Communication Complexity II

Amir Yehudayoff (Technion)

introduction

compression is about finding efficient representations of objects of interest (pictures, music, data,...)
the ability to compress is often an evidence that we understand something (Occam's razor, learning theory,...)
focus on compression of conversations

Alice: hi. Bob: hi. Alice: how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: great. how are you? Bob: great. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. how are you? Alice: good. how are you? Bob: good. bye. Alice: bye.

compression?

want: length \approx "true content"

definitions:

communication complexity [Yao]
information theory
[Shannon, ... ,(Bar-Yossef)-Jayram-Kumar-Sivakumar, Chakrabarti-Shi-Wirth-Yao,
Barak-Braverman-Chen-Rao, ... , Bauer-Moran-Y, ...]

the model

two players

(x, y) is chosen from a known distribution μ
alice gets input x bob gets input y
they communicate according to a randomized protocol π
the transcript $T_{\pi}=\left(\pi\left(x, y, r, r_{a}, r_{b}\right), r\right)$ is the "conversation"

the model

two players

(x, y) is chosen from a known distribution μ
alice gets input x bob gets input y
they communicate according to a randomized protocol π
the transcript $T_{\pi}=\left(\pi\left(x, y, r, r_{a}, r_{b}\right), r\right)$ is the "conversation"
compression $=$ an efficient simulation of T_{π}
external compression

simulations

a protocol σ is a external ϵ-error simulation of π if

$$
\left(x, y, T_{\pi}\right) \underset{\epsilon}{\approx}\left(x, y, d\left(T_{\sigma}\right)\right)
$$

i.e. ϵ-close in statistical distance, for some d

comments:

the map d can be thought of as the dictionary that translates the language of σ to that of π
the word "external" indicates that every person that hears σ can understand the meaning of $\sigma(x, y)$ as a " π conversation" as long as he/she knows the dictionary

example: one way conversations

assume alice wants to send $x \sim \mu$ to bob
what is the most efficient way?

example: one way conversations

assume alice wants to send $x \sim \mu$ to bob
what is the most efficient way?
length of π under μ

$$
C C_{\mu}(\pi)=\underset{x \sim \mu}{\mathbb{E}}|\pi(x)|
$$

content is measured by entropy

$$
H(\mu)=\sum_{x} \mu(x) \log (1 / \mu(x))
$$

example: one way conversations

assume alice wants to send $x \sim \mu$ to bob
what is the most efficient way?
length of π under μ

$$
C C_{\mu}(\pi)=\underset{x \sim \mu}{\mathbb{E}}|\pi(x)|
$$

content is measured by entropy

$$
H(\mu)=\sum_{x} \mu(x) \log (1 / \mu(x))
$$

theorem [Shannon, Huffman]

1. if $\sigma(x)$ determines x then $H(\mu) \leq C C_{\mu}(\sigma)$
2. there is σ that determines x so that $C C_{\mu}(\sigma) \leq H(\mu)+1$

entropy

let X be a random variable taking values in finite set S
entropy:

$$
H(X)=\sum_{x \in S} \operatorname{Pr}[X=x] \log (1 / \operatorname{Pr}[X=x])
$$

"the optimal expected description length of X "

entropy

let X be a random variable taking values in finite set S
entropy:

$$
H(X)=\sum_{x \in S} \operatorname{Pr}[X=x] \log (1 / \operatorname{Pr}[X=x])
$$

"the optimal expected description length of X "
chain rule:

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

entropy

let X be a random variable taking values in finite set S
entropy:

$$
H(X)=\sum_{x \in S} \operatorname{Pr}[X=x] \log (1 / \operatorname{Pr}[X=x])
$$

"the optimal expected description length of X "
chain rule:

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

properties:
$H(Y \mid X) \leq H(Y)$
$H(X) \leq \log |S|$, equality iff X is uniform
$H(f(X) \mid X)=0$

mutual information

let X, Y be random variables taking values in finite set S mutual information:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

mutual information

let X, Y be random variables taking values in finite set S mutual information:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

chain rule:

$$
I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)
$$

mutual information

let X, Y be random variables taking values in finite set S
mutual information:

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

chain rule:

$$
I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)
$$

properties:
$I(X ; Y)=0$ iff X, Y independent
$I(X ; Y) \geq I(X ; f(Y))$ info processing inequality

external compression

roughly, σ is an external compression of π with if

1. σ externally simulates ${ }^{1} \pi$
2. $C C_{\mu}(\sigma) \lesssim l_{\mu}^{\text {ext }}(\pi)$
the external information cost of π is measured as

$$
I_{\mu}^{e x t}(\pi)=I\left(X, Y ; T_{\pi}\right)
$$

external compression

roughly, σ is an external compression of π with if

1. σ externally simulates ${ }^{1} \pi$
2. $C C_{\mu}(\sigma) \lesssim l_{\mu}^{\text {ext }}(\pi)$
the external information cost of π is measured as

$$
I_{\mu}^{e x t}(\pi)=I\left(X, Y ; T_{\pi}\right)
$$

a lower bound: if σ is an external 0 -error simulation of π then

$$
C C_{\mu}(\sigma) \geq I_{\mu}^{e x t}(\pi)
$$

external compression: upper bounds

for all π, μ :
[Huffman] if π is deterministic and just alice speaks, there is an optimal external 0 -error simulation σ of π so that

$$
C C_{\mu}(\sigma) \leq I_{\mu}^{e x t}(\pi)+1
$$

[Dietzfelbinger-Wunderlich] if π is deterministic, there is an external 0 -error simulation σ of π so that

$$
C C_{\mu}(\sigma)<4 I_{\mu}^{e x t}(\pi)+4
$$

[Barak-Braverman-Chen-Rao] there is an external simulation σ of π so that

$$
C C_{\mu}(\sigma) \lesssim I_{\mu}^{e x t}(\pi) \cdot \log C C_{\mu}(\pi)
$$

internal compression

internal simulations

a protocol σ is an internal simulation of π if

$$
\left(x, y, T_{\pi}\right) \underset{\epsilon}{\approx}\left(x, y, d_{a}\left(x, r_{a}, T_{\sigma}\right)\right) \underset{\epsilon}{\approx}\left(x, y, d_{b}\left(y, r_{b}, T_{\sigma}\right)\right)
$$

i.e. ϵ-close in statistical distance, for some d_{a}, d_{b}

comments:

the maps d_{a}, d_{b} are private dictionaries that translate the language of σ to that of π
the word "internal" indicates that only alice and bob are guaranteed to understand the meaning of σ

internal compression

roughly, σ is an internal compression of π with ϵ-error if

1. σ internally ϵ-error simulates π and
2. $C C_{\mu}(\sigma) \lesssim I_{\mu}^{\text {int }}(\pi)$
the interal information cost of π is measured as

$$
I_{\mu}^{\text {int }}(\pi)=I\left(Y ; T_{\pi} \mid X\right)+I\left(X ; T_{\pi} \mid Y\right)
$$

always

$$
I_{\mu}^{\text {int }}(\pi) \leq I_{\mu}^{\text {ext }}(\pi)
$$

Internal simulation: lower bounds

if σ is an internal 0-error simulation of π then

$$
C C_{\mu}(\sigma) \geq I_{\mu}^{i n t}(\pi)
$$

[Bauer-Moran- Y$]^{*}$ for every N, there is μ and a protocol π with $I_{\mu}^{\text {int }}(\pi)=1$ so that every σ that simulates π with 0 -error satisfies

$$
C C_{\mu}(\sigma) \geq N
$$

[Ganor-Kol-Raz] there are π, μ so that

1. $I_{\mu}^{\text {int }}(\pi)=k$
2. if σ is an internal simulation of π then $C C_{\mu}(\sigma) \geq \exp (k)$ and more...

Internal simulation: upper bounds

[Brody-Buhrman-Koucky-Loff-Speelman-Vereshchagin, Pankratov] for every deterministic π and μ, there is an internal simulation σ of π so that

$$
C C_{\mu}(\sigma) \lesssim I_{\mu}^{\text {int }}(\pi) \cdot \log C C_{\mu}(\pi)
$$

[Bauer-Moran- Y] for every deterministic π and μ, there is an internal simulation σ of π so that

$$
C C_{\mu}(\sigma) \lesssim\left(I_{\mu}^{\text {int }}(\pi)\right)^{2} \cdot \log \log C C_{\mu}(\pi)
$$

[Barak-Braverman-Chen-Rao] for every π and μ, there is an internal simulation σ of π so that

$$
C C_{\mu}(\sigma) \lesssim \sqrt{\operatorname{lint}_{\mu}^{\text {int }}(\pi) \cdot C C_{\mu}(\pi)} \cdot \log C C_{\mu}(\pi)
$$

local summary

compress $\pi=$ efficient simulation of π
simulations: external and internal
information costs: external and internal
comments:
external compression is easier but internal compression is more useful (e.g. direct sums)
know almost optimal external compressions but no internal ones

an external compression

an external compression

theorem [Dietzfelbinger-Wunderlich]

optimal external compression of deterministic protocols

idea

try jump directly to a "meaningful state" in the conversation recall that $\pi(x, y)$ is a walk on a tree
observe: if π is deterministic then

$$
\begin{aligned}
l_{\mu}^{e x t}(\pi) & =I(X, Y ; \pi(X, Y))=H(\pi(X, Y))-H(\pi(X, Y) \mid X, Y) \\
& =H(\pi(X, Y))=\underset{u \sim \pi(\mu)}{\mathbb{E}} \log \frac{1}{\mu(\{(x, y): \pi(x, y)=u\})}
\end{aligned}
$$

