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Abstract
This paper introduces a method for computing weighted averages

on spheres based on least squares minimization that respects spherical
distance. We prove existence and uniqueness properties of the
weighted averages, and give fast iterative algorithms with linear and
quadratic convergence rates. Our methods are appropriate to problems
involving averages of spherical data in meteorological, geophysical
and astronomical applications. One simple application is a method
for smooth averaging of quaternions, which generalizes Shoemake’s
spherical linear interpolation.

The weighted averages methods allow a novel method of defining
Bézier and spline curves on spheres, which provides direct general-
ization of Bézier and B-spline curves to spherical spline curves. We
present a fast algorithm for spline interpolation on spheres. Our
spherical splines allow the use of arbitrary knot positions; potential
applications of spherical splines include smooth quaternion curves for
applications in graphics, animation, robotics and motion planning.
Keywords: spherical mean, spherical average, least squares minimiza-
tion, barycentric coordinates, quaternions, quaternion interpolation,
Bézier curve, B-spline, spline curve, spline interpolation, spherical
interpolation.

1 Introduction

Let Sd be the d-dimensional unit sphere in Rd+1 . For points x and y on Sd ,
let distS(x, y) denote the length of the shortest geodesic on Sd from x to y .
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Let ||x− y|| denote the usual Euclidean distance between x and y in Rd+1 ;
note ||x− y|| < distS(x, y) for any distinct points x and y on Sd .

Let p1, . . . , pn be points on Sd : the main purpose of the present paper is
to define a weighted average or centroid of these n points using as weights
values w1, . . . , wn such that each wi ≥ 0 and and such that

∑
i wi = 1. This

weighted average will be denoted

C = ©
∑n

i=1
wi · pi,

and is to be defined in terms of distances in Sd , using distS(−,−) instead
of Euclidean distance. Since Sd is not a linear space, it is not immediately
obvious that there is a sensible way to define this weighted average; however,
in section 2 below, we shall show that it makes sense to define the weighted
average as the result of a least squares minimization, namely as the point C
on Sd which minimizes the value

f(C) = 1
2

∑
i
wi · distS(C, pi)2.

This method of calculating the centroid C will be shown to enjoy a number
of nice properties: firstly, it is a natural analogue of weighted averages
in Euclidean space; secondly, it generalizes Shoemake’s spherical linear
interpolation, which provides a definition of a spherical average of two
points; and thirdly, the centroid value C exists and is unique in many
common situations. In section 3, we describe efficient methods of calculating
the centroid C using iterative methods with linear and quadratic convergence
rates.

To the best of our knowledge, this kind of weighted average or centroid
on spheres has not been considered in the past. Indeed, there is an extensive
literature on averaging points on spheres and on statistical analysis of points
that lie on spheres, e.g., see [34, 35, 1] or the book [37] and the references cited
therein. Most of that work performs the averages in Rd+1 and renormalizes
to place the result on the sphere; namely, they compute the centroid as∑

i wipi

||∑i wipi||

with the summation being taken inside Rd+1 . Shoemake [30] noted that even
when taking weighted averages of only two points, this kind of renormalized
Rd+1 -average causes undesirable effects. Shoemake used the quaternion
representation of rigid-body orientations as points on S3 to perform smooth
interpolation between two orientations of a rigid body in 3-space. He
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pointed out that the renormalized Rd+1 -averaging method did not produce
uniform interpolation of orientations and was therefore unsuitable for many
applications: his solution was to use “spherical linear interpolation” or
“slerp”-ing to compute the weighted average of only two points on the sphere
based on geodesic length in S3 . Our spherical averaging method provides a
smooth generalization of Shoemake’s spherical linear interpolation to allow
computing weighted averages of more than two points.

A few authors consider statistics of spherical data that do not merely
embed the results in Rd+1 : for instance Clark and Thompson [6] perform
averages using a stereographic projection (the axis for the stereographic
projection is calculated by averaging in Rd+1 ) — this suffers from distorsion
for data points located away from the center of projection. Later, in [33],
they used averages based on longitude and latitude values: this causes
distorsion for data located away from the equator.

A number of authors, including [3, 14, 39], have considered averages in
fairly general metric space and Banach space settings. These settings are
too general to be applicable to averages on the sphere Sd .

Spherical splines. The second main topic of the present paper is the
the application of spherical averaging to generate spline curves on spheres.
Spherical spline curves have potential applications in computer graphics, in
animation and in robotics and motion planning based on quaternions.

In the Euclidean case, a spline consists of control points p1, . . . , pn (in
Rd+1 , say) and of blending functions f1(t), . . . , fn(t) (also called “basis
functions”) defined for t in the domain [a, b] for some a < b . The functions
fi have the property that, for all t ∈ [a, b] ,

f1(t) + f2(t) + · · ·+ fn(t) = 1, and fi(t) ≥ 0, for all i . (1)

In the most common applications, the functions fi(t) are defined by specify-
ing knot positions t1, . . . , tk+d and constructing the blending functions fi(t)
from the knot positions. This provides a framework for defining blending
functions which give curves with desired smoothness properties, and even
sharp bends or cusps where desired (see e.g., [10]). Once the blending
functions have been defined, the spline curve is defined by

s(t) = f1(t)p1 + f2(t)p2 + · · ·+ fn(t)pn.

This gives a curve parameterized by t .
Generalizing this approach to spline curves to the d-sphere Sd becomes

straightforward after the development of spherical averages in sections
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2 and 3 below. Namely, let the control points p1, . . . , pn lie on Sd . Given
blending functions fi(t) which satisfy (1), a spline curve on the sphere can
be defined by using the spherical weighted average:

s(t) = ©
∑n

i=1
fi(t) · pi.

In this way, many of the techniques of defining B-splines in Euclidean space
are generalized to the sphere. As a special case, this allows the definition of
spherical analogues of piecewise cubic B-spline curves.

Spherical spline interpolation. The control points used to define a spline
curve typically do not lie on the resulting curve. However, one often wishes
to use spline curves to interpolate points, i.e., one has points q1, . . . , qn and
has n distinct time values t1, . . . , tn and one wishes to ensure that s(ti) = qi

for all 1 ≤ i ≤ n . There are a variety of well-known approaches for picking
blending functions fi so as to ensure the spline has the desired smoothness
properties and to control the behavior of the spline curve at its endpoints.
Given the interpolation points qi and the time values ti and the blending
functions fi , one then needs to find control points p1, . . . , pn which cause
the curve to interpolate the points qi .

For curves on the sphere, this means choosing points pi on Sd so that

qj =
n

©
∑
i=1

fi(tj) · pi for 1 ≤ j ≤ n .

In most common applications (where one generates spline curves which
are piecewise degree 3 polynomials), the values fi(tj) are non-zero only for
j ∈ {i−1, i, i+1} . Therefore in the Euclidean case, the control points pi can
be found very simply by solving a tridiagonal matrix equation. The matrix
cannot be so simply inverted for spherical spline interpolation; instead we
use an iterative procedure to determine p1, . . . , pn . Two such procedures are
described in section 4.2, and experimental results show them to be quite fast
in practice. Indeed, in realistic small examples, the pi ’s can be found in a few
milliseconds or less — section 5 lists a variety of experimental measurements
of runtime.

Prior work. There has been extensive prior work on spherical splines; we
survey here a major portion of it, with an eye to how our methods improve
on the prior methods.

The earliest description of spherical spline interpolation was by Parker-
Denham [25], who described spherical splines on Sd by defining a spline
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curve in Rd+1 and normalizing to map the curve to the sphere. Since the
curve may deviate a long way from the sphere, the normalization process is
mathematically unnatural and can cause significant distorsion.

Thompson and Clark [33] (see also the references cited therein) applied
spherical spline curves to the problem of determining the Gondwanan
apparent polar wonder path to study the past movements of continents. They
defined spherical spline curves following a method of Gould by interpolating
in latitude and longitudinal space. This method causes distorsion near
the poles. Fisher-Lewis [11] proposed interpolating points on Sd with a
smooth curve by combining smooth segments so as to ensure continuous
second derivatives and suggested using either third-order natural splines or
loxodromes.

Spherical splines on the 3-sphere S3 , the unit sphere in R4 , have
become quite important in computer graphics and animation because of
the correspondence between orientations of solid bodies and quaternions
(see [7, 30]). Quaternions can be viewed as (pairs of antipodal) points on S3

and thus spherical spline curves can be used to specify a smooth transition
of solid orientations. Shoemake [30, 31] was the first apply quaternions
to graphics and animation: he stressed the importance of using spherical
distance instead of Euclidean distance. In [30] he introduced the now widely
used method of spherical linear interpolation (“slerping”) for two points. He
also used analogues of the de Casteljau method of calculating Bézier curves
to define curves on the sphere, and in [31] introduced a similar, but faster
method called Squad. A number of other authors have proposed similar
methods, also based on Catmull-Rom splines: these methods allow a general
spline to be defined in terms of multiple linear interpolations between pairs
of points and in this way slerping can be used to define higher-order spherical
splines. Duff [9] gives the most in-depth development of this kind of method
and proves a variation diminishing property for these splines. A disadvantage
to these methods on the sphere, at least as described in the extant literature,
is that they work well only for equally spaced knot positions. However, it
should be possible to give more sophisticated spherical spline curves based on
the de Castaljau method which are computed using multiple slerps between
pairs of points and which work well for arbitrary knot positions (indeed,
knot insertion methods for spline curves should suffice for this, c.f. [10]).
Moreover, these methods should give curves satisfying the properties a.-f.
below. These kinds of algorithms, however, would suffer from the fact that
resulting curve would depend on the details of the order in which slerps are
performed: for instance, the results of repeated knot insertion would depend
on the order in which the knot were inserted. By contrast, spline curves
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based on our spherical averages provide a mathematically natural way of
blending multiple control points in a single step without having to arbitrarily
choose an order for averaging.

