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introduction

compression is about finding efficient representations of objects of
interest (pictures, music, data,...)

the ability to compress is often an evidence that we understand
something (Occam’s razor, learning theory,...)

focus on compression of conversations



Alice: hi. Bob: hi. Alice: how are you? Bob: good. how are you?
Alice: good. how are you? Bob: good. how are you? Alice: good.
how are you? Bob: good. how are you? Alice: good. how are you?
Bob: good. how are you? Alice: good. how are you? Bob: good.
how are you? Alice: good. how are you? Bob: good. how are you?
Alice: good. how are you? Bob: good. how are you? Alice: good.
how are you? Bob: good. how are you? Alice: good. how are you?
Bob: good. how are you? Alice: good. how are you? Bob: good.
how are you? Alice: great. how are you? Bob: great. how are
you? Alice: good. how are you? Bob: good. how are you? Alice:
good. how are you? Bob: good. how are you? Alice: good. how
are you? Bob: good. bye. Alice: bye.



compression?

want: length ≈ “true content”

definitions:

communication complexity [Yao]

information theory
[Shannon, ... ,(Bar-Yossef)-Jayram-Kumar-Sivakumar,
Chakrabarti-Shi-Wirth-Yao,
Barak-Braverman-Chen-Rao, ... , Bauer-Moran-Y, ...]



the model

two players

(x , y) is chosen from a known distribution µ

alice gets input x
bob gets input y

they communicate according to a randomized protocol π

the transcript Tπ = (π(x , y , r , ra, rb), r) is the “conversation”

compression = an efficient simulation of Tπ

external versus external
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external compression



simulations

a protocol σ is a external ε-error simulation of π if

(x , y ,Tπ) ≈
ε

(x , y , d(Tσ))

i.e. ε-close in statistical distance, for some d

comments:

the map d can be thought of as the dictionary that translates the
language of σ to that of π

the word “external” indicates that every person that hears σ can
understand the meaning of σ(x , y) as a “π conversation” as long
as he/she knows the dictionary



example: one way conversations

assume alice wants to send x ∼ µ to bob

what is the most efficient way?

length of π under µ

CCµ(π) = E
x∼µ
|π(x)|

content is measured by entropy

H(µ) =
∑
x

µ(x) log(1/µ(x))

theorem [Shannon, Huffman]
1. if σ(x) determines x then H(µ) ≤ CCµ(σ)
2. there is σ that determines x so that CCµ(σ) ≤ H(µ) + 1
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entropy

let X be a random variable taking values in finite set S

entropy:

H(X ) =
∑
x∈S

Pr[X = x ] log(1/Pr[X = x ])

“the optimal expected description length of X”

chain rule:
H(X ,Y ) = H(X ) + H(Y |X )

properties:

H(Y |X ) ≤ H(Y )
H(X ) ≤ log |S |, equality iff X is uniform
H(f (X )|X ) = 0
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mutual information

let X ,Y be random variables taking values in finite set S

mutual information:

I (X ;Y ) = H(X )− H(X |Y )

chain rule:
I (X ,Y ;Z ) = I (X ;Z ) + I (Y ;Z |X )

properties:

I (X ;Y ) = 0 iff X ,Y independent
I (X ;Y ) ≥ I (X ; f (Y )) info processing inequality
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external compression

roughly, σ is an external compression of π with if
1. σ externally simulates1 π
2. CCµ(σ) . I extµ (π)

the external information cost of π is measured as

I extµ (π) = I (X ,Y ;Tπ)

a lower bound: if σ is an external 0-error simulation of π then

CCµ(σ) ≥ I extµ (π)

1usually error is 1/3
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external compression: upper bounds

for all π, µ:

[Huffman] if π is deterministic and just alice speaks, there is an
optimal external 0-error simulation σ of π so that

CCµ(σ) ≤ I extµ (π) + 1

[Dietzfelbinger-Wunderlich] if π is deterministic, there is an
external 0-error simulation σ of π so that

