
The Polynomial Hierarchy 
and 

Fragments of Bounded Arithmetic 

( ~ G t e n d e d  Abstract) 

Samuel R. Buss 
Departmenr o f  Ma~henurt ic~.  

Princelon University 
February 1985 

Introduction 

One of the more important problems of computer science is to establish precise bounds on 
computational complexity and, in particular, to understand the relationship between P. NP, 
the polynomial hierarchy, PSPACE, EXPTIME, etc. This paper approaches these questions 
from the viewpoint of mathematical logic, in the hope that eventually the techniques of 
mathematical logic can shed light on the nature of computation. 

We define below a set of formal theories of arithmetic called collectively Bounded 
Arithmetic. These formal theories are related to computational complexity in that, for each 
theory, the functions and predicates definable in a "nice" way in that theory have a certain 
computational complexitv and conversely every function of that computation complexity is 
definable in that way. Thus, we present a theory S: which defines precisely the class of func- 
tions in P, another theory S;  which defines precisely the class of functions which are polyno- 
mial time relative to NP, a theory U: which defines the PSPACE functions, a theory V: 
which defines the EXPTIME functions, and other theories corresponding to levels of the poly- 
nomial hierarchy. 

We also discuss the properties of predicates which are definable in these theories For 
instance, if S: proves that a predicate is in NPnco-NP , then that predicate is already in P. 

The theories we discuss are first-order and second-order theories of arithmetic and are 
formulated in a manner analogous to Peano arithmetic. The weakest theory, s:, which 
defines the polynomial time functions, is related to the equational system PV introduced by 
Cook [3]. The theories S: and P V  have the same open PV-equations as theorems. 

Finally we state some strong versions of the G a e l  incompleteness theorems and we give 
a proof-theoretic principle which is equivalent to NP=co-NP. 

Because of space considerations, no proofs are included in this abstract. A detailed discus- 
sion and full proofs will appear in [2]. 

The Polynomial Hierarchy 

The Meyer-Stockmeyer polynomial hierarchy is a hierarchy of predicates with domain 
the natural numbers We begin by repeating the usual definition of the polynomial hierarchy 
and in the next section we will state an alternative definition, which is more useful for our 



purposes. 

De$ni.tim: 1x1 is the length of the binary representation of x, i.e., lxl=rlog2(x+ 111. Note that 
101 is 0. If x' is the vector x,, . . . , x,, then 13 denotes the vector (xl(, . . . , lx,l. 

UefLnitim: We say that a function f has polynomial growth rate iff there is a polynomial p 
such that for all 2, lfln'))lQp(lx'l). 

De$nitioa: A predicate is a function with range ( 0 , l ) .  The value 0 denotes "False" and 1 
denotes "True." 

eefinitim: Let X be a set of functions with polynomial growth rate. Then PTC(X), the 
polynomial-time closure of X, is the set of functions computable by a Turing machine (i.e. a 
transducer) with some finite set of oracles Ql, . . . , Qk EX. 

&$n&km: The polynomial time hierarchy consists of the following classes defined induc- 
tively: 

P=Af is the set of predicates on the natural numbers which are recognized by a polyno- 
mial time Turing machine. 

NP=Cf is the set of predicates on the natural numbers which are recognized by a non- 
deterministic Turing machine. 

Cj' is the set of predicates Q such that there is a REA: and a polynomial q, so that for all 
X 

ITf' is the set of predicates Q such that there is a R E E ~ ,  so that for all 3 

AC1 is the set of predicates Q in PTC(C~) .  

The Link to Mathematical Logic 

We now work in a first order language of N (the natural numbers). We will use the 
functions symbols 0, S, +, a, #, 1x1, k/2xJ and the predicate symbol 6, where 

X LI/EXJ = the greaten integer bT 

IXI  = r l o g 2 ( ~ + 1 ) 1  
x#y = 2lxl.lrI 

and the other symbols have their usual meanings. The inclusion of the function # (pro- 
nounced "smash", see Nelson [8] and Hook [6]) is very important, as it has the growth rate 
needed to define polynomial time functions. In particular, the # function allow us to express 
terms 24''hn the language of Bounded Arithmetic, where q is any polynomial with nonnega- 
tive coefficients. 

eejEniticaL: A bounded quantifier is a quantifier of the form ( b ' x ~ t )  or (3x6t )  where t is any 
term. A sharply bounded quantifier is a bounded quantifier of the form (b'xbltl) or (3xbltI). 
(Vx) and (3x1 are unbounded quantifiers. 