Wang-Joe [36] suggest forming smooth spherical curves which are
piecewise small circles. A more sophisticated approach was taken by
Roberts-Bishop-Ganapathy [29] and Kim-Nam [20, 21] who proposed defin-
ing interpolating splines using spline segments which are obtained by
blending small circles on the sphere. This method provides nice smoothness
properties, but performs poorly when data points are not equally spaced,
and does not allow specification of knot positions.

Ge-Ravani [13] and Jüttler [17] suggest the use of dual quaternion
curves to control solid body orientation and position simultaneously. The
subsequent paper of Jüttler-Wagner [18] uses piecewise rational functions
for the entries of orientation matrices; this method suffers from having
control points which are only affine (non-orthogonal) matrices, More recently,
Alfeld et al. [1] discuss defining barycentric coordinates and spherical spline
functions with good continuity properties using renormalized-Rd methods.
In all four of these papers, the interpolation methods are not intrinsic to the
sphere in the sense of respecting spherical distance.

Kim-Kim-Shin [19] give a method of constructing quaternions curves by
using general blending functions. Like our method introduced in this paper,
they allow the use of arbitrary blending functions and thus arbitrarily spaced
knots and control points. Their use of blending functions is mathematically
quite different from ours: instead of using a general method of computing
weighted averages on the sphere, they compose a series of rotations based
on slerps between the control points. This is mathematically somewhat
unnatural; for instance, reversing the order of the control points can alter
the spline curve. Another undesirable feature is that their spline curves
may not satisfy the “convex hull” property; for instance it is possible for
the control points to lie on vertices of a triangle in a hemisphere and for
the spline curve to lie partly outside the triangle. In addition they do not
address the problem of interpolation. Nonetheless, their spline curves enjoy
many of the advantages we list below for our spherical splines, particularly
if the control points are not very widely spaced and if the blending functions
have sufficiently local support.

Gabriel-Kajiya [12], Jupp-Kent [16], Noakes-Heinzinger-Paden [23],
Park-Ravani [24], and Dam-Koch-Lillhom [8] proposed using natural splines
which minimize covariant (tangential) acceleration. The first paper [12] gave
a very general method which works on any manifold as well as described the
specialization of their method to the sphere. Curves obtained by minimizing
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covariant acceleration have nice smoothness, but suffer from not having
local control, since changing one control point changes the whole curve. In
addition, they are computationally somewhat difficult; e.g., [12] report that
it takes a “few tens of seconds” to find an interpolating spline curve on an
IBM 4341. Barr et al.[4] proposed minimizing covariant accelerations while
relaxing the requirement that the curve lie exactly on the sphere, because this
allowed faster computation. They noted that a curve could be computed in
“a few minutes per interpolation”; although later [28] characterized the run
time of [4] as “several minutes to hours.” Ramamoorthi-Barr [28] describe
a numerically fast algorithm that can get close to an optimal curve within
about 4 seconds (machine type and programming language unspecified).
This run time is quite adequate for interactive applications, but unlike our
algorithms is not fast enough for real-time applications. Like other natural
spline methods, the spline curves of [4, 28] do not allow local control or
(without some kind of modification of their energy functions) specification
of knot positions. Their curves lie close to, but not on, the 3-sphere and
have to be normalized to lie on the sphere. The papers [40, 24] suggest using
curves that minimize covariant acceleration and/or jerk. [40] give closed
form solutions for special cases of the two point interpolation problems, e.g.,
when the initial and final velocity are both zero; [24] give approximations
that work well in restricted cases, e.g., when the initial and final rotation are
not too different, and give applications to interpolation with knot positions.

The definition of spherical splines and spherical spline interpolation in
the present paper provides several advantages:

a. It allows construction of spherical splines with non-interpolated control
points, and also allow interpolating curves by suitably choosing control
points.

b. They can be computed fast enough for some real-time applications:
see section 5 for details.

c. The spherical averages and spherical splines are invariant under
rotations of the sphere; there is no distorsion near the poles for instance.

d. The algorithms are completely intrinsic to the sphere: we do not
compute averages in Euclidean space and then renormalize back to the
sphere. Spherical distances, not Euclidean distances, are the basis for
averaging and blending. The spherical weighted averages are mathematically
natural. If the points all lie on a geodesic (great circle), then our algorithms
correspond to weighted averages on a line, but using geodesic arc length.
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e. The spline curve lies in the convex hull of the control points.
f. Since our spline curves are defined in terms of weighted averages

of spherical data, the well-known methods for generating spline curves in
Euclidean space immediately generalize to the sphere. This immediately
gives several advantages which carry over from the Euclidean case. First,
the well-known strategies for choosing knot positions can now be applied
to spherical splines to control the smoothness of the curve. It is therefore
easy to define spherical splines with any number of continuous derivatives.
Second, knot positions need not be equally spaced or distinct. This allows
defining spline curves with sharp localized bends and even discontinuous
derivatives if desired. Third, spherical splines can be defined with local
control; i.e., changing one control point can affect the curve only in segments
close to the control point.

The outline of the rest of the paper is as follows. Section 2 gives the
mathematical definition of spherical weighted averages and includes proofs
of existence and uniqueness. Section 2 also establishes smoothness of the
spherical weighted average as a function of the weights and the points pi ,
and proves a convexity property for spherical weighted averages. Only the
first part of section 2 is needed for the rest of the paper: the reader is who
is interested more in implementation than in mathematical proofs, may skip
sections 2.1 through 2.3. Section 3 describes two algorithms for computing
spherical weighted averages. Section 4 describes applications to spherical
spline curves and to spherical spline interpolation. Section 5 describes the
execution speed of our algorithms and compares them to other approaches.
We conclude with some open problems in section 6.

2 Spherical Weighted Averages

We consider the following problem: given n points p1, . . . , pn lying on the
sphere and n non-negative real weights w1, . . . , wn with sum equal to 1, and
we wish to define a weighted average function

Avg(w1, p1; w2, p2; . . . wn, pn) = ©
∑

i
wi · pi (2)

which computes a point on the sphere which is a “weighted average” of
these given n points. This kind of problem is important for a number of
applications including statistics of spherical valued functions (as might arise
in astronomical, geophysical, meteorological applications), and applications
to solid body orientations (quaternions), etc. There are a number of natural
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properties the Avg function should satisfy: (1) the averaging should be
intrinsic to the sphere, and depend on spherical distances, not Euclidean
distances, between points on the sphere, (2) in the degenerate case where
the points pi lie on a geodesic in a hemisphere, the weighted average should
be computed in the usual fashion based on distances along the geodesic,
(3) the value of Avg should be a C∞ -continuous function of the weights wi

and the points pi , at least in the case when all the points are contained
a hemisphere of the sphere. When averaging quaternions, condition (2)
states that the average of two points on the 3-sphere should corresponds to
Shoemake’s slerping algorithm. A final condition is that the Avg function
should act qualitatively like a weighted average.

It is not possible to directly define the Avg as a linear combination of
the points p1, . . . , pn and respect geodesic distance on the sphere. However,
there is an alternative definition of Euclidean weighted sums that can be
adapted to the sphere. Letting ||p − q|| denote the Euclidean distance
between points p and q , the Euclidean weighted average

w1p1 + w2p2 + · · ·+ wnpn

can be defined as the point q which minimizes the value of the function

f(q) = 1
2

∑n

i=1
wi||q − pi||2.

In other words, in Euclidean space, the weighted average of the points pi is
equal to the point where a weighted sum of squares of distances is minimized.
To prove this fact, let the Euclidean space be Rd , and each pi be in Rd and
q range over points in Rd : let the k -th component of q and of pi be denoted
qk and pi,k , respectively (1 ≤ k ≤ d). By the Pythagorean theorem,

f(q) = 1
2

∑
i,k

wi(qk − pi,k)2.

Differentiating with respect to qk , any critical point of f must satisfy∑n

i=1
wi(qk − pi,k) = 0,

whence, using the fact that the weights sum to 1, there is a unique critical
point and it is given by

qk =
∑n

i=1
wipi,k.

