonadaptive, 1-sided error tests

– Recent: Θ( 𝑛/𝜀2) for nonadaptive tests 

[Khot Minzer Safra 15, Chen De Servidio Tang 15]

 Ω(𝑛1/4) [Belov Blais 16]

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

1

2
-far from monotone



Monotonicity Test [GGLRS, DGLRRS]
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Idea: Show that functions that are far from monotone violate many edges. 

Analysis

• If 𝑓 is monotone, EdgeTest always accepts. 

• If 𝑓 is 𝜀-far from monotone, by Witness Lemma, it suffices to show that ≥

𝜀/𝑛 fraction of edges (i.e., 
𝜀

𝑛
⋅ 2𝑛−1𝑛 = 𝜀2𝑛−1 edges) are violated by 𝑓.

– Let 𝑉(𝑓) denote the number of edges violated by 𝑓.

Contrapositive:  If 𝑉(𝑓) < 𝜀 2𝑛−1, 
𝑓 can be made monotone by changing  < 𝜀 2𝑛 values.

EdgeTest (𝑓, ε)

1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube.

2. Reject if some 𝑥, 𝑦 is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise,  accept.

Repair Lemma

𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values. 



Repair Lemma: Proof Idea
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Proof idea: Transform f into a monotone function by 
repairing edges in one dimension at a time.

Repair Lemma

𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values. 
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Repairing Violated Edges in One Dimension

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping horizontal

dimension

Swap violated edges 10 in one dimension to  01. 

Let 𝑉𝑗 = # of violated edges in dimension 𝑗

Enough to prove the claim for squares

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖



Proof of The Claim for Squares

• If no horizontal edges are violated, no action is taken. 
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Swapping horizontal

dimension

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖



Proof of The Claim for Squares

• If both horizontal edges are violated, both are swapped, so the 
number of vertical violated edges does not change. 
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Swapping horizontal

dimension

i

j

01 10

1 0 0 1

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖



Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges 
get swapped. 
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i

j

Swapping horizontal

dimension

1 0 0 1

𝒗𝒗 𝒗𝒗

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖



Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges 
get swapped. 

• Otherwise, the bottom vertices are labeled 01, and the 
vertical violation is repaired.
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i

j

Swapping horizontal

dimension

1 0 0 1

10 10

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖



Proof of The Claim for Squares

After we perform swaps in all dimensions:
• 𝑓 becomes monotone

• # of values changed: 
2 ⋅ 𝑉1 + 2 ⋅ (# violated edges in dim2 after swapping dim1)

+ 2 ⋅ (# violated edges in dim3 after swapping dim1 and 2)
+ … ≤ 2 ⋅ 𝑉1 + 2 ⋅ 𝑉2 +⋯2 ⋅ 𝑉𝑛 = 2 ⋅ 𝑉 𝑓
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Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Repair Lemma

𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values. 



Testing if a Functions 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone
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Monotone or 

𝜀-far from monotone?

O(n/𝜀) time

(logarithmic in the size 

of the input)

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

1

2
-far from monotone



Generalizations

• [Dodis Goldreich Lehman R Ron Samorodnitsky, 
Chakrabarty Seshadhri]:                                       

generalization to testing monotonicity of discrete     
𝑑-dimensional functions in polylogarithmic time.

• [Jha R, Chakrabarty Dixit Jha Sesh]: generalization to 
testing other properties of  functions in polylog time.
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Example 3: Testing Properties of Images
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Pixel Model

30

Query: point (𝑖1, 𝑖2)

Answer: color of (𝑖1, 𝑖2)

Input: 𝑛 × 𝑛 matrix of pixels

(0/1 values for black-and-white pictures)



Testing if an Image is a Half-plane

A half-plane or 

𝜀-far from a half-plane?

O(1/𝜀) time [R 03]

O(1/𝜀) time with uniform samples

[Berman Murzabulatov R 16]
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Half-plane Instances

32

A half-plane 1

4
-far from a half-plane



Half-plane Instances
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A half-plane 1

4
-far from a half-plane



Half-plane Instances
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A half-plane 1

4
-far from a half-plane



Half-plane Instances
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A half-plane 1

4
-far from a half-plane



Half-plane Instances
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A half-plane 1

4
-far from a half-plane



Half-plane Instances
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A half-plane 1

4
-far from a half-plane



Half-plane Instances

38

A half-plane 1

4
-far from a half-plane
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Half-Plane Tester

1. Sample 𝐬 = 𝚯
𝟏

𝛆
pixels uniformly 

and independently.
2. Find convex hull of black samples 
and convex hull of white samples. 

