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Abstract We give a uniform proof of the theorems of Yao and Beigel-Tarui
representing ACC predicates as constant depth circuits with MODm gates
and a symmetric gate. The proof is based on a relativized, generalized form
of Toda’s theorem expressed in terms of closure properties of formulas under
bounded universal, existential and modular counting quantifiers. This allows
the main proofs to be expressed in terms of formula classes instead of Boolean
circuits. The uniform version of the Beigel-Tarui theorem is then obtained
automatically via the Furst-Saxe-Sipser and Paris-Wilkie translations. As a
special case, we obtain a uniform version of Razborov and Smolensky’s repre-
sentation of AC0[p] circuits. The paper is partly expository, but is also moti-
vated by the desire to recast Toda’s theorem, the Beigel-Tarui theorem, and
their proofs into the language of bounded arithmetic. However, no knowledge
of bounded arithmetic is needed.
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1 Introduction

Yao [35] and Beigel-Tarui [7] proved a representation theorem for ACC showing
that ACC circuits can be transformed into constant depth quasipolynomial size
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circuits. The easiest version of their representation applies to prime moduli m
and states that any AC0[m] circuit can be converted into a quasipolynomial
size, depth three circuit with the bottom (input) gates being polylogarith-
mic fanin ∧ gates, the middle level being MODm gates, and the top level
containing a symmetric gate as the output gate. A closely related, alternate
representation of AC0[m] uses depth four circuits, by replacing the symmetric
gate with a depth two layer of ∧/∨ gates that perform approximate count-
ing. The strongest version of the representation applies to arbitrary m ≥ 2; it
eliminates the MODm gates, and converts any ACC circuit into a quasipoly-
nomial size, depth two circuit with the bottom gates being polylogarithmic
fanin ∧ gates, and the top gate a symmetric function.

These ACC representations were inspired by an important theorem of
Toda [31] on the containment of the polynomial time hierarchy (PH) in PPP. It
was quickly realized that the Furst-Saxe-Sipser [13] method (or, equivalently,
the Paris-Wilkie method [23]) of translating PH predicates into circuits means
that Toda’s theorem implies results about bounded depth circuits. The first
step towards the ACC representations was by Allender [1], who translated
Toda’s result into the setting of AC0-circuits. After this, Yao [35] and Beigel-
Tarui [7] formulated their representations for ACC. Further refinements were
made by a number of researchers, including [3,4,8,14,18,30,32]. See also [29,
15] for constructions expressing conjunctions and disjunctions with constant-
depth modular counting circuits. In addition, see [11] for improvements in
circuit sizes.

We presume the reader is familiar with Boolean complexity, but as a re-
minder, for fixed m > 1, AC0[m] is the class of Boolean predicates which can
be computed by constant depth circuits using negation gates and unbounded
fanin ∧, ∨, and MOD m gates. ACC is the union of the classes AC0[m] for
m > 1. The size of a circuit is the number of wires in the circuit. For more in-
formation, the reader may consult the papers cited in the previous paragraph,
or the textbook [5].

We next state two forms of the Beigel-Tarui theorem. The first version
(Theorem 1) is equivalent to the characterization of Razborov and Smolen-
sky [24,28], showing that for prime m, any AC0[m] predicate can be repre-
sented by a probabilistic low degree polynomial over Fm. At the end of the
paper, we state a weaker form of Theorem 1 which has already found applica-
tions via bounded arithmetic to propositional proof complexity [10].

Theorem 1 Fix d ≥ 1 and a prime m ≥ 2. Suppose C is a depth d ACC
circuit of size S which uses MOD m gates. (That is, C is an AC0[m] circuit.)

Then there is an equivalent circuit C′ of size 2(logS)O(1)

which has depth three.
The first (input) level of C′ contains ∧ gates of fanin (log S)O(1), the middle
level contains MOD m gates, and the output gate is a symmetric gate. The
output gate can be taken to be an approximate majority gate.

Theorem 2 Fix d and m ≥ 2. Suppose C is a depth d ACC circuit of
size S which uses MOD m gates. Then there is an equivalent circuit C′ of
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size 2(logS)O(1)

of depth two. The first level of C′ contains ∧ gates of fanin
(logS)O(1) and the output gate is a symmetric gate.

The constants implicit in the O(1) terms in the bounds on size and fanin
are independent of S, but do depend on d and m. Note that C′ is quasipolyno-
mial size, not polynomial, size. This is the usual situation for the Paris-Wilkie
and Furst-Saxe-Sipser translations. Indeed, in the setting of circuit complexity,
Barrington [6] argues that quasipolynomial size is more natural than polyno-
mial size. Likewise, in the setting of bounded arithmetic, it is widely recognized
that I∆0 +Ω1 and the Si

2 and Ti
2 fragments of bounded arithmetic correspond

to bounded depth quasipolynomial size circuits. (Paris and Wilkie [23], how-
ever, worked with the fragment I∆0, and obtained polynomial size circuits.)

The output symmetric gate for Theorem 2 can be expressed as an approx-
imate majority of iterated modular counting operators. For this, see Theo-
rem 31 and Section 4.

An important aspect of the Beigel-Tarui theorem is that the circuit C′ can
be described uniformly in terms of the circuit C. Suppose uniform circuits
are represented with the “direct connection” representation in which there is
an algorithm which runs in time logarithmic in the size of the circuit, and
identifies indices i which are valid gate numbers, identifies the type of gate i,
and computes the index of the j-th input to gate i. The Beigel-Tarui theorem
holds in a strongly uniform way: namely, there is a quasilogarithmic time
(w.l.o.g., logarithmic time in the size of C′) algorithm, which, given access to
the direct connection language for C, computes the direct connection language
for C′.

This paper gives a new proof of this strongly uniform version of the Beigel-
Tarui theorem below. It should be noted there are already several versions of
this result, including Barrington [6] and Allender-Gore [3] and more recently
Williams [34]. The novel aspects of our proof are threefold. First, we take a
detour through formulas in the modular polynomial time hierarchy ModPH
[2,14]. The ModPH formulas are defined to use modular counting quantifiers
over any prime modulus m. Counting over composite moduli m can be sim-
ulated using by using multiple counting quantifiers with prime moduli. This
means that ModPH is a uniform version of ACC. At the same time, we con-
sider the modular polynomial time hierarchy ModPHm in which only the fixed
prime value m may be used for modular counting quantifiers. ModPHm is a
uniform version of AC0[m]. Second, we do not directly prove the Beigel-Tarui
theorem, nor do our main proofs deal with circuits. Instead, we use uniform
descriptions of ModPH and ModPHm predicates in terms of formulas. We deal
with subclasses, ⊕-ptime and 1⊕m-ptime, of formulas which are expressed in
a prenex form with modular counting quantifiers, but no universal or existen-
tial quantifiers. We also consider probabilistic versions of these classes, called
BP·⊕-ptime and BP·1⊕m-ptime. Our main theorems prove closure proper-
ties for these classes of formulas. Third, all our results about formula classes
relativize. Using these relativized results, we obtain the uniform Beigel-Tarui
theorems in the forms of Theorems 1 and 2 as corollaries via the Furst-Saxe-
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Sipser and Paris-Wilkie translation. Prior proofs all used delicate, local trans-
formations of circuits to obtain uniformity; our proof avoids these in favor of
manipulations of ModPH and ModPHm formulas.

Our underlying proof techniques are based closely on the earlier proofs of
Toda’s theorem and the Beigel-Tarui theorem. The reader can consult Arora
and Barak [5] for the standard version of the proof of Toda’s theorem. An-
other simple proof has been given by [12]. In particular, our proof still uses
the Valiant-Vazirani theorem. Similarly, we still use the modulus amplifying
polynomials of Toda, Yao, and Beigel-Tarui. Our use of the Paris-Wilkie, Furst-
Saxe-Sipser translation is also standard; see for instance [19,10].

Chen and Papakonstantinou [11] have recently given improved size bounds,
showing in particular that the dependence of the “O(1)” exponents in Theo-
rems 1 and 2 can be reduced to only O(d). The present paper does not examine
dependence on the depth, but our constructions do not achieve bounds as small
as those of [11]. It would be interesting to investigate whether they can be im-
proved. It is a bit surprising where the growth rates appear in our proofs: the
quasipolynomial growth rate of Theorems 1 and 2 arises from the conversion
of ModPH formulas to BP·⊕-ptime formulas; however, there is only polyno-
mial size increase in going from BP·⊕-ptime formulas to the representation of
Theorem 2.

Our motivations arise from expressibility and provability in bounded arith-
metic, notably how results in computational complexity relate to bounded
arithmetic. The modular polynomial time hierarchy ModPH is equivalent to
expressibility in the language ∆0 of bounded arithmetic augmented with mod-
ular counting quantifiers and the smash function #. However, we do not use
any constructions from bounded arithmetic. Provability in bounded arithmetic
is the topic of another paper, joint by the present author, Leszek Ko lodziejczyk,
and Konrad Zdanowski [10], in which Toda’s theorem is proved within a frag-
ment of bounded arithmetic.

We thank Eric Allender, Leszek Ko lodziejczyk, and Ryan Williams for
helpful comments and discussions. We also thank the anonymous referee for
substantial helpful comments and especially for finding mistakes in the proofs
in the original draft of the paper.

2 Modular counting and probabilistic classes

Section 2.1 defines a version of the polynomial hierarchy augmented with
modular counting quantifiers, called the “modular polynomial time hierar-
chy” ModPH. This hierarchy is well-known, see [2,14] for instance. Section 2.1
also defines two prenex subclasses of the ModPH predicates called the ⊕-ptime
predicates and the 1⊕m-ptime predicates. It then proves some initial closure
properties for the ⊕-ptime and 1⊕m-ptime predicates. Section 2.2 shows how
numbers of satisfying assignments can be amplified by polynomials. Section 2.3
defines general symmetric quantifiers, in particular, quantifiers which com-
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bine iterated modular counting with approximate majority. Section 2.4 defines
probabilistic versions of the classes of ⊕-ptime and 1⊕m-ptime predicates.

2.1 The modular polynomial time hierarchy

The predicates in ModPH are defined from polynomial time predicates using
bounded existential and universal quantifiers, and bounded modular counting
quantifiers. The bounded modular counting quantifiers have the form

(
⊕

mx,|x|=p(|z|))ϕ(x, z)

where m ≥ 2, and p(n) is a polynomial. By “polynomial”, we mean a poly-
nomial with non-negative integer coefficients. Variables such as x, z1, . . . , zℓ
range over {0, 1}∗; we write |x| for the length of x, and z for z1, . . . , zℓ and |z|
for |z1|, . . . , |zℓ|. The intended meaning of the quantifier is that the number of
values x such that |x| = p(|z|) and ϕ(x) holds is congruent to zero modulo m.
The relativized ModPH hierarchy, denoted ModPHΩ, also allows a unary pred-
icate Ω to be used as part of ϕ. The predicate Ω is the same thing as an oracle,
Ω ⊆ {0, 1}∗.