It is clear that this critical point is a global minimum and of course it is the
weighted average of the points pi .
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To transfer the least squares minimization to the sphere, we let distS(p, q)
denote the spherical distance from points q and p on the d-sphere, namely,
the length of the shortest geodesic seqment from q to p . Now let the
function f be defined on the d-sphere by

f(q) = 1
2

∑n

i=1
wi · distS(q, pi)2. (3)

We thus define the value of Avg(w1, p1; . . . wn, pn) to be the point q on Sd

which minimizes f(q). Since the notation Avg is fairly inconvenient and
non-intuitive, we henceforth use in its place the modified summation notation

©
∑n

i=1
wi · pi

where the new summation symbol means that it is not a traditional sum, but
instead represents the value minimizing equation (3). Sometimes, we use a
superimposed ‘+’ and small circle to represent the same quantity, namely,
we sometimes denote ©

∑n
i1

wi · pi by

w1 · p1 ◦+ w2 · p2 ◦+ · · · ◦+ wn · pn

This modified summation and addition notation is suggestive, but
the reader should be aware that many common properties of ordinary
summations are not shared by spherical weighted averages; for instance,
it is usually the case that the values 2

3 · (1
2 · p1 ◦+ 1

2 · p2) ◦+ 1
3 · p3 and

1
3 · p1 ◦+ 2

3 · (1
2 · p2 ◦+ 1

2 · p3) are distinct. This failure of associativity is an
example of how our weighted average Avg differs from using progressive
slerping, that is to say, the Avg value cannot be computed by taking
successive spherical averages of pairs of points. Indeed, by Brown and
Worsey [5], there is no way to define spherical averages which is intrinsic to
the sphere so that associativity holds.

Fix points pi on the d-sphere Sd and non-negative weights wi with sum
equal to 1 and let f be the weighted sum of squares of spherical distances (3).
By the compactness of the sphere, the function f has a minimum value: in
order for the weighted average ©

∑
i wi · pi to be well-defined, the function f

must have attain its minimum value at a unique point on Sd . Of course
this condition may not always hold; for instance if the points p1, p2, p3 are
equally spaced around the equator of S2 and if w1 = w2 = w3 = 1/3, then
f is minimized at both the north and south poles. As another example, if
there are six equally weighted points on S2 distributed at the intersections
of S2 with the x, y, z -axes, then f attains its minimum value at the eight
points (±1/

√
3,±1/

√
3,±1/

√
3).
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However, in many situations the function f does attain a unique
minimum: the easiest case, treated in the next theorem, is when the points pi

all lie in a common hemisphere of Sd (by convention, a hemisphere is always
closed). By a ‘critical point’, we mean a point where the first derivatives
of f are all zero.

Theorem 1 Suppose the points p1, . . . , pn all lie in a hemisphere H of Sd ,
with at least one point pi in the interior of H with wi 6= 0. Then the
function f has a single critical point q in H , and this point q is the global
minimum of f .

It will be clear from the proof that the assumption that the points all lie in
a single hemisphere can be relaxed significantly. Theorem 5 states examples
of other conditions that imply the uniqueness of a global minimum for f .

Before we prove Theorem 1, we introduce the exponential and logarithmic
functions, and derive formulas for the partial derivatives of f : these will also
be useful for the development of algorithms for spherical weighted averages
in section 3. The partial derivatives of f are with respect to displacements
in the sphere around a point q ∈ Sd . To make this formal, we define Tq

to be the hyperplane tangent to Sd at the point q . The hyperplane Tq is
d-dimensional and can be coordinatized by letting the point q be the origin
of Tq and letting the axes of Tq be arbitrary orthonormal axes which are
tangent to the sphere. We define the exponential map at q to be the mapping
from the tangent hyperplane Tq to the sphere which preserves distances and
angles from q .∗ To make this precise, we need to choose an appropriate set
of coordinates for Tq and Rd+1 . Let points in the space Tq be specified using
coordinates x1, . . . , xd (so that the point q is the origin). Let x′1, . . . , x′d+1

be the coordinate axes for Rd+1 . Without loss of generality (choose new axes
for Rd+1 if necessary), the point q is at the point (0, . . . , 0, 1) in Rd+1 and
the axes x′i are parallel to xi for all i ≤ d . The exponential map is denoted
expq(·) and is a function mapping a point p with coordinates (x1, . . . , xd)
to the point expq(p) = (x′1, . . . , x′d+1) where

x′i = xi · sin r

r

for 1 ≤ i ≤ d , where r =
√∑

x2
i is the distance from q to p , and x′d+1 =

cos r . We let (sin 0)/0 equal 1, and thus expq(q) = q . Furthermore, since

∗The terminology “exponential map” comes from Lie theory; this paper does not
depend on knowledge of Lie theory however. The exponential map has been discussed in
the setting of computer graphics by Hart et al. [15] and Dam et al. [8].
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the sphere has unit radius, it is clear that r is equal to the spherical distance
from q to expq(p) provided r ≤ π . Thus the exponential map takes points
in the tangent plane to points on the sphere, preserving distance from q ;
it also preserves the tangential direction from q . Actually, to be precise,
the exponential map only preserves angles and distances for points in the
tangent plane which have distance < π from q ; however, we shall implicitly
assume this condition holds whenever it is needed.

q pr

expq(p)
r

Figure 1: The exponential map preserves distances < π and directions
from q

The inverse of the exponential map is denoted `q(p) and it maps a point p
on Sd to the tangent hyperplane, provided p is not antipodal to q . We have
expq(`q(p)) = p and the formula governing the inverse map is

xi = x′i ·
θ

sin θ

where θ = cos−1(xd+1) is the spherical angle between p and q , 0 ≤ θ < π .
Note θ is also equal to the spherical distance from q to p .

To define the partial derivatives of the function f at a point q on Sd ,
let F (s) = f(expq(s)) for points on the tangent hyperplane Tq , and choose
axes x1, . . . , xd for Tq . Then the first-order derivatives of f at q are
defined to equal (∂F/∂xi)q ; its second-order derivatives at q are equal to
(∂2F/∂xi∂xj)q , etc. The best description of the derivative of f is as a
gradient vector ∇f in Rd+1 which is tangent to the sphere at q ; namely, let
∇f(q) equal the vector(

∂F

∂x1

)
q

u1 +
(

∂F

∂x2

)
q

u2 + · · ·+
(

∂F

∂xd

)
q

ud,

where u1, . . . , ud are the unit vectors pointed in the directions of the axes
x1, . . . , xd . We think of the vector ∇f(q) being attached to the sphere at q .
Similarly, the second-derivatives of f at q are best described as the d × d
Hessian matrix H = (hij) where hij = (∂2F/∂xi∂xj)q . For v a unit vector
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tangent to Sd , the second derivative of f in the direction v is equal to
(vT )Hv , where v is viewed as a column vector and vT is its transpose.

For 1 ≤ i ≤ n , let the function gi(q) equal distS(q, pi) so that

f(q) = 1
2

∑n

i=1
(gi(q))2.

We also let fi(q) = 1
2(gi(q))2 so that f(q) =

∑
i fi(q). To describe the

derivatives of f , it will be sufficient to describe the derivatives of fi .
The derivatives of fi are easily calculated if we choose the correct set of

axes for Tq : namely, let x1 be in the direction pointing from q away from pi ,
tangent to the shortest geodesic from pi to q , and let the rest of the axes be
arbitrary orthonormal vectors. The next lemma tells us how to compute the
derivatives of fi relative to these axes. By doing this for each pi , and then
converting to a common coordinate system, we can add up the derivatives
of the fi ’s to obtain the derivatives of f .

Lemma 2 Let the coordinate axes x1, . . . , xd for Tq be chosen with x1

pointing away from pi . Let ρ = distS(q, pi) be the spherical distance from
pi to q . Let Fi(s) = fi(expq(s)). Then

a.
(

∂Fi

∂x1

)
q

= ρ and, for j 6= 1,
(

∂Fi

∂xj

)
q

= 0.

b.
(

∂2Fi

∂x2
1

)
q

= 1 and, for j 6= 1,

(
∂2Fi

∂x2
j

)
q

= ρ cot ρ.

c. For every j 6= k , the mixed partial
(

∂2Fi

∂xj∂xk

)
q

equals 0.

Proof (a): Define Gi(s) = gi(expq(s)) = distS(q, expq(s)) = ||q − s|| .
Since the exponential map preserves distances and the x1 axis points in the
direction away from pi , it is obvious that (∂Gi/∂x1)q = 1. For j 6= 1, let
uj be the unit vector pointing along the xj axis. By symmetry, we have
Gi(q + tuj) = Gi(q − tuj) for all t ∈ R . Thus (∂Gi/∂xj)q = 0. We have
established that(

∂Gi

∂x1

)
q

= 1 and, for j 6= 1,
(

∂Gi

∂xj

)
q

= 0.

Since Fi(r) = 1
2(Gi(r))2 , (a) follows immediately.

(b): The fact that (∂2Fi/∂x2
1)q = 1 follows easily by the same

reasoning, since along the axis x1 , Fi equals half of the square of the
distance from `q(pi). To compute (∂2Fi/∂x2

j )q , we need to derive the
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formula for Fi of points along the xj -axis. Let r(t) denote the point
expq(q + tuj). Thus r(t) is the point on the sphere with coordinates
(0, . . . , 0, sin t, 0, . . . , 0, cos t). Let ϕ = ϕ(t) denote the spherical distance
from r(t) to pi , so that fi(r(t)) = 1

2(ϕ(t))2 . Differentiating with the chain
rule shows that (∂fi/∂xj) = ϕ · (dϕ/dt).