3. If the two hulls intersect, reject;
otherwise, accept. 

Correctness Theorem

If an image is 𝜀-far from being a half-plane, it is rejected w.p. ≥ 2/3.

 The tester always accepts half-plane images.



Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 A point does not have to correspond to a pixel.

 A white-central point is defined analogously.



Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 If we sample a black pixel (``witness’’) from each quadrant, then 
the black-central point is in the convex hull of black pixels.

We say ``we captured the black-central point’’.



Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 By Witness Lemma, if we sample 
ln 100

𝜀/4
random pixels, we fail to 

find a witness from a quadrant w.p. ≤
1

100
.

 By the union bound, we fail to capture a black-central w.p. ≤
4

100



Analysis Idea: Central Points

Definition

A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 Analogously, we fail to capture a white-central w.p. ≤
4

100



The Ham Sandwich Theorem

In 𝑛 dimensions, any 𝑛 measurable sets can be simultaneously 
bisected (w.r.t. their measure) by an (𝑛 − 1)-dimensional hyperplane.

 If an image is 𝜀-far from being a half-plane, 

it contains at least 𝜀𝑛2 pixels of each color.
 By continuity, there is a line that bisects all 

pixels of the same color into two sets.
 By the Ham Sandwich Theorem (for 𝑛 = 2), 

there is another line that bisects both sets. 

Central Points Exist



Hulls of Black- and White-Central Points

Main Lemma

If the image is 𝜀-far from being a half-plane 

then the convex hull of black-centrals 

intersects the convex hull of white-centrals.

white-centrals

black-centrals



Main Lemma

If the image is 𝜀-far from being a half-plane 

then the convex hull of black-centrals 

intersects the convex hull of white-centrals.

Proof: For the sake of contradiction,
assume they do not intersect.

 Then some line ℓ separates white-central and black-central points. 

Hulls of Black- and White-Central Points



Main Lemma

If the image is 𝜀-far from being a half-plane 

then the convex hull of black-centrals 

intersects the convex hull of white-centrals.

𝑾ℓ

𝑩ℓ

ℓ

Proof: For the sake of contradiction,
assume they do not intersect.

 Then some line ℓ separates white-central and black-central points.
 Let 𝐵ℓ and 𝑊ℓ be the closed half-planes formed by ℓ, with black-

central and white-central points, respectively.

Hulls of Black- and White-Central Points



Main Lemma

If the image is 𝜀-far from being a half-plane 

then the convex hull of black-centrals 

intersects the convex hull of white-centrals.

𝑾ℓ

𝑩ℓ

ℓ

Proof: For the sake of contradiction,
assume they do not intersect.

 There are ≥
𝜀𝑛2

2
black pixels in 𝑊ℓ or white pixels in 𝐵ℓ. 
W.l.o.g. suppose the latter holds.

 Let ℓ′ be the line parallel to ℓ and furthest from ℓ s.t. there ≥
𝜀𝑛2

2
white pixels in closed half-plane to the left of ℓ′.  

• There are ≥
𝜀𝑛2

2
white pixels in closed half-plane to the right of ℓ′. 

• By Ham Sandwich Theorem, there is a white-central point on ℓ′. 
Contradiction!

Hulls of Black- and White-Central Points

ℓ′



Completing the Analysis

Main Lemma

If the image is 𝜀-far from being a half-plane 

then the convex hull of black-centrals 

intersects the convex hull of white-centrals.

 Then some point v is in both hulls.
 Moreover, v is in the convex hull of 

• (at most) 3 black-central points;
• (at most) 3 white-central points.

 If we capture all 6, then v is in the hull of black samples and in 
the hull of white samples.

 Recall: we fail to capture a central point w.p. ≤
4

100

 By union bound, we fail to capture one or more of the 6 central 

points w.p. ≤
24

100
<

1

3
.

𝒗
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Summary: Half-plane Testing

• O(𝟏/𝜺) uniform samples are sufficient for testing the 
half-plane property with 1-sided error.

• It is easy to show that Ω(𝟏/𝜺) queries are necessary 
for even 2-sided error, adaptive testers.



Testing if an Image is a Half-plane

A half-plane or 

𝜀-far from a half-plane?