A hounded fonnula is a formula with no unbounded quantifiers. 

We define a hierarchy 1:) Ilf of bounded formulae by counting alternations of 
quantifiers, ignwing the sharply bounded quantifiers. 

Defmiticnr: Xf and Ilp are sets of bounded formulae defined inductively by: 
(1) Zf ,  = II;) is the set of formulae with all quantifiers sharply bounded. 
(2) If A E X ~  then ( b ' x 4 t ) ~  is In Il(;, and (b'x61tI)A and ( 3 x 4 t ) ~  are In 1:. 
( 3 )  If A eIIf  then (3x4t)A is in z P + ~  and (3x<ltl)A and (b'x6t)A are in II;. 
(4) The logical connectives A ,  V , 1 and 3 are treated in the usual manner. 

The next theorem can be thought of as an alternative definition for the polynomial time 
hierarchy. It states that a predicate belongs to certain level of the polynomial hierarchy iff it 
is expressible by a formula of Bounded Arithmetic of a certain complexity. 

T h e m  1: Let i31. A predicate Q is in 2; iff there is a 1;-formula 6 such that for all Z20, 

Q(Z) Ni=@(S) 

This theorem is due to Stockmeyer [I 11, Wrathall [14], and Kent-Hudgson [7]. 

hfinitim: Let R be a theory of Bounded Arithmetic and A be a formula. Then A is A; with 

respect to  R iff R proves that A is equivalent to both a Xf- and a IIf-formula. 

Bounded Arithmetic 

We next review the usual definition of Bounded Arithmetic. The most important axioms 
for Bounded Arithmetic are the induction axioms for bounded formulae. 

lklinition: The z P - I N D  axioms are of the form 

where A is any Xf-formula. 

We define our first hierarchy of theories of Bounded Arithmetic by restricting the use of 
the induction axiom to a subset of the bounded formulae. 

fifinifiur~: T i  is the first-order theory with language 0, S, +, ., #, p/zx], 1x1, 4 and with the 
following axioms: 

(1) A finite set of open axioms defining simple properties of the function and relation 
symbols. 

(2) The Zh-IND axioms. 

T$-') is the theory with only axioms (1). T2  is the theory U T ~ .  

The theory T2  is equivalent to the theory called elsewhere IAo+fll (see [13]). We shall 
be interested in subtheories of TZ;  however, the subtheories T ;  are not suitable for our pur- 
poses. Instead of the IND axioms, we need to use a modified version of the induction axioms, 



called PIND. By using the PIND axioms we will be able to axiomatize subtheories of T2 with 
desirable properties. 

Dejinition: The $'-PIND axioms are of the form 

A(O)A ( v x X A ( ~ / ~ X  J)IA(x)) >(VX)A(X) 

where A is any EP-formula. 

Defrni~ion:  S; is the first-order theory with language 0, S, +, ., #, p/zxJ, 1x1, < and with the 
following axioms: 

(1) The finite set of open axioms of T i ,  which define simple properties of the function and 
relation symbols. 

(2) The zP-PIN D axioms. 

s:-') is the theory with only axioms (1). S2 is the theory US;. 

It is not immediately obvious from the definitions that the theory S2 is as strong as T,; 
however, this is indeed the case. In fact we have: 

Themem 2: If i21. S;--'.T:-,-' and T;--'.S;. 

Cordlmy 3: S 2 f T 2 .  

So the theories s:, s;, s;, . . . do form a hierarchy of subtheories of T2 and their union 
is all of T2. These fragments of T 2  are the most natural and useful subtheories of Bounded 
Arithmetic for our purposes. 