The points pi, q, r(t) form a right spherical triangle with the right angle
at vertex q , so a spherical identity states that

cos ϕ = cos t cos ρ.

Differentiating implicitly gives − sinϕ dϕ = − cos ρ sin t dt , whence

dϕ

dt
=

sin t

sin ϕ
cos ρ,

d2ϕ

dt2
=

cos t

sin ϕ
cos ρ− sin t cos ϕ

sin2 ϕ

dϕ

dt
cos ρ

=
cos t

sin ϕ
cos ρ− sin2 t cos ϕ cos2 ρ

sin3 ϕ
.

At the point q , we have t = 0 and ϕ = ρ , thus cos t = 1 and sin t = 0 and

(∂2fi

∂x2
j

)
q

=
(dϕ

dt

)2

t=0
+ ϕ ·

(d2ϕ

dt2

)
t=0

= 0 + ρ
cos ρ

sin ρ
= ρ cot ρ.

Finally, (c) follows immediately from the second part of (a), since at least
one of j, k is not equal to 1. 2

Lemma 2(a) has the immediate consequence that any critical point (and
in particular, any local minimum) of the function f looks like the weighted
average of the points pi from the point of view of the tangent hyperplane at
the critical point:

Theorem 3 Let q be a critical point of f , with q not antipodal to any pi .
Then ∑n

i=1
wi(`q(pi)− q) = 0. (4)

Proof Let f∗ be the function defined on Tq by

f∗(x) =
1
2

∑n

i=1
wi||`q(pi)− q||2.

At the point q , the first derivatives of f are given by Lemma 2(a) and are
equal to the first derivatives of f∗ . Therefore, since q is a critical point
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of f , it is also a critical point of f∗ . As discussed earlier, the unique critical
point of f∗ is the Euclidean weighted average

∑n
i=1 wi`q(pi). Thus, q is the

Euclidean weighted average, and equation (4) is satisfied. 2

One might expect that Theorem 3 already implies Theorem 1; however,
we have been unable to give such a simple proof of Theorem 1: the problem
is the inverse exponential mapping `q() depends on q so there is no way to
a priori rule out the possibility of having more than one point q inside the
hemisphere H which satisfies equation (4). Furthermore, Theorem 3 is not
enough to prove that every critical point q is a local minimum of f .

2.1 Proof of The Uniqueness Theorem

We next prove Theorem 1 concerning the uniqueness of the spherical
weighted average. The details of the proofs in the following sections are
not needed for the rest of the paper, so the reader who is not interested in
the proofs may skip ahead to section 3.

Since f is a continuous function on the compact space Sd , f attains its
minimum value at at least one point q . We show that q is in the interior
of the hemisphere H . First suppose that q lies completely outside H : by
reflecting q across the boundary of H , we get a point q′ in the interior of H .
It is easy to verify that for every point pi in the interior of H , the point q′ is
closer to pi than q is. Points pi on the boundary of H are equidistant from
q and q′ . Therefore the value of f(q′) < f(q), contradicting the choice of q .
Next, we show that the gradient of f at the boundary is always non-zero
and is pointing outwards from H . To prove this, suppose that q is on the
boundary of H . If pi lies in the interior of H , then Lemma 2(a) implies that
the gradient of fi points outward from H . If pi is a point on the boundary,
then the gradient of fi points parallel to the boundary of H , by the second
part of Lemma 2(a). The gradient of f is a weighted sum of the gradients of
the fi ’s and thus f points outward from the boundary of H . Therefore, a
global minimum q can lie neither on the boundary of H nor in the exterior
of H .

Let q be in the interior of H and a critical point of f , i.e., a point where
the first derivatives of f are all zero. We claim that q is a local minimum
of f . In fact, the second derivative test will show that f is concave up at q .
To make this property precise, fix a geodesic through q and let the scalar u
measure distance along this geodesic, and view f as a function of u . We
shall prove that (∂2f/∂u2)q > 0, so f is concave up at q .

The function f is the sum of the functions fi ; unfortunately, the
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individual functions fi are not necessarily concave up, since for a point pi

at distance ρi > π/2 from q , Lemma 2 states that some of the second
derivatives are equal to ρi cot ρi < 0. However, we shall see that it is
possible to consider the points pi in pairs, so that the sum of pairs of
functions fi will be concave up at q .

Formally, our proof will proceed by induction on the number n of
points. In the base case, when n = 1, we have q = p1 and clearly
f(s) = 1

2(distS(s, p1))2 is concave up at s = q . For the induction step,
let z be the geodesic which passes through both q and the center of the
hemisphere H . For any point pi we define the angle αi to be the angle
between z and the geodesic from q to pi , with the convention that αi = 0 if
pi lies on geodesic z in the direction from q to the center of the hemisphere
(see Figure 2). First suppose there is some pi with αi = π/2. Then by
choice of z and since pi lies in the hemisphere H , the distance from q to pi

is ρi ≤ π/2 (or, if pi is the interior of H , then ρi < π/2). Thus cot ρi ≥ 0.
We claim that this implies that the second derivative ∂2fi/∂u2 of fi is
non-negative (resp, positive if ρi < π/2). This claim follows immediately
from the next lemma.

Lemma 4 Let α be the angle between the geodesic from q to pi and the
geodesic of u. Then ∂2fi/∂u2 = (sinα)2ρi cot ρi + (cos α)2.

Proof of Lemma: Let local axis v be the geodesic from q to pi and let y be
a perpendicular local axis so that y makes angle π/2− α with u . Note the
images of v , t , y under the exponential map are coplanar. Lemma 2 implies
that (∂2fi/∂v2)q = 1 and that (∂2fi/∂y2)q = ρi cot ρi . Using the chain rule,
and differentiating twice,

∂fi

∂u
=

∂fi

∂v

∂v

∂u
+

∂fi

∂y

∂y

∂u
=

∂fi

∂v
cos α +

∂fi

∂y
sinα.

∂2fi

∂u2
=

∂2fi

∂v2
cos2 α + 2

∂2fi

∂v∂y
cos α sin α +

∂2fi

∂y2
sin2 α.

By Lemma 2, the mixed partial is zero, so Lemma 4 is proved. 2

To complete the proof of Theorem 1, it remains to prove the induction
step when there are no points which make angle π/2 with the geodesic z . By
Theorem 3, we know that the weighted sum of the vectors `q(pi)− q in the
tangent hyperplane is equal to zero. Therefore, letting `q(z) be the image
of the axis z under the inverse exponential map, the sum of the projections
of the vectors onto `q(z) is also zero; i.e.,∑n

i=1
wiρi cos αi = 0. (5)
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Since cosαi 6= 0 for all i , there are a pair of points, w.l.o.g. the points p1

and p2 , so that cosα1 > 0 and cosα2 < 0. Thus, 0 ≤ α1 < π/2 < α2 ≤ π .
We shall prove by induction on n , the base case being n = 2, that when

(5) is satisfied for points in H , that ∂2f/∂u2 ≥ 0 (and > 0 if at least
one point lies in the interior of H). For the induction step, express f as
f = f ′ + f ′′ as follows. Choose w′1 and w′2 so that 0 ≤ w′1 ≤ w1 and
0 ≤ w′2 ≤ w2 and

w′1ρ1 cos α1 + w′2ρ2 cos α2 = 0

and so that either w′1 = w1 or w′2 = w2 . Define two functions f ′(x) =
1
2(w′1distS(x, p1) + w′2distS(x, p2)) and f ′′(x) = f(x) − f ′(x). Since one of
the first two coefficients in the formula for f ′′(x) is zero, f ′′(x) is a weighted
sum of squares of distances of only n − 1 points from x . By construction,
(5) holds for f ′′ , so the induction hypothesis applies to f ′′ . Similarly, f ′

satisfies (5) as a weighted sum of two points. Thus it will suffice to prove
our claim for the n = 2 base case.

In the base case we have

w1ρ1 cos α1 + w2ρ2 cos α2 = 0. (6)

Since ρi cot ρi ≤ 1 and since cos2 αi + sin2 αi = 1, Lemma 4 implies that

∂2f/∂u2 ≥ w1ρ1 cot ρ1 + w2ρ2 cot ρ2 (7)

We define λ to equal the distance from q to the boundary of the hemi-
sphere H , i.e., if the geodesic z from q to the center of H is extended past
the center of H to the boundary of H at a point r , then λ is the geodesic
length from q to r . Likewise let s1 and s2 be the points on the boundary
of H which are reached by extending the geodesics from q through p1 and p2

and define γ1 and γ2 to be the distances from q to s1 and s2 , respectively.
Consider the spherical right triangle with vertices q, r, s1 , which has a

right angle at r . The angle at vertex q is α1 , and a spherical right triangle
identity tells us that

cot γ1 tanλ = cos α1,

so therefore cot γ1 = (tanλ)−1 cos α1 . Since ρ1 ≤ γ1 and the cotangent
function is deceasing for angles in the interval [0, π), we have

cot ρ1 ≥ (tanλ)−1 cos α1

with strict inequality if p1 is in the interior of H . This plus the corresponding
inequality for cot ρ2 and equations (7) and (6) imply that

∂2f/∂u2 ≥ (tanλ)−1(w1ρ1 cos α1 + w2ρ2 cos α2) = 0
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ρ1 = distS(q, p1)
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γ2 = distS(q, s2)

z
λ =
distS(q, r)

α1

α2

Figure 2: Top view of hemisphere H (orthogonal projection). All curves
represent geodesics on the sphere.