Definition 3 The (relativized) modular polynomial time hierarchy is defined
as the following set of predicates:

a. Every polynomial time predicate ϕ(x) is in ModPH. Every predicate in PΩ,
namely every predicate ϕ(x) which is polynomial time relative to Ω, is in
ModPHΩ.

b. If ϕ(x, z) is in ModPH or ModPHΩ, then so are (∃x,|x|=p(|z|))ϕ(x, z) and
(∀x,|x|=p(|z|))ϕ(x, z).

c. Letm be prime. If ϕ(x, z) is in ModPH or ModPHΩ, then so is the predicate
(
⊕

mx,|x|=p(|z|))ϕ(x, z).

Now fix a prime m. ModPHm and ModPHΩ
m are the predicates in ModPH and

ModPHΩ (respectively) which are defined as above, but requiring the fixed
value m as the modulus for the counting quantifiers.

Definition 3 requires all ModPH formulas to be expressed in prenex form.
Nonetheless, ModPH is closed under conjunction, disjunction and negation
(that is, under intersection, union, and complementation); for this see Theo-
rem 17. Note that a ModPH formula may use multiple values for m in modular
counting quantifiers; however, we require the moduli m be prime for conve-
nience in our normal forms for ModPH. Nonetheless, as is well-known, ModPH
can simulate modular counting over composite moduli m: for this, see Theo-
rem 8(iii) and Lemma 16.

Since all quantifiers have the form (Qx,|x|=p(|z|)), every variable appear-
ing in a ModPH or ModPHm has a known length. Indeed, we assume that
in a formula ϕ(z), any quantifier has the form (Qx,|x|=p(|z|)). That is, the
quantifier bounds may w.l.o.g. depend on only the variables that occur free
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in the formula and not on any of the other quantified variables. (For more on
this, see Lemma 11.)

Working with fixed length strings makes Gödel sequence coding very sim-
ple; namely, a sequence of binary strings is encoded by concatenating them
into single string. Specifically, if y1, . . . , yℓ are binary strings of length p(n),
then y = 〈y1, . . . , yℓ〉 denotes the string of length ℓ · p(n) obtained by concate-
nating y1, . . . , yℓ. We write (y)i for yi. In addition, for x ∈ {0, 1}∗, we write
x[0] for the first bit of x, and x[i:j] for the i-th through the j-th bits of x, a
substring of length j − i+ 1. Finally, we write x[i:] for x[i:|x|−1].

The next definitions give restricted subclasses of prenex formulas in which
there are no bounded existential or universal quantifiers at all. All our defini-
tions and results relativize, so we suppress mention of the Ω in the notation.

Definition 4 The ⊕-ptime predicates are a subset of the ModPH (respec-
tively, ModPHΩ) predicates, and are defined inductively by

a. Any polynomial time predicate (respectively, predicate in PΩ) is a ⊕-ptime
predicate.

b. If ϕ(x, z) is a ⊕-ptime formula, p is a polynomial, and m ≥ 2 is a prime,
then (

⊕

mx,|x|=p(|z|))ϕ(x, z) is also a ⊕-ptime predicate.

A ⊕-ptime predicate must be in prenex form, and may have multiple mod-
ular counting quantifiers; the quantifiers may use different (prime) moduli m.
The rank of a ⊕-ptime predicate ϕ is the number of modular quantifiers in
the expression defining the predicate. The matrix of ϕ is the subformula which
is inside the modular counting quantifiers. Thus, a rank r ⊕-ptime predicate
consists of the r modular quantifiers in front of the matrix.

The “1⊕m” subclass is restricted to have a single modular quantifier, that
is, to have rank ≤ 1. The class 1⊕2-ptime is the same class as ⊕P, defined
by [22]:

Definition 5 Let m be prime. The 1⊕m-ptime predicates are the ModPHm

(respectively, ModPHΩ
m) predicates which can be expressed in the form

(
⊕

mx,|x|=p(|z|))ϕ(x, z)

where p is a polynomial, and ϕ(x, z) is polynomial time computable (respec-
tively, polynomial time relative to Ω).

The next two theorems state closure properties for the classes of ⊕-ptime
predicates and 1⊕m-ptime formulas.

Definition 6 A generalized modular counting quantifier is a quantifier of the
form (

⊕i

mx,|x|=p(|z|)). The intended meaning of

(
⊕i

mx,|x|=p(|z|))ϕ(x, z)

is that the number of x’s such that |x| = p(|z|) and ϕ(x, z) holds is congruent

to i mod m. Thus
⊕0

m is the same as
⊕

m.
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The next definition is essentially equivalent to the notion of sharply bounded
quantifiers used in bounded arithmetic [9].

Definition 7 Let x ∈ {0, 1}∗ and i ∈ N. We write, respectively, x ≺ i, x 4 i
or x ≈ i to mean that x is the binary representation (possibly with leading
zeros) of an integer jx such that, jx < i, jx ≤ i, or jx = i. A sharply bounded
quantifier is a quantifier of the form (Qx≺p(|z|)) for p a polynomial. The
intended meaning of (∃x≺p(|z|))ϕ(x, z) is the same as

(∃x,|x|=p(|z|))(x≺p(|z|) ∧ ϕ(x, z)).

The meanings of other bounded quantifiers are defined similarly.

It is somewhat wasteful of bits that we use p(n) bits for x to represent a
number < p(n); but there is no harm is doing this, and it is convenient to have
the convention that variables range over binary strings of known polynomial
length.

We will not continue to mention it explicitly, but all the results below and
throughout Section 3 relativize to the presence of an oracle Ω.

Theorem 8 The class of ⊕-ptime predicates is closed under:

(i) Conjunction, disjunction, and negation.
(ii) Sharply bounded existential and universal quantification.

(iii) Generalized modular counting quantification of the form (
⊕i

mx,|x|=p(|z|)),
for arbitrary m ≥ 2 (possibly m is composite).

Theorem 9 Let m be a fixed prime. The class of 1⊕m-ptime predicates is
closed under:

(i) Conjunction, disjunction, and negation.
(ii) Sharply bounded existential and universal quantification.

(iii) Generalized modular counting quantification of the form (
⊕i

mx,|x|=p(|z|)).

Theorems 8 and 9 are established by Lemmas 10-16. See Theorem 18 for
another closure property.

Lemma 10 The classes ⊕-ptime and 1⊕m-ptime are closed under taking a
disjunction or conjunction with a polynomial time predicate. These operations
preserve rank: Suppose χ(z) is polynomial time and ϕ(z) is a ⊕-ptime or
1⊕m-ptime predicate of rank r and let γ(y, z) be the matrix of ϕ(z). Then
ϕ(z) ∨ χ(z) and ϕ(z) ∧ χ(z) are expressible with formulas of rank r. Indeed
these formulas have exactly the same modular quantifiers as ϕ(z); and they
have a matrix which is expressed as a Boolean combination of χ(z), of γ(y, z)
and of polynomial time predicates.

The lemma also holds in relativized form; for instance if χ(z) is polynomial
time relative to an oracle.
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Proof We use induction on the rank of formulas. The base case of rank zero
(no modular quantifiers) is trivial. For the induction step, suppose, a ⊕-ptime
(respectively, 1⊕m-ptime) predicate ϕ(z) is defined by the formula

(
⊕

my,|y|=p(|z|))ψ(y, z), (1)

where m is prime. Let χ(z) be a polynomial time predicate. The disjunction
ϕ(z) ∨ χ(z) is equivalent to

(
⊕

my,|y|=p(|z|))[ψ(y, z) ∧ ¬χ(z)],

and ϕ(z) ∧ χ(z) is equivalent to

(
⊕

my,|y|=p(|z|))[(ψ(y, z) ∧ χ(z)) ∨ (y≈0 ∧ ¬χ(z))].

The induction hypothesis applied to the rank r−1 formula ψ shows that these
two formulas are both rank r. Note that the construction does not change
the modular quantifiers. Likewise, the assertions about the matrices follow
immediately from the inductive construction. ⊓⊔

Lemma 11 The classes ⊕-ptime and 1⊕m-ptime are closed under substitution
by polynomial time functions. If ϕ(z0, z) is a ⊕-ptime or 1⊕m-ptime predicate
of rank r and f(x) is polynomial time, then ϕ(f(z), z) is also expressible with
a formula of rank r.

Proof The only reason that ϕ(f(z), z) may fail to be a 1⊕m-ptime predicate of
rank r is that it may contain quantifiers of the form (

⊕

mx,|x|=p(|f(z)|, |z|)),
which is not permitted by our syntax. Let pf (n) be a polynomial such that
|f(z)| < pf (|z|) always holds. Then, any subformula of the form

(
⊕

mx,|x|=p(|f(z)|, |z|))ψ(x, z, . . .)

can be equivalently expressed as

(
⊕

mx,|x|=p(pf (|z|), |z|))[x[|f(z)|:]≈0 ∧ ψ(x[0:|f(z)|−1], z, . . .) ].

Since the predicate “x[|f(z)|:]≈0” is polynomial time, Lemma 11 follows from
Lemma 10. ⊓⊔

Lemma 12 The classes ⊕-ptime and 1⊕m-ptime are closed under negation
and sharply bounded quantification, as well as biimplication (equivalence) with
a polynomial time predicate. Furthermore, these operations preserve rank:

(i) If ϕ(z) is a ⊕-ptime or 1⊕m-ptime predicate of rank r, then ¬ϕ(z) is
expressible with a formula of rank r.

(ii) If in addition, χ(z) is a polynomial time predicate, then ϕ(z) ↔ χ(z) is
expressible with a formula of rank r.

(iii) If ϕ(x, z) is a ⊕-ptime or 1⊕m-ptime predicate of rank r, then the predicates
(∃x≺q(|z|))ϕ(x, z) and (∀x≺q(|z|))ϕ(x, z) are expressible with formulas of
rank r.
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Proof We prove (i)-(iii) simultaneously by induction on rank. The base case
is clear. For closure under negation, suppose ϕ(z) is (

⊕

my,|y|=p(|z|))ψ(y, z).
We use the variable w to quantify over binary strings of length (m−1)p(|z|)
which encode a sequence of m−1 values of y, and let δ(w, z) be the formula

(∀x≺m−1)ψ((w)jx , z),

where jx denotes the integer with binary representation given by x. If there
are j many y’s satisfying ψ(y, z), then there are jm−1 many w’s satisfying δ.
By Fermat’s little theorem, jm−1 mod m ∈ {0, 1}, and is congruent to zero iff
j ≡ 0 (mod m). Therefore, ϕ(z) is equivalent to

(
⊕

mw,|w|=(m−1)p(|z|))δ(w, z).

By adding m−1 many satisfying values to δ(−,−) we can make the number
of satisfying values be jm−1+m−1. This is done by letting w encode a one bit
flag, followed by m−1 values for y as follows:

(
⊕

mw,|w|=1+(m−1)p(|z|))[(w[0]=1 ∧ δ(w[1:], z)) ∨ w≺m−1]. (2)

By inspection, (2) is equivalent to ¬ϕ(z). Since the rank of ψ is less than
the rank r of ϕ, the induction hypothesis and Lemma 11 imply that δ is also
expressible with rank < r. Lemma 10 then implies that (2) can be expressed
as a formula of rank r. This establishes closure under negation.