O(1/𝜀) time

51



Other Results on Properties of Images

• Pixel Model
Convexity [R 03, Berman Murzabulatov R 16]

Convex or 𝜀-far from convex?

O(1/𝜀) time

Connectedness [R 03, Berman Murzabulatov R 16]

Connected or 𝜀-far from connected?

O(1/𝜀3/2 log 1/𝜀 ) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template 

or is 𝜀-far?

time independent of image size

• Properties of sparse images [Ron Tsur 10]
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Summary of Examples We Have Seen

• Properties of number sequences
– sortedness

• Properties of functions
– monotonicity

• Visual properties
– half-plane
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In some cases, the exact versions

of these problems are NP-complete!

Property Testing: State of the Art

For many properties
of many types of objects

(images, number sequences, functions, graphs, 
codes, …),

there are testers that run in polylogarithmic time.
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Goal

Understanding sublinear algorithms and their limitations

• Algorithmic techniques 

(like dynamic programming for P)

• Lower bound techniques 

(like NP-completeness for NP)
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Testing World ≠ Classical World

The approximate testing world is fascinating and 
different from the world of exact problems

56

Problem Exact Testing

Is a 3CNF satisfiable? 

(3SAT)

NP-complete easy

[Alon Shapira]

Does an assignment 

satisfy a fixed 3CNF?

easy hard

[Ben-Sasson Harsha R]



Limitations of Property Testing Algorithms

General lower bound methods:

• Yao’s Minimax Principle

• Reductions from hard communication 
complexity problems [Blais Brody Matulef 11]
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Yao’s Minimax Principle

58

The following statements are equivalent.

• Need for lower bounds

Yao’s Minimax Principle (easy direction): Statement 2 ⇒ Statement 1.

Statement 1

For any probabilistic algorithm A of complexity q there exists an input x s.t.

Pr
𝑐𝑜𝑖𝑛 𝑡𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝐴

[A(x) is wrong] > 1/3.

Statement 2

There is a distribution D on the inputs, 
s.t. for every deterministic algorithm of complexity q,

Pr
𝑥←𝐷

[A(x) is wrong] > 1/3.



Toy Example: Lower Bound for Testing 1*

Input: string of n bits

Question: Does the string contain only 1’s or is it 𝜀-far form the all-1 string? 

Proof: By Yao’s Minimax Principle, enough to prove Statement 2.

59

Distribution D on n-bit strings

• Divide the input string into 1/𝜀 blocks of size 𝜀𝑛. 

• Let yi be the string  where the ith block is 0’s and remaining bits are 1.

• Distribution D gives the all-1 string w.p. 1/2 and yi with w.p. 1/2, 

where 𝑖 is chosen uniformly at random from 1, …, 1/𝜀.

1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝜺𝒏𝜺𝒏 𝜺𝒏 𝜺𝒏

Claim. Any algorithm needs (1/𝛆) queries to answer this question w.p. ≥ 𝟐/𝟑.



A Lower Bound for Testing 1*

Proof (continued): Now fix a deterministic tester A making q < 1/3𝜀 queries.

1. A must accept if all answers are 1. Otherwise, it would be wrong on all-1 
string, that is, with probability  1/2 with respect to D.

2. Let i1, . . . , iq be the positions A queries when it sees only 1s. The test can 
choose its queries based on previous answers.  However, since all these 
answers are 1 and since A is deterministic, the query positions are fixed.

• At least 1/𝜀 − q > 2/3𝜀 of the blocks do not hold any queried indices.

• Therefore, A accepts > 2/3 of the inputs yi. Thus, it is wrong with probability 

> 2/3𝜀 ⋅
𝜀

2
= 1/3

Context: [Alon Krivelevich Newman Szegedy 99]

Every regular language can be tested in O(1/𝜀 polylog 1/𝜀) time

60

Claim. Any 𝜀-test for 1* needs (1/𝛆) queries.



(Randomized) Communication Complexity

61

Compute 𝐶 𝑥, 𝑦

0100

11

001

⋯

0011

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑥 Input: 𝑦

1101000101110101110101010110…

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal:  minimize the number of bits exchanged.

• Communication complexity of a protocol is the maximum number of bits 
exchanged by the protocol.

• Communication complexity of a function 𝐶, denoted 𝑅(𝐶), is the 
communication complexity of the best protocol for computing C.