(where as usual the inequality is strict if at least one of ρ1 or ρ2 is in the
interior of H). We are almost done, but our proof breaks down when q is
the center of H , in which case tan λ = 0: for this case, however, ρi ≤ π/2
for all i and therefore ρi cot ρi ≥ 0. So in any event, ∂2f/∂u2 ≥ 0. Thus
the second derivative test shows that f is concave up at q .

We have established that any critical point of f inside H is a local
minimum of f . In addition, we showed that the gradient of f at any point
on the boundary of H points outward from H . Therefore, it follows from
index theory (see [22], for example) that there is only one critical point in H .
This critical point is clearly the unique point inside H where f attains its
minimum value; therefore, it is also the unique point on Sd where f attains
its minimum value, which completes the proof of Theorem 1. 2

The proof of Theorem 1 involved splitting points pi and then pairing
up points so that each pair defined a concave up distance function at q .
Obviously the hypothesis that the points all lie in a hemisphere is stronger
than is needed: instead, all we really used was that

∑
i ρi cot ρi > 0 where

ρi is the distance of pi from q . And even this condition is stronger than is

18



really necessary except in the degenerate case where the points all lie in a
(d− 1)-dimensional subspace of the sphere.

Thus there are various ways that the hypotheses of Theorem 1 can be
weakened: two of these are stated in the next theorem. If q is a point on the
sphere, then Bq(t) denotes the ball of radius t around q , namely, the set of
points on the sphere of distance ≤ t from q .

Theorem 5 Let f , pi , wi be as usual.
(a) Let 0 < ϕ ≤ π/2. Suppose q is a critical point of f and Bq(ϕ) contains

points pi of total weight ≥ 0.5 and then all the points pi are contained in
the Bq(π − ϕ). Then q is a local minimum of f according to the second
derivative test.

(b) Let 0 < ϕ < ψ ≤ π/2. Suppose 0 < w ≤ 1 and that wϕ+(1−ψ)π ≤ ψ .
Further suppose there is a point v so that Bv(ϕ) contains points pi of
total weight ≥ w and that all the points pi are in Bv(π − 2ψ − ϕ). Then
f has a unique minimum. This unique minimum is inside Bv(ψ) and is
the only critical point inside Bv(ψ).

Proof Part (a) is immediate from the method used to prove Theorem 1:
just match points outside of Bq(t) with points inside Bq(t).

To prove (b), note that the condition on w ensures that the global
minimum lies inside Bv(ψ). And any critical point inside Bv(ψ) satisfies
the condition of part (a), with ϕ replaced by ϕ + ψ . 2

Part (b) of the theorem has the advantage that it is a test that can be
applied without having already found the critical point q . We conjecture
that part (b) can be substantially strengthened (see the final section).

2.2 Continuity of Spherical Weighted Averages

Theorem 6 Let values for p1, . . . , pn and w1, . . . , wn and q be chosen that
satisfy the hypotheses of Theorem 1 or 5. Then there is a neighborhood
of p1, . . . , pn, w1, . . . , wn in which the weighted average q is a C∞ -function
of p1, . . . , pn, w1, . . . , wn .

This theorem is proved as a corollary of the Implicit Function Theorem
(see Spivak [32]). Indeed, the weighted average q is equal to a root of ∇f .
Except at points antipodal to one of the pi ’s, the function ∇f is clearly
a C∞ -function of the points p1, . . . , pn and of the weights w1, . . . , wn .
Furthermore, the matrix of first derivatives of ∇f is the Hessian matrix H .
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Since the proof of Theorems 1 and 5 establishes that the second derivative
test shows that f is concave up, we know that the Hessian matrix H
is positive definite and thus non-singular. Therefore the conditions of
the Implicit Function Theorem are satisfied at any point q satisfying the
conditions of Theorems 1 or 5.

Note that the Inverse Function and Implicit Function Theorems can be
used to calculate the first-order and higher-order derivatives of the weighted
average function Avg .

It will be helpful in section 3 to know that the Hessian matrix H
is positive definite and non-singular in a neighborhood of the weighted
average q . One further property: at every point q and every unit vector v ,
we have vT Hv ≤ 1. This is proved by noting that lemma 2 shows that this
holds for the Hessians of the each of the Fi functions, since ρ cot ρ ≤ 1.

2.3 A Convexity Property

In this section we show that the points q which can be written as a weighted
average of x1, . . . , xk form a convex set; in fact, they form precisely the
convex hull of the points x1, . . . , xk .

Definition A subset C of Sd is convex iff for any two points x, y ∈ C there
is a shortest geodesic from x to y which lies entirely in C .

The subset C is the convex hull of a set D iff C is the unique smallest
convex set containing D .

The above definition allows antipodal points to be in a convex set C , as
long as there is at least one geodesic between the antipodal points which lies
in C . Note that if x1 and x2 are antipodal, then they do not have a convex
hull. However, for any third point x3 , {x1, x2, x3} does have a convex hull,
namely, the geodesic from x1 through x3 to x2 .

To state the next theorem with maximum generality, we define that a
point q is a proper weighted average of x1, . . . , xk if there are non-negative
weights w1, . . . , wk which sum to 1 such that q = ©

∑
i wi · xi and there is a

hemisphere H such that for each non-zero wi , we have xi ∈ H , and that for
at least one non-zero wi , xi is in the interior of H . The proper weighted
averages are of course precisely the weighted averages which are guaranteed
by Theorem 1 to be uniquely defined. We say that the weighted average is
strongly proper provided the hemisphere H can be chosen so that each xi

with non-zero weight is in the interior of H .
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Theorem 7 Suppose that x1, . . . , xk are distinct points, and that it not
the case that k = 2 with x1 and x2 antipodal. Then the convex hull C
of {x1, . . . , xk} exists and is equal to the set of proper weighted averages
of x1, . . . , xk . If x1, . . . , xk lie in a hemisphere, then the convex hull C is a
subset of the hemisphere. If they do not lie in a hemisphere, then the convex
hull is the entire sphere Sd .

Proof Let C be the intersection of all the hemispheres which contain
{x1, . . . , xk} , or C = Sd if there are no such hemispheres. (Recall that
hemispheres are always closed.) Clearly C is convex.

To show that every proper weighted average is in C , suppose that H
is a hemisphere containing all of x1, . . . , xk and that a point q is a proper
weighted average of x1, . . . , xk : we must show that q ∈ H . If some xi with
non-zero weight is in the interior of H , then Theorem 1 implies that q ∈ H .
However, if every xi with non-zero weight is on the boundary of H , then it
is obvious that q also lies on the boundary of H since q is a point where the
weighted sum of squares of spherical distances is minimized. Hence q ∈ H
in either case.

It remains to to prove that every point q in C can be expressed as a
proper weighted average of x1, . . . , xk . Since it is much simpler, we first
prove this in the special case where the points xi all lie in the interior
of a hemisphere H . Let x′i = `q(xi) be the point in the tangent plane Tq

corresponding to xi . The fact that q ∈ C implies that q is in the convex hull
of the points x′i , since otherwise there is a closed halfplane G in Tq with q
on its boundary which contains none of the points x′i , and its image expq(G)
in Sd is a hemisphere which contains q but none of the xi ’s, contradicting
the fact that q ∈ C . Therefore q may be written as a Euclidean weighted
average q =

∑
i wix

′
i , and now Theorems 1 and 3 imply that q is equal to

the proper, spherical weighted average q = ©
∑

i wi · xi.
Now we prove the more difficult general case. To handle the degenerate

cases, our proof proceeds by induction on the dimension d . For the base
case, d = 1, S1 is a circle. Let x1 and x2 be the first points clockwise
and counterclockwise (respectively) from q . Letting δ equal the sum of the
arclengths from q to x1 and to x2 , it is clear that q ∈ C iff δ < π and this
holds iff q is a strongly proper weighted average of x1 and x2 .

Next we argue the induction step, d > 1. For r a point on Sd , let Hr

be the hemisphere centered at r . When q and xi are in Hr we define δr,xi

to be equal to the distance from xi to the boundary of Hr in the direction
away from q : i.e., measured along the geodesic containing q and xi . We
shall only consider points r which are in Hq , and letting δr,xi = 0 for xi not
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in Hr , δr,xi is always defined for these r ’s. For each r ∈ Hq , define f(r) to
equal the maximum value of δr,xi . Since f is a continuous function and has
compact domain, f attains a minimum value, f(s), at some point s ∈ Hq .