Closure under biimplication can be viewed as a closure under “conditional
negation”; namely, the predicate is negated iff χ(z) is false. The proof for (ii)
is identical to the proof of (i), except that the formula (2) is replaced with

(
⊕

mw,|w|=1+(m−1)p(|z|))[(w[0]=1 ∧ δ(w[1:], z)) ∨ (w≺m−1 ∧ ¬χ(z))].

To handle sharply bounded existential quantification, suppose ϕ(x, z) is
(
⊕

my,|y|=p(|z|))ψ(x, y, z). Then, using w to encode q(|z|) many values for y,
we claim that (∃x≺q(|z|))ϕ(x, y, z) is equivalent to

(
⊕

mw,|w|=p(|z|)q(|z|))(∀x≺q(|z|))ψ(x, (w)jx , z). (3)

To see this, note that the number of w’s satisfying the formula is the product
of the numbers of y’s satisfying ψ(x, y, z) for x ≺ q(|z|). Since m is prime, this
product is congruent to zero mod m iff one of its factors is. Since the rank
of ψ is < r by Lemma 11, the induction hypothesis applies to (∀x≺q(|z|))ψ,
and thus (3) is equivalent to a rank r formula. This proves the closure under
sharply bounded existential quantification.

For sharply bounded universal quantification, note that (∀x≺q(|z|))ϕ(x, z)
is equivalent to ¬(∃x≺q(|z|))¬ϕ(x, z). Since we already proved the rank r
formulas are closed under negation and sharply bounded existential quantifi-
cation, it follows that (∀x≺q(|z|)|)ϕ(x, z) is equivalent to a rank r formula. ⊓⊔
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Lemma 13 Let m > 1 and let Γ be a class closed under conjunction and
disjunction with polynomial time predicates and under substitution with poly-
nomial time functions. (E.g., Γ is the rank r ⊕-ptime or the 1⊕m-ptime predi-
cates.) Suppose also that for all ψ(y, z) in Γ, (

⊕

my,|y|=p(|z|))ψ(y, z) is in Γ.

Then, for all ψ(y, z) in Γ and all i < m, (
⊕i

my,|y|=p(|z|))ψ(y, z) is in Γ.

Proof The idea is to add m−i many satisfying values for the modular quanti-
fier, similar to the construction used for (2). Namely, (

⊕i
my,|y|=p(|z|))ψ(y, z)

is equivalent to

(
⊕

mw,|w|=1+p(|z|))[(w[0]=1 ∧ ψ(w[1:], z)) ∨ w≺m−i].

By the hypotheses, this is a Γ predicate. ⊓⊔

Lemma 14 If ϕ(x, z) is an 1⊕m-ptime predicate, then so is the predicate

(
⊕i

mx≺q(|z|))ϕ(x, z). When i = 0, this means 1⊕m-ptime is closed under ⊕m

bounded quantification.

Proof Suppose ϕ(x, z) is (
⊕

my,|y|=p(|z|))ψ(x, y, z), where ψ is polynomial
time. By Lemma 13, it suffices to show

(
⊕

mx,|x|=q(|z|))(
⊕

my,|y|=p(|z|))ψ(x, y, z) (4)

is in 1⊕m-ptime (that is, with i = 0). Arguing similarly to the proof of
Lemma 12, let δ(x,w, z) be (∀u≺m−1)ψ(x, (w)ju , z). Consider the formula
δ∗(x,w, z) defined as

(w[0]=1 ∧ δ(x,w[1:], z)) ∨w≺m−1. (5)

By Fermat’s little theorem, the number of w’s of length 1+(m−1)p(|z|) which
satisfy (5) equals either −1 or 0 mod m depending on whether ϕ(x, z) is true
or false, respectively. Let r(n) equal q(n)+1+(m−1)p(n), and let a binary
string v of length r(|z|) encode a value for x with its first q(|z|) bits, and a
value for w with its remaining bits. Then (4) is equivalent to

(
⊕

mv,|v|=r(|z|))δ
∗(v[0:q(|z|)−1], v[q(|z|):], z). (6)

Note that δ and δ∗ are polynomial time, since ψ is. Therefore, (6) is in 1⊕m-
ptime as desired. ⊓⊔

Lemma 15 The classes ⊕-ptime and 1⊕m-ptime are closed under disjunction
and conjunction.

Proof With closure under negation (Lemma 12), it suffices to show the classes
are closed under disjunction. Let ϕ(z) and ψ(z) both be ⊕-ptime predicates
or 1⊕m-ptime predicates. Let γ(y, z) be the (polynomial time) matrix of ϕ.
The (relativized version of) Lemma 10 implies that ϕ(z) ∨ ψ(z) is equivalent
to a formula χ(z) which consists of the modular quantifiers of ϕ in front
of a formula γ∗(y, z), where γ∗(y, z) is a Boolean combination of ψ(z) and
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polynomial time predicates (since γ is polynomial time). Therefore, γ∗ can be
written in the form

[γ1(y, z) ∧ ψ(z)] ∨ [γ2(y, z) ∧ ¬ψ(z)]

where γ1 and γ2 are polynomial time, and then equivalently in the form

(γ1(y, z) ∧ γ2(y, z)) ∨ [(γ1(y, z) ∨ γ2(y, z)) ∧ (ψ(z) ↔ γ1(y, z))].

By Lemmas 10 and 12, this last formula is a ⊕-ptime predicate or a 1⊕m-ptime
predicate since ψ(z) is (respectively).

For ϕ(z) and ψ(z) ⊕-ptime predicates, it follows from the definition of
⊕-ptime that χ(z) is expressible as a ⊕-ptime predicate. For ϕ(z) and ψ(z)
1⊕m-ptime predicates, Lemma 14 implies that χ(z) is also equivalent to a
1⊕m-ptime predicate. ⊓⊔

Lemma 16 Let m ≥ 2 and 0 ≤ i < m, where m is not necessarily prime. If
ϕ(y, z) is a ⊕-ptime predicate, then so is (

⊕i

my,|y|=q(|z|))ψ(y, z).

Proof The proof of Lemma 13 still applies for composite m, so it suffices to
assume i = 0. Thus, we need to show that (

⊕

my,|y|=q(|z|))ψ(y, z) is in ⊕-
ptime. If m is prime, this is already in ⊕-ptime. Otherwise, we use induction
on m. Let m = m′p for p a prime. Consider the predicate

(
⊕

m′u,|u|=q(|z|))[ϕ(u, z) ∧ (
⊕

px,|x|=q(|z|))(x�u ∧ ϕ(x, z))]

∧ (
⊕

px,|x|=q(|z|))ϕ(x, z). (7)

The subformula in square brackets is a ⊕-ptime predicate by closure under
conjuction (Lemmas 10 and especially 15). Thus, the whole formula is also in
⊕-ptime by the induction hypothesis (since m′ < m) and by Lemma 15 again.
The subformula in square brackets picks out every p-th x satisfying ψ; thus
(7) is equivalent to (

⊕

my,|y|=q(|z|))ψ(y, z) as desired. ⊓⊔

Theorems 8 and 9 follow immediately from Lemmas 10-16.

Theorem 17 The classes ModPH and ModPHm are closed under negation,
conjunction and disjunction.

Proof (Sketch.) The proof is based on the methods of Lemmas 10, 12 and 15.
The proofs are identical for ModPH and ModPHm, so we only discuss ModPH.
For this proof, redefine “rank” to mean the total number of modular, exis-
tential and universal quantifiers (not counting sharply bounded quantifiers
appearing in the polynomial time matrix). The proof starts by establishing
that ModPH is closed under disjunction and conjunction with a polynomial
time predicate, and more generally, that the complete statement of Lemma 10
holds for ModPH (now using the generalized notion of rank). The proof of
Lemma 10 still applies: the cases of universal and existential quantifiers are
handled by prenex operations. Second, the proof shows that parts (i) and (iii)
of Lemma 12 holds for ModPH. The proof of this again proceeds by induction
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on rank. For closure under negation, universal and existential quantifiers are
handled by moving the negation sign past the quantifier. For closure under
sharply bounded quantification, modular bounded quantifiers are handled as
before, and the universal and existential bounded quantifiers are handled using
the “replacement” principle from bounded arithmetic, namely that

(∀x≺q(|z|))(∃y,|y|=p(|z|))ψ(x, y, z)

↔ (∃w,|w|=p(|z|)q(|z|))(∀x≺q(|z|))ψ(x, (w)jx , z).

Third, the proof shows that if a ModPH predicate ϕ(z) starts with a
⊕m bounded quantifier, and if χ(z) is a polynomial time predicate, then
ϕ(z) ↔ χ(z) is also a ModPH predicate. This is proved by exactly the same
argument as was used for part (ii) of Lemma 12. (Note that there seems to be
no such direct proof when ϕ starts with an existential or universal bounded
quantifier.)

Finally, the proof shows that if ϕ(z) and ψ(z) are both in ModPH, then
ϕ(z) ∨ ψ(z) is in ModPH. This is was already proved if either formula is
polynomial time. Otherwise, we use induction on rank. If either formula starts
with an existential or universal quantifier, then a prenex operation can move
that quantifier to the front. Thus, w.l.o.g., both ϕ(z) and ψ(z) start with
⊕ bounded quantifiers. But now, the proof of Lemma 15 applies, since the
biimplication of a polynomial time predicate and the ModPH predicate ψ(z)
is a ModPH predicate. ⊓⊔

In the next theorem, Q(z,Ω) is a predicate computed by some Turing
machine which has ordinary inputs z and oracle access to Ω, such that there is
a polynomial p(|z|) which bounds the runtime of Q(z,Ω) for all z and Ω. Also,
λx.ϕ denotes the oracle Ω such that Ω(x) returns the truth value of ϕ(x).

Theorem 18 Suppose the predicate Q(z,Φ) is a polynomial time relative to
the oracle Φ, and that ϕ(x) is a rank r ⊕-ptime or 1⊕m-ptime predicate. Then
Q(z, λx.ϕ) is also a rank r ⊕-ptime or 1⊕m-ptime predicate, respectively.

Proof We claim that we may assume w.l.o.g. that Q(z,Φ) makes only fixed
length queries to the oracle Φ, namely that there is a polynomial q(n) so that
Q(z,Φ) only queries Φ about strings of length q(|z|). The reason this can be
assumed w.l.o.g. is that otherwise, letting q(|z|) be be greater than the length
of any query made to Φ, we can define a new oracle Ψ(w) so that Ψ(1i0w) is
equal to Φ(w) for all i and w. Oracle queries to Φ can be replaced with queries
to Ψ; and if ϕ is 1⊕m-ptime or rank r ⊕-ptime, so is a predicate ψ such that
ψ(1i0w) equals ϕ(w) for all w.