CCµ(σ) < 4I extµ (π) + 4

[Barak-Braverman-Chen-Rao] there is an external simulation σ of
π so that

CCµ(σ) . I extµ (π) · logCCµ(π)



internal compression



internal simulations

a protocol σ is an internal simulation of π if

(x , y ,Tπ) ≈
ε

(x , y , da(x , ra,Tσ)) ≈
ε

(x , y , db(y , rb,Tσ))

i.e. ε-close in statistical distance, for some da, db

comments:

the maps da, db are private dictionaries that translate the language
of σ to that of π

the word “internal” indicates that only alice and bob are
guaranteed to understand the meaning of σ



internal compression

roughly, σ is an internal compression of π with ε-error if
1. σ internally ε-error simulates π and
2. CCµ(σ) . I intµ (π)

the interal information cost of π is measured as

I intµ (π) = I (Y ;Tπ|X ) + I (X ;Tπ|Y )

always
I intµ (π) ≤ I extµ (π)



Internal simulation: lower bounds

if σ is an internal 0-error simulation of π then

CCµ(σ) ≥ I intµ (π)

[Bauer-Moran-Y]∗ for every N, there is µ and a protocol π with
I intµ (π) = 1 so that every σ that simulates π with 0-error satisfies

CCµ(σ) ≥ N

[Ganor-Kol-Raz] there are π, µ so that
1. I intµ (π) = k
2. if σ is an internal simulation of π then CCµ(σ) ≥ exp(k)
and more...



Internal simulation: upper bounds

[Brody-Buhrman-Koucky-Loff-Speelman-Vereshchagin, Pankratov]
for every deterministic π and µ, there is an internal simulation σ of
π so that

CCµ(σ) . I intµ (π) · logCCµ(π)

[Bauer-Moran-Y] for every deterministic π and µ, there is an
internal simulation σ of π so that

CCµ(σ) . (I intµ (π))2 · log logCCµ(π)

[Barak-Braverman-Chen-Rao] for every π and µ, there is an
internal simulation σ of π so that

CCµ(σ) .
√

I intµ (π) · CCµ(π) · logCCµ(π)



local summary

compress π = efficient simulation of π

simulations: external and internal

information costs: external and internal

comments:

external compression is easier but internal compression is more
useful (e.g. direct sums)

know almost optimal external compressions but no internal ones



an external compression



an external compression

theorem [Dietzfelbinger-Wunderlich]

optimal external compression of deterministic protocols

idea

try jump directly to a “meaningful state” in the conversation

recall that π(x , y) is a walk on a tree

observe: if π is deterministic then

I extµ (π) = I (X ,Y ;π(X ,Y )) = H(π(X ,Y ))− H(π(X ,Y )|X ,Y )

= H(π(X ,Y )) = E
u∼π(µ)

log
1

µ({(x , y) : π(x , y) = u})



“meaningful”

for every vertex v in protocol tree, define a number

p(v) = µ({(x , y) : π(x , y) ∈ πv})

where πv is the subtree rooted at v

property: if v is parent of v1, v2 then p(v) = p(v1) + p(v2)

lemma (there is a meaningful state)

there exists v so that either v is a leaf with p(v) ≥ 2/3 or

1/3 ≤ p(v) ≤ 2/3
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simulation

summary:

“two bits of communication give one bit of information”

formally:

for fixed (x , y), the length of σ when simulating u = π(x , y) is at
most

2 ·
⌈

log3/2
1

p(u)

⌉
≤ 2 ·

(
1 + 2 log

1

p(u)

)

so

E |σ(x , y)| ≤ 2 + 4E log
1

p(u)
= 2 + 4I ext(π)
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an internal compression

theorem [Barak-Braverman-Chen-Rao]

for every π and µ, there is an internal simulation σ of π so that

CCµ(σ) .
√
I intµ (π) · CCµ(π) logCCµ(π)



an internal compression

outline:

alice can sample a leaf va by guessing bob’s messages

bob can sample a leaf vb by guessing alice’s messages

use knowledge of µ, π

using public randomness they jointly sample (va, vb)

if by chance va = vb then they sampled correctly
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internal compression

outline of simulation σ:

sample va, vb (0 bits)

if va = vb then done, otherwise

find “error” (logCCµ(π) bits)

correct and repeat

⇒ CCµ(σ) ≤ logCCµ(π) · E number of “errors”

lemma: E number of “errors” ≤
√
I intµ (π) · CCµ(π)
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summary

defined internal and external compression

saw two concrete compression schemes

connections to direct sum and product

we still do not have a full understanding



spaseeba