Let Ir denote the set of points xi which are in the interior of Hr . First
suppose that Is is non-empty or, equivalently, f(s) > 0. Let y1, . . . , y`

enumerate all the points xi which are in Is , and let zi = `q(yi) be the
corresponding points in the tangent plane Tq . We claim that q is in the
(Euclidean) convex hull of {z1, . . . , z`} . To prove this claim, suppose it is
false: then there is a vector ~v so that the dot product (zi − q) · ~v ≤ 0
for all zi . Displace the point s infinitesimally in the direction ~v ; i.e., let
s′ = expq(`q(s)+ε·~v) for sufficiently small ε > 0. Clearly, for small ε , we have
δs′,yi

< δs,yi for each yi ∈ Is . Also, for ε < f(s), we have δs′,x < ε < f(s) for
each x ∈ Is′ \ Is . Therefore, f(s′) < f(s) which contradicts the choice of s .
That proves the claim that q is in the convex hull of {z1, . . . , z`} and then
exactly as argued in the preceding special case, Theorems 1 and 3 imply that
q is a (strongly) proper spherical weighted average of the points y1, . . . , y` .

Secondly, consider the case where Is = ∅ , so none of the points xi are
in the interior of Hs . In this case, since q ∈ C , the point q must also lie
on the boundary B of Hs (since the hemisphere with center antipodal to s
contains all the points xi ). The boundary B is itself a (d − 1)-sphere. It
is easy to check that q is in every (d − 1)-hemisphere subset of B which
contains every point xi ∈ B — this is because any such hemispheric subset
of B can be “lifted” to a hemispherical subset of Sd which contains every
point xi . Therefore, by the induction hypothesis, q can be written as a
proper weighted average of the points xi which lie in B . 2

The next theorem is a corollary to the method of proof of the previous
theorem,

Theorem 8 Suppose that x1, . . . , xk are distinct points, and that it not the
case that k = 2 with x1 and x2 antipodal. Then the convex hull C of
{x1, . . . , xk} exists and is equal to the set of strongly proper weighted averages
of x1, . . . , xk .

In particular, q can be written as a proper weighted average of the points xi

if and only if it can be expressed as a strongly proper weighted average of
the points. This can be further strengthened as follows:

Theorem 9 Every point in the convex hull C of {x1, . . . , xk} can be written
as a strongly proper weighted average of at most d + 1 many of x1, . . . , xk .

Proof This follows from Theorems 8, 1 and 3 and corresponding fact for
weighted averages in d-dimensional Euclidean spaces.
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3 Algorithms for Spherical Weighted Averages

We now present two algorithms for computing a spherical weighted average
q = ©

∑n
i=1 wi · pi . The first, Algorithm A1, is a linear convergence

rate algorithm which iteratively searches for a point q which satisfies
the condition of Theorem 3. The second, Algorithm A2, is a quadratic
convergence rate algorithm which uses Newton descent to find a critical
point of the function f . Runtimes for these algorithms are reported in
section 5.

Both algorithms are iterative, i.e., they start with an estimate for the
value of q and produce a better estimate. To start the process, we choose
an initial value q0 on the sphere taking the Euclidean weighted average of
the points pi and normalizing to place on the sphere; namely,

q0 :=
∑n

i=1 wipi / ||
∑n

i=1 wipi||.
If the hypotheses of Theorems 1 or 5 hold, then

∑
i wipi is non-zero.

Given an estimate for q , Algorithm A1 maps all the points pi to the
tangent hyperplane at q , then calculates their Euclidean weighted average u
in the hyperplane and maps this back to the sphere by the exponential map.

Algorithm A1:
Inputs: Points p1, . . . , pn on Sd

Non-negative weights w1, . . . , wn with sum 1.
Output: The spherical weighted average of the inputs.
Initialization: Set q :=

∑n
i=1 wipi/||

∑n
i=1 wipi|| .

Main Loop:
For i = 1, . . . , n

Set p∗i := `q(pi)
Set u :=

∑n
i=1 wi(p∗i − q).

Set q := expq(q + u).
If ||u|| is sufficiently small, output q and halt.
Otherwise continue looping.

By Lemma 2 and the observation in the proof of Theorem 3, the vector u
in the algorithm is the negative of the gradient ∇f(q) of f at q . Thus, the
loop in Algorithm A1 is setting q = q −∇f , i.e., it moves q in the direction
of steepest descent. We argue below that A1 converges linearly.

Next we give the Algorithm A2 which has a quadratic convergence rate.
The main loop for Algorithm A2 updates an estimate q for the spherical
weighted average by computing the first-order and second-order derivatives
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of the function f at the point q . It then inverts the Hessian matrix and
computes a better estimate of the point where the first-derivative of f is
zero.

Algorithm A2:
Inputs: Points p1, . . . , pn on Sd

Non-negative weights w1, . . . , wn with sum 1.
Output: The spherical weighted average of the inputs.
Initialization: Set q :=

∑n
i=1 wipi/||

∑n
i=1 wipi|| .

Main Loop:
Set up a local Euclidean coordinate system C at q .
For i = 1, . . . , n

Set p∗i := `q(pi)
Let ρi := ||p∗i − q|| .
Set up a local coordinate system Ci at q such that the

first axis x
(i)
1 points in the direction away from pi .

Let Mi be the matrix that converts Ci coordinates
to C coordinates.

Let Hi be the d× d diagonal matrix with first entry 1
and the rest of the entries ρi cot ρi .

Set u :=
∑n

i=1 wi(p∗i − q).
Set H :=

∑n
i=1 MiHiM

T
i . (Note MT

i = M−1
i , the transpose of M )

Set v := H−1u .
Set q := expq(q + v).
If ||v|| is sufficiently small, output q and halt.
Otherwise continue looping.

By Lemma 2, each Hi is the Hessian matrix of fi at the point q in
the coordinate system Ci ; and H is the Hessian matrix of f at q in the
coordinate system C . The points p∗ and the negative gradient u are to be
represented in the coordinate system C . To see that the convergence rate of
Algorithm A2 is really quadratic, note that it is performs Newton’s algorithm
for finding a root of ∇f ; namely it updates q by q = q −H(∇f). As noted
after Theorem 6, the Hessian H is positive definite in a neighborhood of
the weighted average qsoln . In addition, by finite dimensionality, u · Hu
is bounded away from zero in a neighborhood of qsoln . These facts are
sufficient for Newton’s algorithm to converge quadratically, see e.g. Theorem
1.4.6 of Polak [26].

We have u = Hv , so by comments after Theorem 6, 1 ≥ v · u > ε for
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some ε > 0 in some neighborhood of qsoln . From this it can be shown, again
in a sufficiently small neighborhood of qsoln , that if q′ = expq(q + u), then
f(q′) < δf(q) for some 0 < δ < 1. This implies that A1 converges at least
linearly.

The above discussion on convergence rates only covers local convergence,
i.e., convergence assuming that q is already sufficiently close to qsoln . It
is possible to convert these algorithms into ones with guaranteed global
convergence (c.f. [26]), but in practice we have never seen a situation where
Algorithms A1 and A2 failed to converge well.

4 Applications to Splines

4.1 Splines Based on Weighted Spherical Averages

Spline curves are curves which are specified by a small set of parameters
and which have nice smoothness properties, such as having continuous k -th
order derivatives. They are widely used in drafting and computer aided
manufacturing to specify curves and surfaces. In robotics and animation,
spherical splines are often used to specify orientations for smooth kinematic
motion of solid bodies.

We consider the problem of specifying spline functions which take values
on the unit d-sphere Sd : these are useful for a variety of applications.
In graphics and robotics, the most prominent applications are based on
the equivalence between quaternions and (pairs of antipodal) points on the
3-sphere. A spline function taking values on the 3-sphere can be used as a
spline function taking quaternion values and, if the curve is parameterized
by time t , then the spline curve specifies the orientation of a solid body as
a smooth function of time.

The most common method of using splines in Euclidean space Rd+1

involves the selection of control points p1, . . . , pn in Rd+1 and blending
functions f1(t), . . . , fn(t), also called basis functions. The Euclidean spline
curve s(t) is defined by

s(t) =
∑n

i=1
fi(t)pi.

The blending functions must always satisfy the properties

f1(t) + f2(t) + · · ·+ fn(t) = 1 and fi(t) ≥ 0, for all i , (8)

for t in the interval [a, b] . Usually the blending functions enjoy additional
properties such as having continuous k -th order derivatives; or being
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‘bitonic’, i.e., being increasing on an initial part of the interval [a, b] and
decreasing on the the rest of the interval; or having local support.

In order to define spherical splines, let p1, . . . , pn now be points on Sd ,
and let f1(t), . . . , fn(t) be functions which satisfy (8). We define a spline
curve s(t) which takes values on the unit sphere by setting

s(t) = ©
∑n

i=1
fi(t) · pi.

In practice, we should ensure that for each value of the parameter t , the set
of control points pi for which fi(t) 6= 0 is contained inside a hemisphere, or
at least is mostly contained inside a hemisphere so as to satisfy the conditions
of Theorems 1 or 5. This condition is most readily met provided that either
(a) the blending functions have local support and consecutive control points
are not too widely spaced, or (b) the control points all lie inside a single
hemisphere.

The most common applications of splines use B-splines with the
blending functions fi being piecewise cubic curves with continuous sec-
ond derivatives. To define the B-spline curves, one picks control points
a = t1, t2, . . . , tn−1, tn = b (to be precise, one may also pick additional
control points, but this does not impact the present discussion), which then
determine the blending functions. The blending functions have the property
that for tj ≤ t ≤ tj+1 , the only non-zero fi(t) are for i ∈ {j−1, j, j+1, j+2} .
In particular, fi(tj) is non-zero only if i ∈ {j − 1, j, j + 1} . In this case
the spherical spline points s(t) will be well-defined provided that any four
consecutive control points lie in a hemisphere. Of course, this requirement
that any four consecutive control points lie in a hemisphere can be relaxed
somewhat, in light of Theorem 5.