So assume Q(z,Φ) has runtime < p(|z|) and only makes queries of length
q(|z|) to Φ. Using standard methods of encoding computations ofQ(z,Φ), there
is a polynomial r(n) so that any computation of Q(z,Φ) can be coded uniquely
by a binary string w of length r(|z|). Furthermore, there are polynomial time
functions Accept(z, w), Query(i, z, w) and Answer(i, z, w) such that:
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(1) Accept(z, w) determines whether w correctly encodes an accepting com-
putation of Q(z,Φ) assuming the oracle answers as encoded in w are cor-
rect.

(2) Query(i, z, w) is the query to Φ made in the i-th step of the computation
coded by w, if any. Thus Query(i, z, w) is a string of length q(|z|).

(3) Answer(i, z, w) is equal to 0 if no query was made in the i-th step, and
otherwise is equal to 1 or 2 depending on whether the query answer was
“Yes” or “No” (respectively).

Fix m such that the outermost quantifier of ϕ is a ⊕m-quantifier. Since w is
unique, the condition Q(z, λx.ϕ) can now be expressed as

(
⊕1

mw,|w|=r(|z|))[Accept(z, w)∧ (8)

(∀i≺p(|z|))(Answer(i, z, w)=0 ∨

(Answer(i, z, w)=1 ↔ ϕ(Query(i, z, w)))) ].

By Lemmas 10-12, the subformula in square brackets is a rank r ⊕-ptime or
1⊕m-ptime predicate, the same as ϕ. Thus, by (the proof of) Lemma 14, (8) is
also a rank r ⊕-ptime or 1⊕m-ptime predicate, respectively. ⊓⊔

2.2 Closing satisfiability counts under polynomials

We write (#x,|x|=p(|z|))ϕ(x, z) for the number of x’s such that |x| = p(|z|)
and ϕ(x, z) holds. This section shows how to manipulate the number of satis-
fying assignments by transforming them by a polynomial. Proposition 19 does
this for a fixed polynomial r. Proposition 20 does this for a varying polyno-
mial r, which is given as part of the input. These constructions will be applied
to modulus amplifying polynomials.

We have already a couple basic techniques for manipulating numbers of
satisfying assignments. The proofs of Lemmas 12 and 14 showed how to change
the number of satisfying assignments from j to jm−1 so as to apply Fermat’s
little theorem. Exponents other than m−1, can used; in fact, even changing j
satisfying assignments to jq(|z|) can be done, for any polynomial q(n). Lemmas
12-14 showed how to introduce a fixed number of satisfying assignments: those
lemmas added either m−1 or m−i many satisfying assignments, but the same
technique works to add an arbitrary number of satisfying assignments. As will
be seen in the proof of Proposition 19 it is not hard to extend these techniques
to take sums or products of numbers of satisfying assignments.

Proposition 19 Let Γ be the class of ⊕-ptime predicates, the class of 1⊕m-
ptime predicates, or the class of polynomial time predicates. Let ϕ(x, z) be a
Γ predicate, and p(|z|) be a polynomial. Further let r(n) be a polynomial (as
always, with non-negative integer coefficients). Then there is a Γ predicate
χ(w, z) and a polynomial q(|z|) so that

(#w,|w|=q(|z|))χ(w, z) = r( (#x,|x|=p(|z|))ϕ(x, z) ).
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Proof It suffices to show that it is possible to take the sum or the product of
numbers of satisfying values. Let Ni equal (#x,|x|=pi(|z|))ϕi(x, z), for i = 1, 2.
To handle summation, define χ(w, z) to be

[w[0] = 0 ∧w[1:p2(|z|)]≈0 ∧ ϕ1(w[p2(|z|)+1:], z)]

∨ [w[0] = 1 ∧ w[1:p1(|z|)]≈0 ∧ ϕ2(w[p1(|z|)+1:], z)].

Then (#w,|w|=p1(|z|)+p2(|z|)+1)χ(w, z) = N1 + N2. To handle products,
define γ(w, z) to be

ϕ1(w[0:p1(|z|)−1], z) ∧ ϕ2(w[p1(|z|):], z).

Then (#w,|w|=p1(|z|)+p2(|z|))γ(w, z) = N1 ·N2. Using repeated summation
and products, as well as the addition of a fixed number of satisfying assign-
ments, proves the proposition for an arbitrary fixed polynomial r. ⊓⊔

When working with modulus amplifying polynomials for the proof of the
Toda and Beigel-Tarui theorems, it will be convenient to let the polynomial r
be specified as part of the input. For this, a degree d univariate polynomial
r(t) = adt

d + · · · + a1t+ a0 is represented by a binary string gn(r), called the
Gödel number of r, which encodes the sequence 〈a0, a1, . . . , ad〉. The Gödel
number gn(r) should have its length |gn(r)| polynomially bounded by d and
maxi |ai|; in fact, using an efficient encoding, |gn(r)| can be linearly bounded
by d +

∑

i |ai|. We require that |gn(r)| > d and |gn(r)| ≥ |ai|: this holds
naturally, since gn(r) codes a sequence of length d+ 1.

Proposition 20 Let Γ, ϕ(x, z) and p(|z|) be as in Proposition 19. Then there
is a Γ predicate χ(x, z, g) and a polynomial q(n, n′) so that, for all polynomi-
als r(t),

(#w,|w|=q(|z|, |gn(r)|))χ(w, z, gn(r)) = r( (#x,|x|=p(|z|))ϕ(x, z) ). (9)

Proof (Sketch) Let χ(w, z, g) be a predicate expressing:

“g is the Gödel number 〈a0, a1, . . . , ad〉 of a degree d polynomial r, and
w encodes a sequence 〈i, b, x0, . . . , xi−1〉 such that i ≤ d and b < ai and
(∀j<|w|)[j < i→ |xj |=p(|z|) ∧ ϕ(xj , z)].”

Choose an appropriate Gödel encoding method and a polynomial q(n, n′) large
enough so that every sequence 〈i, b, x0, . . . , xi−1〉 satisfying χ(w, z, gn(r)) can
be uniquely encoded by a w of length |w| = q(|z|, |gn(r)|). By the construction
of χ, the equality (9) holds. There are polynomial time procedures for parsing
the Gödel number g and the sequence w and extracting the values xi, and
the quantifier (∀j<|w|) is sharply bounded. In view of Theorems 8 and 9, it
follows that χ is a Γ predicate. ⊓⊔

Proposition 20 will be applied with modulus amplifying polynomials Pk.
These polynomials have the property that, for all N ≥ 0 and all M ≥ 2 and
for i = 0, 1,

N ≡ i mod M ⇒ Pk(N) ≡ i mod Mk.
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There are various possible choices for Pk. Similarly to Toda’s original con-
struction [31], one can form Pk by composing the function x 7→ 4x3 − 3x4

with itself O(log k) times. Yao [35] suggested composing 3x2 − 2x3 with itself
O(log k) times. Beigel and Tarui [7] suggested the optimal degree construction
of

Pk(t) = 1 − (1 − t)k
k−1
∑

j=0

(

k + j − 1

j

)

tj.

These last polynomials have degree 2k−1 and their Gödel numbers gn(Pk) can
be constructed in polynomial time. (Toda’s or Yao’s polynomials could also be
used. They have degrees k2 and klog2 3.) Since we are only interested in values
modulo Mk, we adjust the coefficients of Pk so that they are non-negative and
< Mk.

For M = m a prime, we will use a variation P ′
k,m of Pk such that P ′

k,m(i) ≡

1 mod mk for all i ≡ 0 mod m and such that P ′
k,m(i) ≡ 0 mod mk for all

i 6≡ 0 mod m. Since m is prime, R(x) = 1−xm−1 satisfies that R(i) ≡ 1 mod m
for all i ≡ 0 mod m and that R(i) ≡ 0 mod m for all i 6≡ 0 mod m. Then form
P ′
k as the composition P ′

k = Pk ◦ R, a polynomial of degree (2k−1)(m−1),
taking all coefficients to be in {0, . . . ,mk−1}. The Gödel number gn(P ′

k,m)
can be constructed in time polynomial in k and m.

For mk > 2, we will also use the polynomial P ′′
k,m such that P ′′

k,m(i) ≡

−1 mod mk for all i ≡ 0 mod m and such that P ′′
k,m(i) ≡ 1 mod mk for all

i 6≡ 0 mod m. We form P ′′
k,m as the composition Q ◦P ′

k,m where Q(t) = 1− 2t,

again adjusting the coefficients to be in {0, . . . ,mk−1}. The degree of P ′′
k,m

is also (2k−1)(m−1). The Gödel number gn(P ′′
k,m) can also be constructed in

time polynomial in k and m.

2.3 Symmetric quantifiers

A generalized bounded quantifier “Q” is called symmetric if the truth value of
the quantifier depends only on the cardinalities of the true and false instances.
Specifically, Q is a symmetric bounded quantifier if the truth value of

(Qx,|x|=p(|z|))ϕ(x, z) (10)

depends only on the number of x’s of length p(|z|) such that ϕ(x, z) is true.
More formally, there is a function fQ : N2 → {True,False} so that the truth
value of (10) is equal to fQ(N, 2p(|z|)) where N = (#x,|x|=p(|z|))ϕ(x, z).

Following Beigel-Tarui, we are particularly interested in symmetric quanti-
fiers which consist of an approximate majority applied to iterated applications
of modular counting. Let M1 < M2 < · · · < Mℓ. The iterated modular count-
ing function C[M1,M2,...,Mℓ](N), or C[M](N) for short, has the meaning

C[M](N) := ((· · · ((N mod Mℓ) mod Mℓ−1) · · · mod M2) mod M1). (11)
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Clearly C[M](N) gives values in {0, 1, . . . ,M1−1}. To compose this with an
approximate majority function, define

ApxMaj-C[M](N) =

{

True if C[M](N) > (3/4)M1

False if C[M](N) < (1/4)M1.

We can express this as a symmetric bounded quantifier by defining

(ApxMaj-C[M]x,|x|=p(|z|))ϕ(x, z)

to have truth value ApxMaj-C[M](N) where N = (#x,|x|=p(|z|))ϕ(x, z).
ApxMaj-C[M] may not be used unless it is impossible to have (1/4)M1 ≤

C[M](N) ≤ (3/4)M1. That is, we use ApxMaj-C[M] only when it is guaranteed
to be well-defined.

2.4 Probabilistic classes

We now define the well-known probabilistic versions of ⊕-ptime predicates and
1⊕m-ptime predicates. The “BP·” notation is from Schöning [26].

Definition 21 The class of probabilistic ⊕-ptime predicates, BP·⊕-ptime,
contains the predicates A(z) for which there are a ⊕-ptime ϕ(z, r, u) and a
polynomial p(n, ℓ) so that, for all z and u,

A(z) is true =⇒ (#r,|r|=p(|z|, |u|))ϕ(z, r, u) > 2p(|z|,|u|) · (1 − 2−|u|)

A(z) is false =⇒ (#r,|r|=p(|z|, |u|))ϕ(z, r, u) < 2p(|z|,|u|) · 2−|u|.