I1 is an open question whether the theories S; are all distinct, or whether the hierarchy 
of theories collapses. 

Other Axiomatizations of Bounded Arithmetic 

There are a variety of other axiomatizations for Bounded Arithmetic. Among these are 
the following: 

Defmition: The EQ-LZND axioms are: 

A(O)A(VXXA(X) ~ A ( s x ) )  ~ v x ) A ( I x I )  

where A is any ZP-formula. The Z P - M ~ N  axioms are: 

(3x)kx) 3(3xXA(x) A (Vy <xX- A(y)>) 

where A is any 2:-formula. The EP-LMIN axioms are: 

(3x)A(x) T>A(O) v ( ~ X ~ A ( X ) A  (Vy ~F /zx  _]Xi  A(y))) 

h where A is any Xi-formula. The zP-replacement axioms are: 

(Vx~lt IX3y <s)A(x, y ) 4 3 w  < ~ ~ ~ d ( t , s ) X H x < l t l X ~ ( x ,  P(Sx, W))A P(Sx, w )  <s) 



where A is any Zh-formula, p is the G a e l  beta function and SqBd is a term which depends 
on the precise definition of P. 

We define the nh-IND, IIP-PIND, IIh-LIND, and II"MIN axioms similarlv. 

Paris and Klrby [lo] have carried out a detailed analysis of the comparative strengths of 
the various axiomatizations of Peano arithmetic. We present below the analogous results for 
Bounded Arithmetic. There are some differences between axiornatizations of Bounded Arith- 
metic and of Peano arithmetic. In particular, E L I - ~ 1 N  is equivalent to ~ ; - M I N  in the 
presence of s:, whereas, Paris and Kirby [lo] show that 2:-MIN is equivalent to IIY-MIN 
in the presence of P-. 

Thewem 4: In the presence of the theory s:, the following implications hold: (i>O) 

(a) XI;,-IND ~ ~ + , - z N D  E:+,-MIN ~I~-MzN 

I 

The Main Theorem 

We are now ready to state our main theorem as i t  applies to first order theories of 
Bounded Arithmetic. 

Theorem 5: Let i21 and A be a 2;-formula. Suppose 

Then there is a function f E P7'C(ZiP_1), a formula BEE! and a term t so that 

(1) S i t  (Vx'XHyXB(Z, y)3A(Z, y)) 
(2) S i t  (Vn'X3y <t)B(n', y) 
(3) s; t (~x'Xtr'yXVzXB(7, y ) ~  B(1 z)3y=z) 
(4) For all ii, Nk B(Z, fin')) 

Proof: (Outline.) The proof of Theorem 5 consists logically of two parts. 

First, assume we have an ~ i - ~ r o o f  P of (tr'x'X3y)~(?,y). Then by Gentzen's cut elimina- 
tion theorem there is a term t and an S;-proof P* of (3y<t)A(Z, y) which has no free cuts (see 
Takeuti [12] for a discussion of Gentzen's cut elimination). In particular, P* contains only 
Z0- and ~"formulae. This proof P* is obtained from P by a constructive procedure; how- 
ever, the size of P* is bounded only by a non-elementary (superexponential) function of the 
size of P. 

Second, once we have the proof P* we can obtain a PTC(Ef-l)-algorithm for computing 
f .  In fact, P* is a direct description of an algorithm to compute f ;  that is to say, P* embodies 
a PTC(EiP_l)-algorithm which computes f .  



A complete proof of Theorem 5 will appear in [2]. 

Note that when i= 1, the function f is in P, i.e., f is a polynomial time function. 

Zkjinition: Let R be a theory of Bounded Arithmetic. The function f is c:-definable by R iff 
there is a 2:-formula B and a term r so that 

( 1 > R t (Vn'X3v <L)B(?, Y )  
(2) Rl-(VZX3!y)~(n', y)  
(3) For all Z, Nk B(n',flx')) 

For all the theories of Bounded Arithmetic discussed in this paper (indeed, for any 
natural theory of Bounded Arithmetic) the condition (1) in the above definition of 
Zf-definable is superfluous. In fact, for these theories, condition (2) implies that there exists a 
term t such that condition (1) holds. See Parikh [9] for a proof of similar results. 