Theorem 6 implies that if the the blending functions fi have continuous
k -th derivatives, then the spline curve s(t) also has continuous k -th
derivatives.

Since Bézier curves are special cases of B-spline curves, one can define
spherical Bézier curves in terms of our B-spline curves. These curves
will generally be different than the spherical Bézier curves generated by
de Casteljau methods.

4.2 Interpolation with Spherical Splines

The previous discussion concerned B-spline curves defined with control
points — in general, the curve does not pass through the control points.
We now take up the problem of defining a spline curve that interpolates a
desired set of points.
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Suppose we are given points c1, . . . , cn on the d-sphere, and are given
time values t1 < t2 < · · · < tn : we wish to find a smooth curve s lying
on the sphere, parameterized by t , so that s(t1) = ci for all i . The basic
problem is to choose additional knot positions and control points pi which
defines a spherical spline curve which satisfies these conditions.

There are of course a variety of possible ways to define B-spline curves:
for experimental purposes, we have implemented one kind of B-spline curve
that gives blending functions which are piecewise cubic polynomials and
which have continuous second derivatives. We implemented two sets of
algorithms, one with a linear convergence rate and one with a quadratic
convergence rate, for both the 2-sphere and the 3-sphere. We report timing
results below, but since the linear convergence rate algorithm worked almost
as fast as the quadratic convergence rate algorithm, and since the former
algorithm is much easier to describe and to implement, we will describe only
the first algorithm in detail.

We used a standard B-spline implementation (see, e.g., [38]) having as
knot positions the values t0, t1, t2, . . . , tn+4, tn+5 with t0 = t1 = t2 = t3 and
tn+5 = tn+4 = tn+3 = tn+2 . We ‘double’ the first and last control points,
requiring that p0 = p1 and pn+1 = pn . Our blending functions are defined
as usual for piecewise-cubic B-splines, namely, define

Bi,1(t) =

{
1 if ti ≤ t < ti+1

0 otherwise

and
Bi,n+1(t) =

t− ti
ti+n − ti

Bi,n(t) +
ti+n+1 − t

ti+n+1 − ti+1
Bi+1,n(t),

using the convention that 0/0 = 0. The blending functions are defined by
fi(t) = Bi,4(t), are defined for t ∈ [t3, tn+2] , are piecewise cubic, and have
continuous second derivatives. The support of fi is in the interval [ti, ti+4] .
The spline curve is given by s(t) = ©

∑n+1
i=0 fi(t) · pi .

Once we have the blending functions, it remains to choose control
points pi so that the points ci are interpolated correctly, with s(ti+1) = ci .
In the Euclidean setting, this yields a set of linear equalities given by a
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tri-diagonal matrix (see, for instance, [38]), namely,


c1

c2

...

cn−1

cn




=




1 0 0 · · · 0 0
α2 β2 γ2 0 · · · 0

0 α3 β3 γ3 0
...

...
. . . . . . . . . 0

0 · · · 0 αn−1 βn−1 γn−1

0 0 · · · 0 0 1







p1

p2

...

pn−1

pn




The row sums of the matrix are all equal to 1.
In the Euclidean case, one can easily solve this tridiagonal matrix for the

control points pi . In the spherical setting, we interpret the matrix equation
as n spherical weighted averages:

ci = αi · pi−1 ◦+ βi · pi ◦+ γi · pi+1.

where β1 = βn = 1 and α1 = αn = γ1 = γn = 0. However, since the sphere
is not a linear space under the definition of spherical weighted averages,
it is not sufficient to invert the tridiagonal matrix to solve for the control
points pi . Instead it is necessary to use an iterative method of solving for
the control points pi . The simplest method is to use one of the following
two methods of iteratively solving for the control points:

Algorithm S1:
Inputs: Interpolation points c1, . . . , cn ,

and real coefficients αi, βi, γi (1 ≤ i ≤ n)
Output: Control points p1, . . . , pn

Initialization: Set pi := ci , for i = 1, . . . , n .
Main Loop:

For i = 1, . . . , n
Set p∗i := −(αi · `ci(pi−1) + γi · `ci(pi+1))/βi.
Let δi := ||p∗i − `ci(pi)|| .

For i = 1, . . . , n
Set pi := expci

(p∗i )
If the values of δi are all sufficiently small, halt.
Otherwise, continue looping.

Note that in Algorithm S1, the points ci and pi lie on the d-sphere,
and each value p∗i lies in the d-dimensional Euclidean space Tci , which is
the hyperplane tangent to the d-sphere at the point ci . The only purpose
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of computing the scalar values δi is to measure the distance between the
old and new values of pi , so as to have a stopping criterion. The general
idea behind the algorithm is quite simple: the new value of pi is set so that
its weighted average with the old values of pi−1 and pi+1 would correctly
give the interpolation point ci . Of course, since all the pi values are being
updated at once, a single iteration of the loop does not yield a solution. But
since the diagonal entries of the matrix dominate the off-diagonal entries,
the iteration converges towards a solution.

In practice, we use a modified version of the above algorithm which
converges approximately twice as fast:

Algorithm S2:
Inputs: Interpolation points c1, . . . , cn ,

and real coefficients αi, βi, γi

Output: Control points p1, . . . , pn

Initialization: Set pi := ci , for i = 1, . . . , n .
Main Loop:

For i = 1, . . . , n
Set p∗ := −(αi · `ci(pi−1) + γi · `ci(pi+1))/βi.
Let δ = ||p∗ − `ci(pi)|| .
Set pi := expci

(p∗).
If all n values for δ were sufficiently small, halt.
Otherwise, continue looping.

The algorithms above both have a linear convergence rate; i.e., in order
to get k digits of accuracy, the loop must be iterated O(k) times. We also
implemented algorithms with quadratic convergence rates: these algorithms
computed discrepancy vectors equal to

δi = `ci(αi · pi−1 ◦+ βi · pi ◦+ γi · pi+1)

which are vectors in the Euclidean space Tci tangent to the sphere at ci .
The goal is to find points pi for which the discrepancy vectors equal zero. In
addition, the algorithm computes d × d matrices Mi,j which are Jacobian
matrices giving the rate of change of the discrepancy vector δi with respect
to the changes in the control point pj . (Changes in the control point pj are
measured by vectors in the d-dimensional tangent space Tpj . Thus, using
Mi,j requires setting up a local coordinate system each pi which provides
a basis for the tangent space Tpi .) The algorithm then solves a linear of
equations to implement a Newton-method estimate for improved control
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points.
The disadvantage of the quadratic convergence rate method is that it is

much more difficult to implement than Algorithms S1 or S2. Furthermore
the runtime is not greatly improved over the linear convergence rate
algorithms, since each loop iteration is much slower. We tested the runtimes
of the various algorithms to obtain approximately 16 digits of accuracy (the
IEEE floating point double precision limits). When d = 2 (for finding splines
on the 2-sphere embedded in R3 ), the quadratic convergence rate method
was experimentally observed to be twice the speed of the linear convergence
rate method. However, for d = 3 (for splines on S3 or for quaternion spline
curves), the quadratic convergence rate method was slightly slower than the
linear convergence rate algorithm.

In view of the relatively lackluster performance advantage of the
quadratic convergence rate algorithm, and in view of the substantial difficulty
of implementing the quadratic convergence rate methods, we recommend use
of the linear convergence rate methods only.

4.3 Examples of Spline Interpolation

Figures 3 and 4 show some experimental results of spline interpolation.
Figures 3a and 3b show curves which interpolate four points on the sphere
— the control points for the curve are shown as open circles and are seen to
lie completely within one hemisphere. For Figure 3a, the knots were equally
spaced; and for Figure 3b, the knots were spaced proportionally to spherical
distance between the interpolation points. Clearly the second version with
unequally spaced knots yields a more rounded, smoothly varying curve. It
is beyond the scope of the present paper to investigate the best methods
of choosing knot positions; rather, we are using this as an example of how
techniques for generating Euclidean spline curves can now be applied to
curves on spheres.

Figure 4 shows curves that interpolate 10 points that circumnavigate the
2-sphere. Again, Figure 4a shows the result of choosing equally spaced knots
and Figure 4b shows the curve obtained with knots spaced proportionally
to the spherical distance between the interpolation points. Once again,
the use of unequally spaced knots yields a smoother looking curve. One
interesting feature of the control points shown in the curves Figure 4 is that
they do not satisfy the hypotheses of Theorem 1. For example, the control
points numbered 6,7,8,9 in Figure 4a do not lie in a single hemisphere:
nonetheless, the spherical distance is still well-defined for the points on the
spline curve and the spline curve still varies smoothly. The control points
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Figure 3: Interpolating four points on S2 . (a) shows the curve generated
with equally spaced knots. (b) is the curve generated with knots spaced
proportionally to the spherical distance between interpolation points. The
interpolated points are drawn as small disks; the control points are drawn
as small circles.

numbered 2,3,4,5 are another example of this. However, it should be noted
that if the interpolation points were much more widely spaced, then the
well-definedness and the smoothness of the spline curve could breakdown;
for instance, if the interpolation points were more widely spaced, then the
control points 6 and 9 could “wrap around” the sphere past each other.