The point of Definition 21 is that when r is chosen at random, then the
value of ϕ(z, r, u) gives, with high probability, the correct value for the truth
or falsity of A(z). The parameter u is used to control the probabilities. Only
the length of u is important, and u can w.l.o.g. be set equal to 0ℓ.

Definition 22 Fix a prime m ≥ 2. The class of probabilistic 1⊕m-ptime
predicates, BP·1⊕m-ptime, is defined exactly as in Definition 21 except that
ϕ is a 1⊕m-ptime predicate.

The classes BP·ModPH and BP·ModPHm are defined similarly, but with ϕ
a ModPH or ModPHm predicate, respectively. By Sipser [27], an approximate
counting quantifier can be replaced with bounded quantifiers. This gives the
following inclusions:

Theorem 23 The BP·ModPH predicates are contained in the ModPH pred-
icates. For fixed m > 1, the BP·ModPHm predicates are contained in the
ModPHm predicates.

As a corollary, BP·⊕-ptime and BP·1⊕m-ptime are contained in ModPH and
ModPHm, respectively. The converse of this holds also; see Theorem 27 and
Corollaries 28 and 29 below.
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Proof (Sketch) We use the Lautemann [20] approximate counting construc-
tion. Suppose the predicate A(z) satisfies the equations of Definition 21, but
with ϕ(|z|, r, u) a ModPH or ModPHm predicate. Choose a polynomial ℓ(n) so
that p(|z|, ℓ(n)) < 2ℓ(n) always holds. We will use u = 0ℓ(|z|). Let a string w of
length (p(|z|, ℓ(|z|)))2 encode p(|z|, ℓ(|z|)) many strings of length p(|z|, ℓ(|z|))
each. Let (w)i denote the i-th string encoded by w. For (w)i and r both of
length p(|z|, ℓ(|z|)), write r ⊕ (w)i for their bitwise exclusive-or. Then A(z) is
true precisely when

(∃w,|w|=(p(|z|, ℓ(z)))2)(∀r,|r|=p(|z|, ℓ(z))) (12)

(∃i≺p(|z|, ℓ(z)))[ϕ(z, r⊕(w)i, 0
ℓ(|z|))]

holds. This equivalence is proved by the argument of [20]: When A(z) is true,
most r’s make ϕ(z, r, 0ℓ(|z|)) true, and a probabilistic argument shows there is
a w so that every r has at least one translation r ⊕ (w)i that satisfies ϕ. On
the other hand, when A is false, hardly any r’s make ϕ true, and a cardinality
argument, using p(|z|, ℓ(n)) < 2ℓ(n), shows that no such w can exist.

By definition, (12) expresses A(z) as a ModPH or ModPHm predicate,
respectively. ⊓⊔

Remark on using probabilities of 1/4 and 3/4.As is usual with probabilistic
classes (e.g., [26,5]), Definitions 21 and 22 could equivalently be stated without
the parameter u and using the fractions 3/4 and 1/4 in place of 1 − 2−|u| and
2−|u|. The general idea is that probabilities can be amplified from 3/4 and
1/4 to 1−2−|u| and 2−|u| by working with a property ϕ(z, r) and taking c · |u|
many random samples of r for some constant c, and accepting if a majority of
them satisfy ϕ(z, r). The amplification of probabilities follows from Chernoff
bounds.

In more detail, suppose that

A(z) is true =⇒ (#r,|r|=p(|z|))ϕ(z, r) > 2p(|z|) · (3/4)

A(z) is false =⇒ (#r,|r|=p(|z|))ϕ(z, r) < 2p(|z|) · (1/4).

Set p′(|z|, |u|) = 17|u| · p(|z|), so a string w with |w| = p′(|z|, |u|) codes 17|u|
many strings r of length p(|z|); we write (w)i for the i-th such string r. If A(z) is
true (respectively, false), then for randomly chosen w, Chernoff bounds imply
that with probability 1− 2−|u| more than one half (respectively, less than one
half) of the (w)i’s satisfy ϕ(z, (w)i). Let ψ(z, w) express that at least one half
of the (w)i’s satisfy ϕ(z, (w)i). By Lemma 18, ψ is a ⊕-ptime or 1⊕m-ptime
predicate if ϕ is. Thus ψ with the polynomial p′(|z|, |u|) gives a BP·⊕-ptime
or BP·1⊕m-ptime (respectively) definition for A(z).

3 Closure under bounded quantification for probabilistic classes

Theorems 8 and 9 gave basic closure properties for the ⊕-ptime and the 1⊕m-
ptime predicates. It is open whether these two classes are also closed under
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(non-sharply) bounded existential and universal quantification. However, The-
orem 27 and Corollaries 28 and 29 below show that the probabilistic versions
BP·⊕-ptime and BP·1⊕m-ptime of these classes are closed under bounded
existential and universal quantification as well as bounded modular counting
quantification. These results — in particular, Corollary 29 — are the “uniform
version” of Theorem 1. Indeed, Section 4 will show that Theorem 1 follows from
Corollary 29 by the Furst-Saxe-Sisper and Paris-Wilkie translations. Theorems
30 and 31 of Section 3.3 are related in the same way to the uniform version of
Theorem 2.

A primary proof technique for Theorem 27 is the Valiant-Vazirani theorem,
which we next state without proof.

3.1 The Valiant-Vazirani theorem

If x, y ∈ {0, 1}n are binary strings x = x1x2 · · ·xn and y = y1y2 · · · yn, the
inner product mod 2 of x and y, denoted 〈x, y〉 is equal to

∑

i xiyi mod 2.
In this section, we let w range over strings of length |w| = tn, where t > 0,
and write (w)i to denote w[in:(i+1)n−1]. That is, w codes t many strings of
length n, and (w)i denotes the i-th one. The next theorem is due to Valiant
and Vazirani, and is stated in the way used by Toda [31].

Theorem 24 (Valiant-Vazirani [33]) Let S ⊆ {0, 1}n be nonempty. Then, for
some i < n,

Pr
w∈{0,1}n2

[

(#x,|x|=n)((∀j≤i)(〈x, (w)j〉=0) ∧ x ∈ S) = 1
]

≥
1

4
.

Furthermore, there is an i < n so that for all ℓ ≥ 1,

Pr
w∈{0,1}3ℓn2

[

(∃k<3ℓ)[(#x,|x|=n)((∀j≤i)(〈x, (w)kn+j 〉=0) ∧ x∈S) = 1]
]

≥ 1 −
(3

4

)3ℓ

> 1 − 2−ℓ.

For a proof, see for instance [5]. The second part of the theorem follows by iter-
ating the first part 3ℓ times. Expressing the probability in terms of cardinality,
and replacing the exact counting of x’s with modular counting, gives:

Corollary 25 Let S ⊆ {0, 1}n and let m ≥ 2. Let N equal

(#w,|w|=3ℓn2)(∃i<n)(∃k<3ℓ)(
⊕1

mx,|x|=n)((∀j≤i)(〈x, (w)kn+j 〉=0) ∧ x∈S).

If S 6= ∅, then N ≥ 23ℓn
2

(1 − 2−ℓ). If S = ∅, then N = 0.

From this, and Theorems 8 and 9, we get immediately:
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Corollary 26 Let Γ be either the set of ⊕-ptime predicates or the set of 1⊕m-
ptime predicates. Let ϕ(x, z) be a Γ predicate and p(n) a polynomial. Then
there is a Γ predicate ψ(z, w, u) and a polynomial q(n, ℓ) such that the following
holds. Let N(z, u) = (#w,|w|=q(|z|, |u|))ψ(z, w, u). For all values of z and u,

(∃x,|x|=p(|z|))ϕ(x, z) =⇒ N(z, u) ≥ 2q(|z|,|u|) · (1 − 2−|u|)

¬(∃x,|x|=p(|z|))ϕ(x, z) =⇒ N(z, u) = 0.

Corollary 26 is proved by letting S be the set of x ∈ {0, 1}p(|z|) satisfying
ϕ(x, z), and taking q(|z|, |u|) = 3|u| · (p(|z|))2.

3.2 Toda’s theorem

The next theorem, especially Corollary 29, will be used for the proof of The-
orem 1. (Theorem 2 will follow from Theorems 30 and 31.)

Theorem 27 (a) BP·⊕-ptime is closed under disjunction, conjunction, nega-
tion, bounded existential quantification, bounded universal quantification,
and bounded

⊕

m quantification for arbitrary m ≥ 2.
(b) Fix a prime m ≥ 2. BP·1⊕m-ptime is closed under disjunction, conjunc-

tion, negation, bounded existential quantification, bounded universal quan-
tification, and bounded

⊕

m quantification.

Theorem 27 applies also to computation relative to an oracle Ω. As imme-
diate corollaries to Theorems 23 and 27, we obtain:

Corollary 28 ModPH is equal to BP·⊕-ptime. Likewise, ModPHΩ is equal
to BP·⊕-ptime relative to Ω.

Corollary 29 Fix a prime m ≥ 2. ModPHm is equal to BP·1⊕m-ptime. Like-
wise, ModPHΩ

m is equal to BP·1⊕m-ptime relative to Ω.

Proof (Proof of Theorem 27) We prove (a) and (b) simultaneously. Let Γ be
either the class of 1⊕m-ptime predicates or the class of ⊕-ptime predicates,
so BP·Γ denotes one of the classes BP·1⊕m-ptime or BP·⊕-ptime. Closure
of BP·Γ under disjunction, conjunction and negation is straightforward with
the aid of Theorems 8 and 9, and we omit their proofs. Instead, we prove
closure under bounded existential quantification and

⊕

m quantification.
Let A(x, z) be a BP·Γ predicate. By Definition 21 or 22, there are a polyno-

mial p1(n′,n, ℓ) and a Γ predicate ϕ1(x, z, r, u1) such that, letting N1(x, z, u1)
equal

(#r,|r|=p1(|x|, |z|, |u1|))ϕ1(x, z, r, u1),

we have for all x, z, u1 that

A(x, z) is true =⇒ N1(x, z, u1) > 2p1(|x|,|z|,|u1|) · (1 − 2−|u1|)

A(x, z) is false =⇒ N1(x, z, u1) < 2p1(|x|,|z|,|u1|) · 2−|u1|.
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It is helpful to first show closure of BP·Γ under sharply bounded universal
quantification. With negation, this also implies closure under sharply bounded
existential quantification. Let B(z) be the predicate (∀x≺q(|z|))A(x, z).

We use |u1| = |u|+ q(|z|). Define p(|z|, |u|) = p1(q(|z|), |z|, |u|+q(|z|)), and
define ϕ(z, r, u) as

(∀x≺q(|z|))ϕ1(x, z, r, u0q(|z|)).

By Theorem 8 or 9, ϕ is in Γ. Let N(z, u) equal

(#r,|r|=p(|z|, |u|))ϕ(z, r, u).

We claim that p, ϕ and N define B(z) as a BP·Γ predicate; that is:

B(z) is true =⇒ N(z, u) > 2p(|z|,|u|) · (1 − 2−|u|)

B(z) is false =⇒ N(z, u) < 2p(|z|,|u|) · 2−|u|.