Example: Set Disjointness 𝐷𝐼𝑆𝐽𝒌

62

Theorem [Kalyanasundaram Schnitger 92]

𝑅 DISJ𝑘 ≥ Ω 𝑘 for all 𝑘 ≤
𝑛

2
. 

Compute 𝐷𝐼𝑆𝐽𝑘 𝑆, 𝑇

=  
𝒂𝒄𝒄𝒆𝒑𝒕 if 𝑆 ∩ 𝑇 = ∅
𝒓𝒆𝒋𝒆𝒄𝒕 otherwise

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘. Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘

1101000101110101110101010110…



Time to test: 

O 𝑘 log 𝑘 [Chakraborty Garcia−Soriano Matsliah]

 min(𝑘, 𝑛 − 𝑘 ) [Blais Brody Matulef 11]

• Today:  Ω(𝑘) for 𝑘 ≤ 𝑛/2

• Today’s bound implies    min(𝑘, 𝑛 − 𝑘 )

Testing if a Function is a k-Parity

63

𝑘-Parity Functions

A function 𝑓 ∶ 0,1 𝑛 → {0,1} is a 𝑘-parity if

𝑓 𝑥 = 𝜒𝑆 𝑥 =  𝑖∈𝑆 𝑥𝑖 𝑚𝑜𝑑 2 .
for some set 𝑆 ⊆ 𝑛 of size 𝑆 = 𝑘. 



Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

• Let 𝑇 be the best tester for the 𝑘-parity property for 𝜀 = 1/2
– query complexity of T is 𝑞 testing 𝑘−parity .

• We will construct a communication protocol for 𝐷𝐼𝑆𝐽𝒌/𝟐 that runs 

𝑇 and has communication complexity 2 ⋅ 𝑞(testing 𝑘−parity).

• Then 2 ⋅ 𝑞(testing 𝑘−parity) ≥ 𝑅 DISJ𝑘/2 ≥ Ω 𝑘/2 for 𝑘 ≤ 𝑛/2

⇓

𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2
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holds for CC of every 

protocol for 𝐷𝐼𝑆𝐽𝒌 [Kalyanasundaram Schnitger 92]



Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity
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BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘/2.

Compute: 𝑓 = 𝜒𝑆

Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘/2
Compute: 𝑔 = 𝜒𝑇

1101000101110101110101010110…

Output T’s answer

T

ℎ = 𝑓 + 𝑔 (𝑚𝑜𝑑 2)

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕

ℎ 𝑥 ? 𝑓 𝑥 + 𝑔 𝑥 𝑚𝑜𝑑 2

𝑓(𝑥)
𝑔(𝑥)

• 𝑇 receives its random bits from the shared random string.



Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by 𝑇

Correctness:

• ℎ = 𝑓 + 𝑔 𝑚𝑜𝑑 2 = 𝜒𝑆 + 𝜒𝑇 𝑚𝑜𝑑 2 = 𝜒𝑆Δ𝑇

• 𝑆Δ𝑇 = 𝑆 + 𝑇 − 2 𝑆 ∩ 𝑇

• SΔ𝑇 =  
𝑘 if S∩T = ∅

≤ 𝑘 − 2 if S∩T ≠ ∅

ℎ is  
𝑘−parity if S∩T = ∅

𝑘′−parity where 𝑘′ ≠ 𝑘 if S∩T ≠ ∅

Summary: 𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2
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1/2-far from every 𝑘-parity



Current Directions

• Characterization
– Which classes of properties are testable?

• Relationships with other computational tasks
– e.g., learning, tolerant testing, local property 

reconstruction

• Simpler access to the input
– e.g., nonadaptive and sample-based testers

• Relaxing the oracle assumption
– distributional erasure-resilient testers

• New distance measures

– 𝐿𝑝-testing
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Tolerant Property Tester

[Parnas Ron Rubinfeld 06]

Reject with 
probability    2/3 

Accept with 
probability ≥ 𝟐/𝟑



Tolerant Testing

Equivalent to tolerant testing: estimating distance to the property.

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

Close to YES

Far from

YES

YES

Reject with 
probability    2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑



𝜀
Close to

YES

Far from

YES

YES

Don’t care 𝜀2

𝜀1



Sublinear-Time “Restoration” Models

• Local Decoding

• Program Checking

• Local Reconstruction
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Input: Function 𝑓 nearly satisfying some property 𝑃
Requirement: Reconstruct function 𝑓 to ensure that 
the reconstructed function 𝑔 satisfies 𝑃, changing 
𝑓 only when necessary. For each input 𝑥, compute 
𝑔(𝑥) with a few queries to 𝑓.