"meaningful"

for every vertex v in protocol tree, define a number

$$
p(v)=\mu\left(\left\{(x, y): \pi(x, y) \in \pi_{v}\right\}\right)
$$

where π_{v} is the subtree rooted at v
property: if v is parent of v_{1}, v_{2} then $p(v)=p\left(v_{1}\right)+p\left(v_{2}\right)$

"meaningful"

for every vertex v in protocol tree, define a number

$$
p(v)=\mu\left(\left\{(x, y): \pi(x, y) \in \pi_{v}\right\}\right)
$$

where π_{v} is the subtree rooted at v
property: if v is parent of v_{1}, v_{2} then $p(v)=p\left(v_{1}\right)+p\left(v_{2}\right)$
lemma (there is a meaningful state)
there exists v so that either v is a leaf with $p(v) \geq 2 / 3$ or

$$
1 / 3 \leq p(v) \leq 2 / 3
$$

simulation

$$
p(v) \approx \frac{1}{2}, R_{v}=X_{v} \times Y_{0}
$$

simulation

$$
p(v) \approx \frac{1}{2}, R_{v}=X_{v} \times Y_{v}
$$

$$
a=1_{x \in x_{v}}
$$

$$
b=1_{y \in} Y_{v}
$$

simulation

simulation

summary:

"two bits of communication give one bit of information"

simulation

summary:

"two bits of communication give one bit of information"

formally:

for fixed (x, y), the length of σ when simulating $u=\pi(x, y)$ is at most

$$
2 \cdot\left\lceil\log _{3 / 2} \frac{1}{p(u)}\right\rceil \leq 2 \cdot\left(1+2 \log \frac{1}{p(u)}\right)
$$

simulation

summary:

"two bits of communication give one bit of information"

formally:

for fixed (x, y), the length of σ when simulating $u=\pi(x, y)$ is at most

$$
2 \cdot\left\lceil\log _{3 / 2} \frac{1}{p(u)}\right\rceil \leq 2 \cdot\left(1+2 \log \frac{1}{p(u)}\right)
$$

SO

$$
\mathbb{E}|\sigma(x, y)| \leq 2+4 \mathbb{E} \log \frac{1}{p(u)}=2+4 I^{e x t}(\pi)
$$

an internal compression

an internal compression

theorem [Barak-Braverman-Chen-Rao]

for every π and μ, there is an internal simulation σ of π so that

$$
C C_{\mu}(\sigma) \lesssim \sqrt{I_{\mu}^{\text {int }}(\pi) \cdot C C_{\mu}(\pi)} \log C C_{\mu}(\pi)
$$

an internal compression

outline:

alice can sample a leaf v_{a} by guessing bob's messages
bob can sample a leaf v_{b} by guessing alice's messages
use knowledge of μ, π

an internal compression

outline:

alice can sample a leaf v_{a} by guessing bob's messages
bob can sample a leaf v_{b} by guessing alice's messages
use knowledge of μ, π
using public randomness they jointly sample (v_{a}, v_{b})
if by chance $v_{a}=v_{b}$ then they sampled correctly

internal compression

internal compression

internal compression
$x y$

internal compression
$x y$

internal compression

outline of simulation σ :

sample v_{a}, v_{b} (0 bits)
if $v_{a}=v_{b}$ then done, otherwise find "error" $\left(\log C C_{\mu}(\pi)\right.$ bits) correct and repeat

internal compression

outline of simulation σ :
sample v_{a}, v_{b} (0 bits)
if $v_{a}=v_{b}$ then done, otherwise
find "error" $\left(\log C C_{\mu}(\pi)\right.$ bits)
correct and repeat

$$
\Rightarrow C C_{\mu}(\sigma) \leq \log C C_{\mu}(\pi) \cdot \mathbb{E} \text { number of "errors" }
$$

internal compression

outline of simulation σ :
sample v_{a}, v_{b} (0 bits)
if $v_{a}=v_{b}$ then done, otherwise
find "error" $\left(\log C C_{\mu}(\pi)\right.$ bits)
correct and repeat

$$
\Rightarrow C C_{\mu}(\sigma) \leq \log C C_{\mu}(\pi) \cdot \mathbb{E} \text { number of "errors" }
$$

lemma: \mathbb{E} number of "errors" $\leq \sqrt{\operatorname{lint}_{\mu}^{\text {int }}(\pi) \cdot C C_{\mu}(\pi)}$

summary

defined internal and external compression

saw two concrete compression schemes
connections to direct sum and product
we still do not have a full understanding

spaseeba