To prove this, first suppose B(z) is true and fix u. By the union bound, the
fraction of r’s falsifying ϕ(z, w, u) is < q(|z|)2−(|u|+q(|z|)) < 2−|u|, as desired.
Similarly, if B(z) is false, the fraction of r’s satisfying ϕ(z, w, u) is < 2−|u|.

We next show closure of BP·Γ under bounded modular counting quantifica-
tion. Suppose B(z) is (

⊕

mx,|x|=q(|z|))A(x, z). Let the polynomial p(|z|, |u|)
again be p1(q(|z|), |z|, |u|+q(|z|)), and let ϕ(z, r, u) be the predicate

(
⊕

mx,|x|=q(|z|))ϕ1(x, z, r, u0q(|z|)).

Also let N(z, u) equal

(#r,|r|=p(|z|, |u|))ϕ(z, r, u).

Theorem 8 or 9 shows that ϕ is a Γ predicate. We claim that these p, ϕ, and N
define B(z) as a BP·Γ predicate. Fix lengths for the z ’s and u. Let u1 denote
u0q(|z|). By choice of p1, N1 and ϕ, if r of length p(|z|, |u|) is chosen at random,
then A(x, z) and ϕ1(x, z, r, u1) have equal truth values with probability greater
than 1 − 2−|u1|. There are 2q(|z|) many values for x, and |u1| = q(|z|)+|u|.
Thus by the union bound, for a randomly chosen value for r, the truth values
of A(x, z) and ϕ1(x, z, r, u1) are equal for all values x with probability at
least 1 − 2−|u|. Consequently, if B(z) is true, then N(z, r, u) is greater than
2p(|z|,|u|) · (1 − 2−|u|). Similarly, if B(z) is false, then N(z, r, u) is less than
2p(|z|,|u|) · 2−|u|. This proves the claim, and shows that B(z) is in BP·Γ.

We finally show closure under bounded existential quantification. Con-
sider the predicate B(z) defined by (∃x,|x|=q(|z|))A(x, z). By Corollary 25 to
the Valiant-Vazirani theorem, there is a polynomial p2(|u2|) so that, letting
N2(z, u2) equal

(#w,|w|=p2(|u2|)q(|z|)
2)[(∃i≺q(|z|))(∃k≺p2(|u2|)) (13)

(
⊕1

mx,|x|=q(|z|))((∀j≤i)(〈x, (w)kq(|z|)+j〉=0) ∧ A(x, z))],
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we have

B(z) is true =⇒ N2(z, u2) > 2p2(|u2|)q(|z|)
2

· (1 − 2−|u2|)

B(z) is false =⇒ N2(z, u2) < 2p2(|u2|)q(|z|)
2

· 2−|u2|.

Let A2(z, w) be the subformula of (13) in square brackets. By the clo-
sure of BP·Γ under conjunction, sharply bounded quantification and bounded
modular counting, there are a Γ predicate ϕ3(z, w, r, u3) and a polynomial
p3(|z|, |w|, |u3|) so that, letting N3(z, w, u3) equal

(#r,|r|=p3(|z|, |w|, |u3|))ϕ3(z, w, r, u3),

we have for all z, w, u3 that

A2(z, w) is true =⇒ N3(z, w, u3) > 2p3(|z|,|w|,|u3|) · (1 − 2−|u3|)

A2(z, w) is false =⇒ N3(z, w, u3) < 2p3(|z|,|w|,|u3|) · 2−|u3|

We can now define p(|z|, |u|) and ϕ(z, v, u). We let u2 = u3 = u0 so that
|u2| = |u3| = |u| + 1. The polynomial p is defined to equal

p(|z|, |u|) = p2(|u|+1)q(|z|)2 + p3(|z|, |u|+1).

A string v ∈ {0, 1}p(|z|,|u|) codes a string w of length p2(|u|+1)q(|z|)2 concate-
nated with a string r of length p3(|z|, |u|+1), and we write (v)w and (v)r for
these two substrings of v. Let ϕ(z, v, u) be equal to ϕ3(z, (v)w, (v)r, u). Define
N(z, u) to equal

(#v,|v|=p(|z|, |u|))ϕ(z, v, u).

We claim that

B(z) is true =⇒ N(z, u) > 2p(|z|,|u|) · (1 − 2−|u|)

B(z) is false =⇒ N(z, u) < 2p(|z|,|u|) · 2−|u|.

To prove the first assertion, note that if B(z) is true, then for all but frac-
tion 2−|u|−1 of the values of w = (v)w , A2(z, w) is true. And then, for these
good w’s, all but a fraction 2−|u|−1 of the values for r = (v)r make ϕ3(z, w, r, u)
true. Thus by the union bound, less than a fraction 2 · 2−|u|−1 = 2−|u| of the
values for v make ϕ(z, v, u) false. A similar argument works when B(z) is false.

Since ϕ3 is a Γ predicate, ϕ is also in Γ. This shows that B is a BP·Γ
predicate, and completes the proof of Theorem 27. ⊓⊔

3.3 A single symmetric quantifier suffices

An important component of the Beigel-Tarui theorem is that multiple modu-
lar quantifiers can be replaced by a single symmetric quantifier. For this, we
now prove that BP·⊕-ptime and BP·1⊕m-ptime predicates can be expressed
with a single symmetric quantifier applied to a polynomial time predicate.
Theorem 31 is the uniform version of Theorem 2. Theorem 30 is the special
case of BP·1⊕m-ptime predicates:
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Theorem 30 Let m ≥ 2 be a prime and A(z) be a BP·1⊕m-ptime predicate
(i.e., a ModPHm-predicate). Then A(z) can be expressed in the form

(ApxMaj-C[M ]x,|x|=q(|z|))χ(x, z)

where [M ] denotes a sequence of length one with M = ms(|z|) for some poly-
nomial s(|z|), where q is a polynomial, and where χ is a polynomial time
predicate.

Theorem 30 is the ℓ = 1 case of the next theorem. Assume A is a BP·⊕-ptime
predicate, so there are a ⊕-ptime predicate ϕ and a polynomial p(|z|) such
that for all z,

(#r,|r|=p(|z|))ϕ(z, r) (14)

is either > 3
42p(|z|) or < 1

42p(|z|) depending on whether A(z) is true or false.
The predicate ϕ can be expressed in the form

(
⊕

m1
x1,|x1|=p1(|z|)) · · · (

⊕

mℓ
xℓ,|xℓ|=pℓ(|z|))ψ(z, r, x1, . . . , xℓ) (15)

for some polynomial time ψ(z, r,x), some polynomials p1(|z|), . . . , pℓ(|z|), and
some primes m1, . . . ,mℓ.

Theorem 31 Let A(z) be a BP·⊕-ptime predicate (i.e., a ModPH-predicate)
defined as above by (14) and (15). Then A(z) can be expressed in the form

(ApxMaj-C[M]y,|y|=q(|z|))χ(z, y) (16)

where [M] denotes a sequence M1, . . . ,Mℓ, with each Mj = m
sj(|z|)
j where the

mj’s are the primes in the quantifier prefix of ϕ(z, r), where q and the sj’s are
polynomials, and where χ is a polynomial time predicate.

Proof We first give the construction of q, the sj ’s and χ, and then work
on proving their properties. Define the polynomials sj = sj(|z|) by letting
s1(|z|) = p(|z|) + 3 and s2(|z|) = 2s1(|z|)m1(p1(|z|)+1) and, for j ≥ 2,

sj+1(|z|) = 2jsj(|z|)
2m2

j(pj(|z|)+1)

j−1
∏

i=1

si(|z|)mi.

Then Mj = Mj(|z|) = m
sj(|z|)
j . Let ψj(z, r, x1, . . . , xj) be the subformula

(
⊕

mj+1
xj+1,|xj+1|=pj+1(|z|)) · · · (

⊕

mℓ
xℓ,|xℓ|=pℓ(|z|))ψ(z, r, x1, . . . , xℓ).

of (15).
We inductively define polynomial time predicates χj(z, r, x1, . . . , xj , y) and

polynomials qj(|z|) for j = ℓ, . . . , 1, 0. For χj, we always enforce |y| = qj(|z|).
To start the inductive definition, χℓ is the same as ψ(z, r, x1, . . . , xℓ), and
qℓ = 0 (that is, y is the empty string). Now let 1 ≤ j < ℓ, and recall the
definition of P ′

sj+1,mj+1
. Let aj+1,i denote the coefficient of xi in P ′

sj+1,mj+1
.

Recalling the proof of Proposition 20, define χj(z, r, x1, . . . , xj , y) to be:
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“y has the form 〈i, b, y′0, . . . , y
′
i−1〉, where i ≤ degree(P ′

sj+1,mj+1
), and

b < aj+1,i, and each y′t is a pair y′t = 〈x′t, y
′′
t 〉 with |x′t| = pj+1(|z|) and

|y′′t | = qj+1(|z|) so that

χj+1(z, r, x1, . . . , xj , x
′
t, y

′′
t )

is true.”

Using a suitable method of encoding sequences, we define qj = qj(|z|) to be a
sufficiently large polynomial such that every y satisfying χj has length exactly
qj (and so that each sequence y has a unique encoding).

The predicate χ0(z, r, y) is defined similarly, but using P ′′
s1,m1

instead of
P ′
s1,m1

, namely χ0(z, r, y) is defined as:

“y has the form 〈i, b, y′0, . . . , y
′
i−1〉, where i ≤ degree(P ′′

s1,m1
), b < a1,i,

and each y′t is a pair y′t = 〈x′t, y
′′
t 〉 with |x′t| = p1(|z|) and |y′′t | = q1(|z|)

so that
χ1(z, r, x′t, y

′′
t )

is true.”

Again, define q0 = q0(|z|) to be a sufficiently large polynomial such that every
y satisfying χ0 has a unique encoding of length exactly q0.

Finally, define q(|z|) = p(|z|) + q0(|z|), and define the polynomial time
predicate χ(z, y) by

|y| = q(|z|) ∧ χ0(z, y[0:p(|z|)−1], y[p(|z|):]).

That is, y encodes a pair of strings r, y′ which satisfy χ0(z, r, y′).
We claim that this χ and q satisfy the property (16) of the theorem. To

prove this, we first need to analyze how many y’s satisfy the formulas χj and χ.
Define values Nr,x1,...,xj

as follows. (We suppress the dependence of Nr,x1,...,xj

on z in the notation.) We implicitly require always that the values xi denote
strings of length pi(|z|) and the value r is a string of length p(|z|); e.g., the
summation over xj+1 means over xj+1’s of length pj+1(|z|).

Nr,x1,...,xℓ
=

{

1 if ψ(z, r, x1, . . . , xℓ) is true
0 otherwise

Nr,x1,...,xj
= P ′

sj+1,mj+1

(

∑

xj+1

Nr,x1,...,xj,xj+1

)

for 1 ≤ j < ℓ

Nr = P ′′
s1,m1

(

∑

x1

Nr,x1

)

N =
∑

r

Nr.