𝑓

𝑃
Input: A program 𝑃 computing 𝑓 correctly on most 
inputs.
Requirement: Self-correct program 𝑃: for a given 
input 𝑥, compute 𝑓(𝑥) by making a few calls to P.

Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest 
codeword with a constant number of queries per 
recovered bit.

𝑓



New models for data access

Relaxing the Oracle Assumption



A Sublinear-Time Algorithm

71

sublinear-time algorithm

Is it always possible to be able to read 

any location of the input?

A - V E R Y - V E R Y - V E R Y - L O N G G G G - S T R I N G

? G? R ? E ? T



Distributional Assumptions on the Access

72

sublinear-time algorithm

• Sample-based testers [Goldreich Goldwasser Ron, Goldreich Ron]

can access only independent (labeled) samples from the domain

• Blocks-sample-based testers [Berman Murzabulatov R]

can access uniformly random blocks of pixels from input image

• Active testers [Balcan Blais Blum Yang]

get a small sample of domain points
can request labels only on points from the sample

A - V E R Y - V E R Y - V E R Y - L O N G G G G - S T R I N G

GR E T



Testing with Faulty Oracles

73

sublinear-time algorithm

• Erasure oracles

• Approximate oracles

• Malicious oracles

A - V E R Y - V E R Y - V E R Y - L O N G G G G - S T R I N G

? G? R ? E ?



Erasure-Resilient Testing [Dixit R Thakurta Varma]
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⊥ ⊥ A - B L ⊥ ⊥ B L A - B L A - ⊥ L A - B L A - B L ⊥ - B L A

sublinear-time algorithm

? L? B ? L ?

• 𝛼 fraction of the input is erased adversarially

• Algorithm does not know in advance what’s erased

• Is it possible that the input satisfied the property?



Automatic Erasure-Resilience?

Is every sublinear-time algorithm automatically 
erasure resilient?

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if xi > xj. 

1             1            1            1            0            0             0

• This test detects a mistake only if midpoint is picked.

• If it is erased, it will fail.

• Not resilient even to 1 erasure!
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1
2

1
2

⊥

2-Spanner-Based Test for Sortedness



Erasure-Resilient Property Testers

• We designed an tester for sortedness resilient to an 𝛼

fraction of erasures that runs in time 𝑶
𝐥𝐨𝐠 𝒏

𝟏−𝜶 𝜺

• It is based on a binary search with random pivots

• Erasure-resilient algorithms for monotonicity, 
Lipschitz, convexity, bounded-derivative properties

Can all testable properties be tested in the 
presence of erasures?

• Separation between standard and erasure-resilient 
model
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New measures of accuracy guaranties

𝐿𝑝-testing [Berman R Yaroslavtsev 14]



Which Stocks Grew Steadily?

Source: http://finance.google.com

For some application with real-valued data

we should use 𝑳𝟏 or 𝑳𝟐 instead of Hamming distance



New 𝐿𝑝-Testing Model for Real-Valued Data

• Generalizes standard testing

• Compatible with existing PAC-style learning models 
(preprocessing for model selection)

• Our 𝑳𝒑-testers beat lower bounds for standard testers 

 E.g., 𝑳𝟏-testing sortedness takes time 𝚯
𝟏

𝜺
instead of Θ

log 𝑛

𝜺

 𝑳𝟏-distance to nearest monotone function (𝑳𝟏-isotonic 

regression) can be estimated within  ±𝜺 in time Θ
1

𝜺𝟐
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Open:

Can we perform other computational tasks 

on real data 

(such as local reconstruction) 

with accuracy measured w.r.t. 𝐿𝑝 distances? 



Current Directions

• Characterization
– Which classes of properties are testable?

• Relationships with other computational tasks
– e.g., learning, tolerant testing, local property 

reconstruction

• Simpler access to the input
– e.g., nonadaptive and sample-based testers

• Relaxing the oracle assumption
– distributional erasure-resilient testers

• New distance measures

– 𝐿𝑝-testing
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Conclusion

• Properties that admit sublinear-time testers are 
everywhere

• Algorithms are often simple

• Analysis requires creation of interesting 
combinatorial, geometric and algebraic tools

• Unexpected connections to other areas

• Many open questions
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