We have the following converse to Theorem 5: 

Themem 6: If f EPTC(Z:-~), then f is ZO-definable by S;. 

Hence the functions ~9-definable by S; are precisely the functions in PTC(Z~-~). In 
particular, the polvnomial time functions are exactly those functions which can be 
Et-defined by s:. 

We can restate the above theorems using predicates instead of functions: 

Themm 7: (i>l). Suppose ACE:, BE@, and S ; t  A-B. Then there is a predicate &CAP so 
that for all nonnegative Z, 

Conversely, if QEA:, then there are A and B so that the above holds. 

Ckudby 8: If A(?) is a formula such that S: proves that A is equivalent to both a Z6,- and a 
lit-formula (i-e., S: proves that A ~ ~ P n c o - N P )  then A(?) represents a predicate in P .  

Relationship Between S: and PV 

Cook [3] introduced a formal system called P V  in an attempt to capture the strength of 
polynomial time computation in a formal theory. PV is an equational theory (i.e. no 
quantifiers allowed) which has a function symbol for each polynomial time function and an 
induction scheme, called "induction on notation," which is analogous to A!-PIND. It turns 
out that there is a close relationship between the theories PV and s:. 

The first thing to notice is that by Theorem 6, S: can introduce function symbols for 
every polynomial time function. In fact, when the proof of Theorem 6 is examined, it is seen 
that S: can introduce all of the function symbols of PV in such a way that the introduced 
symbols provably satisfy all the axioms of PV. This extension of S: by definitions is called 
s:(Pv). 

It  is immediately obvious that S@V) is an extension of PV. In fact more than that is 
true: 



Theorem 9: Let t=u be an equation of PV. Then S:(PV)C~=U iff PVI-t=u. 

(Cook independently conjectured that Theorem 9 was true.) We can strengthen 
Theorem 9 as follows. If A is Il;-formula and S$(PV)I-A then there is an open equation A* 
of PV such that PVCA* and such that A* implies A in a natural way. We shall omit the 
precise statement of this result for lack of space; but as a general idea of what is involved, 
suppose A is ( V X X ~ ~ < ~ ) B ( X , ~ )  where R is an equation of PV. Then A* would be of the form 
B(x, f (x))~f lx)<t  where f is some P V  function symbol. We can summarize by saying that, 
after making allowances for their different languages, S: and PV have the same @-formulae 
as theorems 

Second Order Bounded Arithmetic 

We next will work with second order theories of Bounded Arithmetic by using second 
order variables which range over predicates. We could also use second order variables for 
function symbols w ~ t h  polynomial growth rate; however, this adds nothing essentially new, so 
for simplicity, we shall only use predicate variables See [2] for a complete discussion of the 
definition of second order Bounded Arithmetic. 

For our second order theories, we modify the definition of bounded fornzul~ to allow 
second order quantifiers. A bounded formula is now any formula which has all first order 
quantifiers bounded and may include arbitrary second order quantifiers. We define a new 
hierarchy of bounded formulae by counting alternations of second order quantifiers and ignor- 
ing first order (bounded) quantifiers. 

Definil ion: 
1 b X; = nlsh' 1s the set of bounded formulae with no second order quantifiers. 

~ 1 t ~  is defined inductively by : 
(1) zf;b,mfsb. 
(2) If A ~ ~ f ; b ~  then (Vx<t)A and (3x<t)A are in ~1 :~  (x is a first order variable). 
(3) If A C C ~ $  then is in Xf:l ($ is a second order variable). 
(4) A ,  V , -, , 3 are treated in the usual fashion. 

IIf;6, is defined dual1 y. 

Definition: The T~;' .~--cA comprehension axioms are: 

where A is any Xfsh-formula. 