Claim 32 Let 0 ≤ j ≤ ℓ and let r, x1, . . . , xj be strings of the appropri-
ate lengths |r| = p(|z|) and |xi| = pi(|z|). The number of y’s which satisfy
χj(z, r, x1, . . . , xj , y) is equal to Nr,x1,...,xj

. The number of y’s which satisfy
χ(z, y) is equal to N .
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The claim is proved by induction on j, descending from ℓ to 0. The base
case, j = ℓ is trivial from the definitions. For the induction step, fix 0 ≤
j < ℓ and strings r, x1, . . . , xj . The induction hypothesis states that, for
each x′ of length pj+1(|z|), there are Nr,x1,...,xj,x′ many strings y′′ such that
χj+1(z, r, x1, . . . , xj , x

′, y′′). From this, there are
∑

x′ Nr,x1,...,xj ,x′ many pairs
y′ = 〈x′, y′′〉 satisfying this condition. From the definition of χj and Proposi-
tion 20, the number y’s satisfying χj(z, r, x1, . . . , xj , y) is equal to Nr,x1,...,xj

.
The fact that N is the number of y’s which satisfy χ(z, y) is now immediate
from the definitions. This proves the claim. ✷

Recall the iterated modular counting quantity C[M](· · · ) of (11).

Claim 33 The value C[M](Nr) is equal to either M1−1 or 1, depending on
whether ϕ(z, r) is true or false, respectively.

Before embarking on the proof of this claim, we show that Claims 32 and 33
together imply Theorem 31. From Claim 33 and the definition of N , we have
that N is congruent modulo M1 to the number of r’s such that ϕ(z, r) is false,
minus the number of r’s such that ϕ(z, r) is true. Since s1(|z|) = p(|z|) + 3,
we have M1 > 4 · 2p(|z|). From these facts, it follows that, if A(x) is true
then C[M](N) is > 3

42p(|z|), since more r’s make ϕ(z, r) true than make it

false. Likewise, if A(x) is false, then C[M](N) is < 1
42p(|z|). By Claim 32, N is

the number of y’s such that χ(z, y). In addition, since ψ is polynomial time
computable, each χj and hence χ is in polynomial time. This satisfies all the
conditions of Theorem 31.

As the first step of proving Claim 33, define quantities N∗
r,x1,...,xj

by:

N∗
r,x1,...,xℓ

= Nr,x1,...,xℓ

N∗
r,x1,...,xj

= P ′
sj+1,mj+1

(

∑

xj+1

N∗
r,x1,...,xj ,xj+1

)

mod Mj+1 for 1 ≤ j < ℓ

N∗
r = P ′′

s1,m1

(

∑

x1

N∗
r,x1

)

mod M1

We claim that, for each r, x1, . . . , xj , where 1 ≤ j ≤ ℓ, the value N∗
r,x1,...,xj

is
equal to either 1 or 0 depending on whether ψj(z, r, x1, . . . , xj) is true or false
(respectively). This is proved by on induction on j, descending from ℓ to 1. The
base case j = ℓ is true by definition. The induction step is immediate from
the definitions of ψj and P ′

sj+1,mj+1
. Similarly, N∗

r is equal to either M1−1
or 1, depending on whether ϕ(z, r) (equivalently, ψ0(z, r)) is true or false,
respectively.

Therefore, to prove Claim 33, we must prove that C[M](Nr) = N∗
r for all r.

The difference between the definitions of C[M](Nr) and N∗
r is that modular op-

erations are used in intermediate steps when computing N∗
r , but are used only

at the end of the computation when computing C[M](Nr). To prove the quan-
tities are equal, we need to “pull out” the modular operators in the definition
of N∗

r .
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Fix j ≥ 1. From its definition, Nr can be expressed as a polynomial Qj of
the values Nr,x1,...xj

. To write out Qj explicitly, let Q′
j(yxj

) be the polynomial
over the variables {yxj

}|xj|=pj(|z|), defined by

Q′
j = P ′

sj ,mj
(
∑

xj

yxj
)

if j > 1, and by Q′
1 = P ′′

s1,m1
(
∑

x1
yx1) if j = 1. Now let Qj(yx1,...,xj

) be the
polynomial over variables {yx1,...,xj

}x1,...,xj
defined by

Qj(yx1,...,xj
) = Q′

1(Q′
2(· · ·Q′

j−1(Q′
j(yx1,...,xj

)) · · · )).

To be precise, Q1 is Q′
1, and Qj+1(yx1,...,xj+1) is formed from Qj(yx1,...,xj

) by
replacing each yx1,...,xj

with Q′
j+1({yx1,...,xj ,xj+1}xj+1). Thus, we have

Nr = Qj(Nr,x1,...,xj
) = Q′

1(Q′
2(· · ·Q′

j−1(Q′
j(Nr,x1,...,xj

)) · · · )).

Claim 34 Suppose that each yx1,...,xj
is congruent modulo Mj+1 to 0 or 1.

Then
Qj(yx1,...,xj

mod Mj+1) = Qj(yx1,...,xj
) mod Mj+1. (17)

In the lefthand side of (17), the notation yx1,...,xj
mod Mj+1 means that, for

each set of values for x1, . . . , xj , the corresponding argument of Qj is equal to
yx1,...,xj

mod Mj .
Claim 33 follows easily from Claim 34. Namely, N∗

r is equal to

Q′
1(Q′

2(Q′
3(· · ·Q′

ℓ(Nr,x1,...,xℓ
) mod Mℓ) · · · ) mod M3) mod M2) mod M1

= Q′
1(Q′

2(Q′
3(· · ·Q′

ℓ(Nr,x1,...,xℓ
) mod Mℓ) · · · ) mod M3)) mod M2 mod M1

= Q′
1(Q′

2(Q′
3(· · ·Q′

ℓ(Nr,x1,...,xℓ
) mod Mℓ) · · · ))) mod M3 mod M2 mod M1

· · ·

= Q′
1(Q′

2(Q′
3(· · ·Q′

ℓ(Nr,x1,...,xℓ
)) · · · ))) mod Mℓ · · · mod M3 mod M2 mod M1

= Nr mod Mℓ · · · mod M3 mod M2 mod M1

= C[M](Nr).

The first line is the definition of N∗
r . The final two equalities follow from the

definitions of Nr and C[M]. The remaining ℓ−1 equalities follow from Claim 34.
To apply Claim 34, we need Q′

t(· · ·Q
′
ℓ(Nr,x1,...,xℓ

) · · · ) ∈ {0, 1} for all t and
all fixed r, x1, . . . , xt. This fact follows from the characterization of the values
N∗

r,x1,...,xt
given after their definitions.

It therefore suffices to prove Claim 34 to finish the proof of Theorem 31.
The idea behind Claim 34 is that Mj is larger than the absolute value of the
lefthand side of (17). The bound on the value of lefthand side will be in terms
of the “norm” of Qj .

The norm N (p) of a polynomial p is by definition the sum of the absolute
values of the coefficients of p.1 Our polynomials have only non-negative coef-
ficients; for these, N (p) is the same as the sum of the coefficients of p. The
next lemma gives simple properties of the norm.

1 The term “norm” is due to Beigel-Tarui [7]; Yao [35] used “size”.
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Lemma 35 Let p(n) and q(n) be polynomials.

(a) For a ∈ {−1, 0, 1}, −N (p) ≤ p(a) ≤ N (p).
(b) N (p+ q) ≤ N (p) + N (q).
(c) N (p · q) ≤ N (p) · N (q).
(d) Let n have length ℓ, and qi(m) be polynomials with N (qi) ≤ Nq for

all i ≤ ℓ. Let h(m) = f(q1(m), . . . , qℓ(m)). Then N (h) ≤ N (f)·(Nq)deg(f).

Another simple property that follows from (a) is:

Lemma 36 Suppose p(n1, . . . , nt) is a polynomial (with non-negative coeffi-
cients) and that N (p) < M . Further suppose ai mod M ∈ {0, 1} for all i.
Then

p(a1 mod M, a2 mod M, . . . , at mod M) = p(a1, a2, . . . , at) mod M.

In view of Lemma 36, Claim 34 follows once we prove that N (Qj) < Mj+1.
First note that

degree(Qj) = degree(P ′′
s1,m1

)

j
∏

i=2

degree(P ′
si,mi

)

=

j
∏

i=1

(2si − 1)(mi − 1) <

j
∏

i=1

2sim1.

(We are suppressing the dependence of si and pi on |z| in the notation.) We
prove that N (Qj) < Mj+1 by induction on j. For j = 1, Q1 is P ′′

s1,m1
◦
∑

x1
yx1 .

Since P ′′
s1,m1

has degree (2s1−1)(m−1) and coefficients < M1 = ms1
1 , its norm

N (Ps1,m1) is < ((2s1−1)(m1−1)+1)ms1
1 . So, since the sums are taken over the

2p1 many values for x1, Lemma 35(d) gives

N (Q1) < ((2s1−1)(m1−1)+1)ms1
1 (2p1)(2s1−1)(m1−1) < 22s1m1(p1+1). (18)

where the second inequality holds since s1,m1, p1 are positive integers. By

definition, s2 = 2s1m1(p1+1), so M2 = m
2s1m1(p1+1)
2 . Thus N (Q1) < M2.

For the induction step, we have Qj = Qj−1 ◦Q′
j , and by the same compu-

tation as for (18),

N (Q′
j) < ((2sj−1)(mj−1)+1)m

sj
j (2pj )(2sj−1)(mj−1) < 22sjmj(pj+1)

The induction hypothesis gives N (Qj−1) < Mj = m
sj
j . By Lemma 35(d),

N (Qj) < m
sj
j · N (Q′

j)
degree(Qj−1) < 2sjmj (22sjmj(pj+1))

∏j−1
i=1 2simi

= 22
js2jm

2
j(pj+1)

∏j−1
i=1 simi = 2sj+1 ≤ m

sj+1

j+1 .

Thus, N (Qj) < Mj . This completes the proof of Claim 34, and thereby The-
orem 31. ⊓⊔
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4 Proofs of Uniform Beigel-Tarui Theorems

We now prove Theorems 1 and 2. Fix values for d and m ≥ 2. Suppose a
circuit C has depth d and size S and uses unbounded fanin ∧, ∨, and ⊕m

gates. We wish to constuct equivalent circuits that satisfy Theorems 1 and 2.

A high-level sketch of the proofs is as follows. We will encode the circuit C
in terms of its direct connection language using an oracle Ξ. A second oracle Ω
is used to encode the values of the Boolean inputs to C. The circuit value
problem for C is then expressible as a ModPHΩ,Ξ

m predicate or a ModPHΩ,Ξ

predicate. Corollary 29 or Theorem 31 expresses this predicate as a constant
depth formula with a symmetric gate as output. The Furst-Saxe-Sipser, Paris-
Wilkie translation then converts this into a constant-depth quasipolynomial
size circuit satisfying Theorem 1 or 2.