5 Experimental results

This section reports experimentally observed runtimes for the algorithms
for weighted averages and for spline interpolation. Our algorithms were
implemented in C++ (in Microsoft’s Visual C++), and run on a 400MHz
Pentium II. We tried to code our algorithms relatively efficiently, but did
use classes for vectors, matrices, etc., which of course impacts performance
due to the overhead of constructors and destructors.

Table 1 shows the observed average computation times for the two
algorithms for computing spherical weighted averages. The run times are
reported for both the linear convergence rate Algorithm A1 and the quadratic
convergence rate Algorithm A2, on both the 2-sphere and the 3-sphere. Both
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Figure 4: Interpolating ten points on S2 . (a) shows the curve generated
with equally spaced knots. (b) is the curve generated with knots spaced
proportionally to the spherical distance between interpolation points. Lines
and control points that are on the back side of the sphere are drawn dotted.

algorithms were quite fast, always less than a millisecond per computation
of weighted average of small sets of points: this is more than adequate for
interactive applications and is adequate for many real-time applications. It
was observed that the quadratic convergence rate algorithm is substantially
faster than the linear convergence rate algorithm. Note that the speed
advantage of algorithm A2 over A1 was less for the 3-sphere than for the
2-sphere; we expect that the speed advantage would decline even further for
higher dimensional spheres, since Algorithm A2 has to perform a relatively
expensive d × d matrix inversion, and this will tend to dominate the run
time as d increases.

It should be noted that the times reported in Table 1 are for the
computation of weighted averages to approximately 16 digits of accuracy,
the limits of the IEEE double-precision floating point specification. If one
is interested in single precision accuracy, the linear convergence algorithm
is likely to be approximately as fast as the quadratic convergence rate
algorithm.

Now we turn to the run time for the computation of interpolating
spherical spline curves. Here we are given n points ci on the sphere
along with knot positions (values of the parameter t) and the algorithm
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Averaging 4 points Averaging 12 points
Algorithm on S2 on S3 on S2 on S3

A1 0.1538 0.196 0.3626 0.423
A2 0.0396 0.103 0.0846 0.265

Table 1: Run times in milliseconds of the computation of spherical
weighted averages to approximately 16 digits of accuracy. Algo-
rithm A1 is the linear convergence rate algorithm. Algorithm A2
is the quadratic convergence rate algorithm. The time reported is
the average elapsed real time achieved over 5,000 computations.

computes the control points which define a spline curve based on piecewise
cubic blending functions which interpolates the control points at the specified
values of t . Column 1 of Table 2 reports the time required to compute the
control points from the interpolated points, using Algorithm S2.

The run times of Algorithm S2 are quite satisfactory; however, generally
one wishes to not only compute the control points, but also to compute
points along the curve. These points along the curve are to be computed as
spherical weighted averages of the control points, i.e., are computed using
Algorithm A1 or A2. The runtimes of Algorithms A1 and A2 are only
one order of magnitude less the run time of Algorithm S2, so the time to
calculate a large number of points along the curve dominates the time needed
to calculate the control points. Therefore, we report in Table 2, the total
time needed to compute control points and to compute a reasonably large
number of points along the curve. The points along the curve were computed
using the faster Algorithm A2: we used the previous two points on the curve
to make a linear prediction of the next point on the curve, which was used
as the initial value q0 in A2. The linear prediction gets better as the points
on the curve are more closely spaced; hence, the computation of 256 equally
spaced points on the spline curve is faster per point than the computation
of 64 equally spaced points on the curve.

It is difficult to compare our runtimes to that of previous authors; in
part, because very few authors report detailed run times. A number of
authors have reported runtimes for algorithms which find curves minimizing
an energy function; the best of these run times are those of Ramamoorthi-
Barr [28] who compute good curves within approximately four seconds.
The only other authors who report such detailed run times were Gabriel-
Kajiya [12] who report run times of “a few tens of seconds” for an APL2
implementation on an IBM 4341. Thus our algorithms are faster than
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Number of
interpolated
points

Computation
of control
points

Computation
also of 64
curve points

Computation
also of 256
curve points

4 points on S2 0.276 2.716 7.801
12 points on S2 1.768 4.213 10.943

4 points on S3 0.318 6.388 20.133
12 points on S3 2.582 9.037 27.107

Table 2: Run times in milliseconds of the computation of in-
terpolating spherical spline curves to approximately 16 digits of
accuracy. The first column reports the time needed to compute the
control points. The second and third columns report this time plus
the time needed to compute 64 and 256 points on the interpolating
curve for equally spaced values of t . Algorithm S2 was used to
compute the control points, and Algorithm A2 used to compute
the points equally spaced on the curve. Algorithm A2 was seeded
with good estimates for the successive points (see text).

theirs by perhaps one or two orders of magnitude. To be fair, we should
note that the energy minimizing approach, although substantially slower,
can potentially give better quality results, since the energy function can be
customized for each particular application.

Kim and Nam [20] report detailed runtimes for computing spherical
splines based on circular blending: their experiments were carried out on
SGI’s with clock rates between 33 MHz and 50 MHz, however they do not
describe the programming language used. Adjusting for processor clock
rates, their runtimes are approximately twice as fast as ours: this difference
in run time partly reflects the fact that our algorithms use an iterative
solution, and their circular blending function computes the spline explicitly.
Kim and Nam also implemented several other fast methods of generating
spherical spline curves, including the Bézier method and Shoemake’s Squad
method. These were roughly equivalent in runtime to their circular blending
function, in that the runtimes of various methods ranged from 25% faster to
slightly worse than two times slower. Thus these methods all have runtime
either comparable to or approximately twice as fast as our spherical spline
curves based on spherical weighted average. We were somewhat surprised at
the speed of our algorithm in comparison to the other algorithms, since our
algorithm seems to need a good deal more computation; so the relative speeds
probably also represent differences in implementations. In our opinion, the
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advantages of our splines as outlined in the introduction outweigh their
slower computation time in many potential applications; and in any event,
our spherical spline curve algorithms are sufficiently fast for all but the most
time critical applications.

6 Open Problems

We conclude with a few remarks about open problems and the possibility
of improving the analysis and applications of our spherical spline curves in
future work.

First, we have not yet derived formulas for computing the covariant
derivatives of our spherical spline curves. In particular, the proof of
Theorem 6 based on the Implicit Function theorem should yield formulas
for the derivatives of the function ©

∑
i wi · pi with respect to changes in

the values of wi and of pi . Given formulas for the first- and second-order
derivatives of the spline curve, it should be possible to use iterative methods
for finding control points that define “natural splines” which minimize the
curvature or the second derivatives of the spline curve. Likewise, we expect
that one could minimize energy functions, etc.

Second, it would be useful to extend methods of knot insertion from
the Euclidean domain to the spherical domain. In the Euclidean domain,
knot insertion is a technique that allows the insertion of additional knots
and control points without altering the spline curve. This is useful for
several purposes including efficiently rendering curves to any desired level of
detail and for optimizing trajectories specified with splines (see, e.g., [27] for
the latter application). The standard knot insertion algorithms all depend
strongly on the linearity of Euclidean space, so they are not immediately
applicable to spherical spline curves based on spherical weighted averages. It
is plausible that techniques similar to those of Brown and Worsey [5] could
be used to prove that knot insertion is not possible on the sphere.

Third, it would be nice to prove stronger forms of Theorem 5, particularly
forms that would be more useful for spline curves by relaxing the condition
that any four successive control points lie in a hemisphere. For instance, we
conjecture that if each pair of successive control points of a B-spline curve
are separated by a distance of no more than π/2, then the spherical weighted
averages in the definition of the spline curve are always uniquely defined and
are local minima according to the second derivative test.

Fourth, there is another, yet unexplored alternative to defining spherical
averages, based on the characterization of barycentric coordinates in terms
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of areas of triangles (or in higher dimensions, simplices). This could be
used to give an alternate definition of spherical averages, and it would
be interesting to understand how this is related to the spherical averages
of the present paper: it is not hard to give examples where they differ.
We have not pursued since alternative for two reason: first, the area-based
definition would seemingly only allow averages of d+1 points in the d-sphere
and, second, since the definition based on minimization of square distance
seemed more compelling and elegant. Along these lines, there may be
some connection Arvo’s algorithm [2] for area-uniform sampling of spherical
triangles.

Fifth, and perhaps most interesting, it would be desirable to extend the
spherical averages to more general manifolds. The definition of an average as
the point which minimizes the weighted sum of the squares of the distances
from the pi ’s could apply to any manifold (or subset of a manifold) in which,
for any two given points, there is a shortest geodesic joining the points. It
would be nice to have general conditions on manifolds, or the distribution
of points pi on the manifold, which imply that the weighted average is
well-defined in this way. Ideally, this would allow the notion of weighted
averages to be extended to a broad range of manifolds.
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