&$nilkm U ;  is the second order theory of Bounded Arithmetic with the nonlogical symbols 
of T2  and the following axioms: 

(1)  The open axioms of T2, 
(2) The c$~--CA axioms, and 
(3) The Z?~-PZND axioms. 

V; is defined like U ;  except that V; has the Z;~-IND axioms instead of the Z~.~-PZND 
axioms. 



Our main theorem for second order Bounded Arithmetic is: 

Theorern 10: 
(a) The xi"-definable functions of 271 are precisely the PSPACE functions (i.e. the func- 

tions computable by a polvnomial space boun'ded Turing machine) which have polyno- 
mial growth rate. 

(a) The xi.b--definable functions of V: are precisely the EXPTlME functions (i.e. the func- 
tions computable by a exponential time bounded Turing machine) which have polyno- 
mial growth rate. 

Cordlmy II: If L~:=v: then PSPACE=EXFTIME. 

Of course, i t  is an open question whether 11: and V: are equivalent 

G a e l  Incompleteness Theorems 

One of the most important open questions about Bounded Arithmetic is whether or not 
the hierarchy of theories 

is proper. In many ways this is analogous to the open question of whether the polynomial 
time hierarchy collapses. Alex Wilkie has asked whether or not S2 is finitely axiomatizable. 
This is related to our question since S2 is finitely axiomatizable ifT the hierarchy of theories 

- -  collapses, that is, iff s ~ ~ s ;  for some i. Other possibilities include S ; f T ;  for all i, or s ? ' ~ T ;  
for all i2l.  We conjecture that the theories S; and T i  are all distinct. 

Analogous problems arose in a classical setting when fragments of Peano arithmetic were 
defined by restricting induction to subclasses of the arithmetic hlerarch y. These problems 
were solved by, on one hand, using (;Me1 incompletenes arguments to show that each theory 
can not prove its consistency and, on the other hand, showing that each theory can prove the 
consistency of the weaker ones. Unfortunately, we have not been able to make these argu- 
ments work in the setting of Bounded Arithmetic. However, since the negative results are 
somewhat interesting in their own right, we present them below. 

In S: we can define G a e l  codings for metamathematical concepts such as "term," "for- 
mula," "proof," etc. Furthermore, these metamathematical functions can be x!-defined and 
the metamathematical predicates can be A:-defined. (A predicate is A:-defined iff it is prov- 
ably equivalent to both a xi- and a II!-formula.) This reflects the fact that all these 
metamathematical functions and predicates are polynomial time. Also, the metamathematical 
definitions in S: are intensionally correct (in the sense of Feferman [S] ) .  

In particular, S: can define the following formulae: 

Pr f'(u,v) e=. "v is the G a e l  number of a formula and u is the Giidel number of an 
 roof of v" 

Pr fBDi(u, v) e3 ~r f '(u, v) and "the proof u contains no unbounded quantifiers" 

~r ~FCF'(U,V) Pr fTu,v) and "the proof u is free-cut free" 



We use and 1 as quotation marks meaning "the W e 1  number of". The last three for- 
mulae express the "consistency", the "bounded consistency" and the "free-cut free con- 
sistency" of S;. See Takeuti [12] for the definition of free cut. If R is any axiomatizable 
theory, then we define the formulae Con(R), BDCon(R), and FcFCon(R) to express the vari- 
ous consistency properties for R. 

One further important function which is xi-definable in S: is the unary function 
n ~ r I , l  where 1, is a term with value equal to n and the length of I, is proportional to 
the length In1 of n. 

&finitica: To improve readability, we use 

S ; ~ A  and S ; ~ A  

to denote the formulae (3u)Pr ~ R D ' ( U , ~ A ~ )  and (3u)PrfFcFi(u, TAT), respectively. 

Lemma 12: If A is a c!-formula, then S: ~[A(x)>(s~-')FA(I,))]. 

T h e m  13: Let i L 1 .  Then s;W FcFCon(S;). Hence, S;H-BDCO~(S;) and s;#co~(s;). 

The proof of Theorem 13  follows the usual proof of the G'idel incompleteness theorems. 