We prove Theorem 1 first; the proof for Theorem 2 is almost identical. Let
n be the least value such that 2n ≥ S logm, so n = O(log S). Let x1, . . . , xi be
the inputs to C, and G the number of gates in C. W.l.o.g., G+ 2i < 2n. Thus,
an n bit string z can be used to specify uniquely one of the G many gates or 2i
many literals xj or xj . In addition, each gate has fewer than 2n many inputs.
As we explain next, this allows the oracle Ξ to encode the direct connection
language of C by using its values Ξ(x) on binary strings x of length |x| = 3n.

The oracle Ξ encodes enough information about the circuit C so that its
direct connection language [25] can be computed in deterministic polynomial
time (in n) relative to Ξ on a multitape Turing machine. Specifically, the
following properties of C can by computed quickly with the aid of Ξ: The gate
type of the k-th gate in C, the input arity of the k-th gate, and the gate number
or literal number of the ℓ-th input to to the k-th gate. One natural encoding
for the direct connection language with the oracle Ξ is as follows. First, let
the value Ξ(x) = True for a triple x = (y, 0, g) with |y| = n and g a code
for one of the finitely many gate types such that y ∈ {0, 1}n is the code for a
gate of type g. Likewise, Ξ(x)’s value for a triple x = (y, ℓ, 0) can be used to
indicate whether y designates a gate y with > ℓ many inputs (allowing binary
search to compute the precise arity of gate y). Finally, let values z ∈ {0, 1}n

designate either one of the G many gates or one of the 2i many literals. Then
Ξ(x)’s value for a triple x = (y, ℓ, j) can indicate whether the (ℓ+ 1)-st input
to the gate y is designated by a z such that the j-th bit of z is a 1. This allows
z to be computed from y and ℓ in polynomial time by querying its bits. Since
y and ℓ can be encoded with n bits, g ranges over finitely many values, and
j ranges over 1, . . . , n, all these triples can be uniquely encoded with binary
strings of length 3n. The truth values Ξ(x) on these 23n strings fully specify
the direct connection language of C.

The circuit C is, by hypothesis, of constant depth d. Without loss of gen-
erality, we may also assume that C is leveled, alternating between levels of
unbounded fanin ANDs, unbounded fanin ORs, and unbounded fanin ⊕m

gates for some fixed m ≥ 2, and with all inputs at the bottom level being
literals xi or xi. By adding extra single-input gates, this can be achieved while
at most tripling the depth of the circuit. Furthermore, we can assume w.l.o.g.
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that the strings y and z, designating gates or gate inputs, are sufficiently uni-
formly assigned so that there is a polynomial time algorithm to obtain from a
value y the depth of the gate y in the circuit.

The circuit C has i inputs, x1, . . . , xi (and their complements x1, . . . , xi).
We identify 1, . . . , i with the first i binary strings in {0, 1}n and encode the
Boolean truth values of the xj ’s with an oracle Ω. Namely, the value of Ω(j)
specifies the truth value of xj . Then, given Ξ and Ω, the circuit value problem
for C is the problem of whether C, as described by Ξ and with inputs given
by Ω outputs True.

We claim that the circuit value problem for C is uniformly expressible by
a ModPHΩ,Ξ

m predicate. That is, there is a formula Vald,m(0n) in ModPHΩ,Ξ
m

which is true precisely when Ξ encodes the direct connection language for a
leveled circuit of depth d and size ≤ 2n over the unbounded fanin connectives
∧, ∨ and ⊕m such that circuit outputs True when its Boolean inputs are
given by Ω. The fact that the formula Vald,m exists in ModPHΩ,Ξ

m follows
straightforwardly the fact that the circuit is leveled and constant depth: the
formula Vald,m uses the appropriate universal, existential, and

⊕

m quantifiers
to talk about the truth of gates at each level in the circuit C. By design,
Vald,m(0n) queries values of Ξ(x) only for |x| = 3n and queries values of Ω(x)
only for |x| = n.

We write “C accepts” to mean “C as encoded by Ξ with inputs as specified
by Ω outputs True”. By definition, Vald,m(0n) expresses that C accepts. Since

Vald,m is in ModPHΩ,Ξ
m , Corollary 29 with |u| = 2, Definition 22, and the

definition of 1⊕m-ptime state there exists polynomials q(n) and s(n) and a
predicate ψ which is polynomial time (relative to Ω,Ξ) so that

C accepts ⇔ N(0n) ≥
3

4
2q(n)

C rejects ⇔ N(0n) ≤
1

4
2q(n)

where
N(0n) = (#r,|r|=q(n))(

⊕

my,|y|=s(n))ψ(0n, r, y). (19)

Via the Paris-Wilkie, Furst-Saxe-Sipser translation, we can convert Vald,m
into a circuit D which evaluates whether C outputs True: The inputs to D
are Boolean inputs ωj and ωj representing the values of Ω(j) for 1 ≤ j ≤ i,
and Boolean inputs ξj and ξj representing the values of Ξ(j) for j ∈ {0, 1}3n.

The size of D will be 2n
O(1)

. We initially construct D as a depth four circuit,
but then collapse it to have depth three. The top gate of D is a majority gate
(hence, a symmetric gate) with 2q(n) many inputs, one for each value of r
in (19). The second level contains ⊕m gates, each with 2s(n) many inputs;
namely, each input corresponds to a particular value for y in (19). The final
two levels initially consist of disjunctions of conjunctions, one for each pair
r and y. The conjunctions all have size nO(1). For fixed values of r and y,
these conjunctions are chosen by considering all possible computations γ of
ψ(0n, r, y) over all possible oracles Ξ and Ω. (So we are thinking of Ξ and Ω as
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being unspecified.) Some of these computations γ are accepting; the rest are
rejecting. For each computation γ which is accepting, form the conjunction Aγ

of the literals ωj, ωj , ξj , ξj such that γ queries the value of Ω(j) or Ξ(j)
and receives the corresponding answer of True or False. Since Ψ has runtime
polynomially bounded in terms of n, each conjunction Aγ is polynomial size,
nO(1). The condition that Ψ(0n, r, y) accepts is equivalent to

∨

γ

{Aγ : γ is an accepting computation for Ψ(0n, r, y)}. (20)

For any two distinct computations γ and γ′, there must exist an oracle query
for which γ and γ′ receive different answers. (Otherwise, the computations
would not be different.) Therefore, for any fixed setting of the ωj ’s and ξj ’s at
most one conjunction Aγ can be true.

The circuit D, as constructed so far, has size 2n
O(1)

and depth four; namely
a symmetric gate at the top, then a level of ⊕m gates, then disjunctions of
conjunctions of size nO(1). Since the disjunctions (20) of conjunctions are used
as inputs to ⊕m gates, the only important things is the count (mod m) of how
many are true. Since each such disjunction has either exactly zero or exactly
one true input, we can “bypass” the disjunctions, and feed the conjunctions Aγ

directly into the ⊕m gates without changing the value output byD. This makes
D into a depth three circuit, with a majority gate, then a level of ⊕m gates,
and then conjunctions of small size O(nO(1)).

The circuit D computes the circuit value problem for a circuit as described
by Ξ. To finalize D, specializeD to use the oracle Ξ which correctly encodes the
direct connection language for C, by replacing each Boolean input ξi with the
appropriate (hardwired) constant True or False. Identifying the ωj’s with the
inputs xj , D now computes the same Boolean function as C. The size of D is

2n
O(1)

. Since n = O(log S), D has size 2(logS)O(1)

and so is quasipolynomially
bounded by the size of C. The bottom of level of conjunctions in D have
size (log S)O(1), namely polylogarithmic in the size of C. This thus proves
Theorem 1.

The proof of Theorem 2 is similar. Vald,m is now a ModPHΩ,Ξ predicate.
By Theorem 31, we can express “C accepts” by

C accepts ⇔ N ′(0n) ≥
3

4
mq(n)

C rejects ⇔ N ′(0n) ≤
1

4
mq(n)

where

N ′(0n) = (ApxMaj-C[M]r,|r|=q(|z|))ψ
′(0n, r),

where ψ′ is polynomial time (relative to Ω and Ξ), and q is a polynomial, and

M is a fixed sequence m
s1(n)
1 , . . . ,m

sℓ(n)
ℓ for primes mi and polynomials si(n).

We build again a circuit D which evaluates whether C accepts. The inputs

to D are again the ωj ’s and ξj ’s, and the size of D is 2n
O(1)

. We form D as
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a depth three circuit, and subsequently we collapse it to depth two. The top
gate of D has 2q(n) inputs, one for each value of r. This gate is symmetric,
computing iterated mod-counting and then taking the approximate majority.
The gates at the second level are initially disjunctions of the form

∨

{Aγ : γ is accepting} (21)

where γ now ranges over accepting computations of Ψ′(0n, r). Each Aγ is a
conjunction of size nO(1). As before, for a fixed value of r, at most one Aγ in
the disjunction (21) can be true. Thus, we can replace each disjunction (21)
which is an input to the top gate of D by the set of inputs Aγ . This replaces

each input to the top gate by up to 2n
O(1)

many inputs, but does not change
the value of the circuit (no matter what Ξ or Ω are). This also makes D
have depth two. To finalize D we again replace the Boolean inputs ξi by
the appropriate constants True or False which correctly encode the direct
connection language for the circuit C. The resulting circuit D is equivalent

to C with size quasipolynomially bounded by C. The size of D is 2n
O(1)

;
it is a depth two circuit with a symmetric gate as its output gate, and the
remaining gates are conjunctions with fanin nO(1). This completes the proof
of Theorem 2. ✷

In Theorem 1, the top gate is an approximate majority gate. By the fact [27,
20] that BPP ∈ Σp

2∩Πp
2 , similarly to Theorem 23, the majority gate can be re-

placed by either a conjunction of disjunctions, or a disjunction of conjunctions.
This gives the following weaker form of the Beigel-Tarui theorem:

Theorem 37 Fix d ≥ 1 and prime m ≥ 2. Suppose C is an ACC circuit of
size S which uses MOD m gates. (That is, C is an AC0[m] circuit.) Then

there is an equivalent circuit C′ of size 2(logS)O(1)

which has depth four. The
first (input) level of C′ contains ∧ gates of size (logS)O(1), the second level
contains MOD m gates, and the top two levels can be either a conjunction of
disjunctions, or a disjunction of conjunctions.

Buss, Ko lodziejczyk and Zdanowski [10] have shown that Theorem 37 can
be proved in a version of bounded arithmetic that includes mod m quanti-
fiers for m a prime, based on Jeřábek’s bounded arithmetic theories for ap-
proximate counting [16,17]. They then used this to prove that constant-depth
propositional proofs over the unbounded fanin connectives ∧, ∨ and ⊕p can be
simulated by quasipolynomial size propositional proofs of depth four (over the
same connectives). On a related note, earlier work by Maciel and Pitassi [21]
established that constant depth propositional proofs over the connectives ∧, ∨,
and ⊕pk can be simulated by depth three proofs if exact counting (threshold)
gates are also permitted. It is likely that, analogously to [10], the simulation
of [21] can be “uniformized” by proving it in a version of bounded arithmetic
augmented with exact counting quantifiers and modular counting quantifiers
for prime moduli p ≥ 2.
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