Now that we have seen that S; does not prove its own free-cut free consistency or its 
own bounded consistency, a natural question is whether s;+' can prove the free-cut free or 
the bounded consistency of S;. If this were the case then S; and s;" would not be 
equ~valent. bnfortunately, the onlv results we have been able to obtain have been negative. 

Lemma 14: Let A be any bounded formula. Suppose s~c(~Jx)A(x). Then, 

S; I-(VXXS~-~)PA(I~)). 

Proofi (Outline.) Use G-&el diagonalization to obtain a formula $=(VxMhf(x) such that 

S; +[@-(- s ~ * ( v ~ x s ~ - ~ ) w $ ~ ( z ~ ) ) ) ]  

and use Lemma 14. 

Cordlmy 16: If s;~BDco~(s$-')) then S2h' BDCO~(S;). 

Chohry 17: sFik BDCO~(S;) can hold for at most one value of i. 

Thus it is hopeless to try to show that SF' and S; are different theories by showing that 
SF' proves the bounded consistency of s;. However, it is an open problem whether SF' 
proves the free-cut free consistency of S;. We conjecture that this is not the case. 



A Proof-Theoretic Statement Equivalent t o  NP=co-NP 

Let R  be a theory with a recursivelv enumerable set of axioms. Then there is a polyno- 
b mial time function whose range is the set of axioms of R. Hence in 5': we can Aledefine the , 

predicates PrfR(u,r , )  and J ) r f B D R ( u , ~ ' ) ,  which assert that u  is the G a e l  number of a 
(bounded) prcwf in the theory R  of the formula with G a e l  number v. As before, we use 
RP- A as an abbreviation for ( 3 u ) ~ r  f111>~(u, TAT). 

Dejiniticnrr: Let R  be a theory and suppose that the language of R includes the language of 
Bounded Arithmetic. R  is a bounded theory iff all axioms of R are bounded R  is o f  polyno- 
mial growth rate iff whenever A  is bounded and Rt-('ifx'X3y)A(2, y )  then there is a term t  of 
the language of Bounded Arithmetic such that RI-('v'Z'X3y<t)~(2,y). 

It is not difficult to see that if R  is an extension of s:-') and R is bounded, then R  is of 
polynomial growth rate. 

irhemern 18: The following are equivalent: 

( 1 )  There is a bounded. finitely axiornatized, consisten1 extension R of S: such that for 
every bounded formula A,  

$I- ( V X X A ( X ) ~ ( R P A ( I , ) ) ] .  

(2 )  There is an axiomatizable, consistent extension R  of S; of p~lynomial growth rate 
such that for every IIi-formula A,  

R  I- ( V X X A ( X ) ~ ( R I - A ( I , ) ) ] .  

Theorem 18 glves us an interesting reformulation of NP=co-NP. Although this author 
has had no success trying to prove or disprove ( 1 )  and (21, i t  seems to be a reasonable approach. 
In particular, the relativizations of Baker-Gill-Solovay [ I ]  do not apply to ( 1 )  and (2). To see 
this, let R  be a predicate of [ I ]  so that PJpB=co-~pB. Then if B is a new predicate symbol in R  
it is not at  all likely that R I - [ B ( x ) ~ ( R I - B ( I , ) ) ]  and R t [ -  B ( x ) 3 ( R I - - B ( I , ) ) ]  both hold. 

Theorem 18 is related to a result of Cook-Reckhow [4] on proof systems. 

A natural way to try to apply Theorem 18 is by trying to show self-consistency state- 
ments are not provably provable. For example, define 

C o n R w  - - ( 3 ~  < X ) P , - ~ ~ ( ~ ,  r0=11) 
Unfortunately, we have 

Thewern 19 There is bounded, consistent, axiomatizable theory R  extending S: such that 

R  I- (b'x)(ConR(x> 3 ( R p ~ o n ~ ( I , ) ) ] .  

In fact, 

R  ( b ' x X ~ ~ ~ o n ~ ( ~ , ) > .  
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