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Some literature:

Clause learning algorithms for SAT:

• J. Marques Silva, K. Sakallah, “GRASP - A New Search Algorithm for Satisfiability”, 
Intl. Conf. on Computer Aided Design, ICCAD'96.

• M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, “Chaff: Engineering an 
Efficient SAT Solver”, Proc. Design Automation Conference (DAC) 2001.

Accessible introduction for logicians:

• P. Beame, H. Kautz, A. Sabharwal, “Towards Understanding and Harnessing the 
Power of Clause Learning, J. Artificial Intelligence Research, 2004, 22, 319-351. See 
also IJCAI’2003.

More papers at: http://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2007WS/.

S. Buss, “SatDiego”, C++ software package in development.  Available by request.

S. Buss, J. Hoffmann, J. Johannsen, “Weak resolution trees with lemmas – Resolution 
refinements that characterize DLL-algorithms with clause learning.” Logical Methods 
in Computer Science, 2009.
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SAT (Satisfiability Problems) –
• A clause is a finite set of boolean literals (variables or negated 

variables).
• A clause represents the disjunction (OR) of its member literals.
• A set of clauses represents a conjunctive normal form formula.
• A satisfying assignment must make at least one literal true in each 

clause.

SAT Problem:
• Given a set of clauses, does it have a satisfying assignment? 
• If not, give refutation.
• If so, exhibit a satisfying assigment.  

Determining Satisfiability is NP-complete.
Hence it is conjectured to have no feasible algorithm.
Nonetheless, many real world problems can be coded as instances of 

SAT (or as related Constraint Satisfaction Problems).  Fortunately, 
these problems often have a lot of special structure, and can be
feasible to solve in some cases.
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There is a long history of SAT Solvers / SAT Compet itions

• SAT competitions held annually since 2002.

• Best methods for “structured” or industrial problems are based on 
the clause learning methods of GRASP/Chaff.

• Best methods for random instances use belief propagation or survey 
propagation, and are incomplete.

• However, SAT is NP-complete.  Many “concocted” problems are 
completely impossible for SAT solvers, e.g., pigeonhole principle 
tautologies, tautologies based on one-way functions such as integer 
factorization, etc.
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Brute-force search DLL algorithm:
Input: Set of clauses.

• Set partial truth assignment initially equal to the empty assignment.
• Algorithm (recursive), maintaining a partial truth assignment.

– If the assignment satisfies all clauses, halt.  Have a satisfying assignment.
– If the assignment falsifies a clause, return.
– Choose a variable x and a truth value, set the variable to that value.
– Call the algorithm recursively.
– Undo the change to value of x, then set x to the opposite value.
– Call algorithm recursively.

• When return at top level – unsatisfiable.
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DLL search algorithm with unit-propagation :
Input: Set of clauses.

• Set a partial assignment initially equal to the empty assignment.
• Iterate, maintaining a partial truth assignment.

– Use unit-propagation, UP, (Boolean Constraint Propa gation, BCP) to 
extend the partial assignment.

– If the assignment satisfies all clauses, halt.  Have a satisfying assignment.

– If the assignment falsifies a clause, return.

– Choose a variable x and a value, set the variable to that value.
– Call the algorithm recursively.

– Undo the change to value of x, then set x to the opposite value.

– Call algorithm recursively.

• When return at top level – unsatisfiable.

Unit propagation: Whenever a singleton clause occurs (i.e., all but one literal is 
set false), set the remaining literal to value True.
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DLL search algorithm with unit-propagation and clau se learning :
Input: Set of clauses.

• Set a partial assignment initially equal to the empty assignment.
• Loop, maintaining a partial truth assignment.

– Use unit-propagation, UP, (Boolean Constraint Propogation, BCP) to extend the 
partial assignment.

– If the assignment satisfies all clauses, halt.  Have a satisfying assignment.
– If the assignment falsifies a clause, then learn one (or fewer or more) clauses 

that are added to the database (the input), and return.
– Choose a variable x and a value, set the variable to that value.
– Call the algorithm recursively.
– Undo the change to value of x, then set x to the opposite value.
– Call algorithm recursively.

• When return at top level – unsatisfiable.

Learning: By examining the unit-propagation structure that leads to a falsified 
clause, learn a new clause (or multiple clauses).  The hope is that the new 
clauses will “accelerate” future branches of the search tree.



8

DLL algorithm with unit-propogation, clause learnin g and fast-backtracking :
Input: Set of clauses.

• Set a partial assignment initially equal to the empty assignment.
• Loop, maintaining a partial assignment and a “ decision level” d (number of 

arbitrary decisions).
– Use unit-propogation, UP, (Boolean Constraint Propogation, BCP) to extend the 

partial assignment.  Label newly assigned variables as set at current  decision 
level d.

– If the assignment satisfies all clauses, halt.  Have a satisfying assignment.
– If the assignment falsifies a clause, then learn one (or fewer or more) clauses that are 

added to the database (the input).  Analyze the decision level of the variables 
involved in the falsification, and return with the level information. .

– Choose a variable x and a value, set the variable to that value.  Label the variable’s 
decision level as d+1.

– Call the algorithm recursively with level equal to d+1.
– Undo the change to value of x, then set x to the opposite value. Label the variable’s 

level based on the information passed back from the  recursive call (will be at 
most d).

– Call algorithm recursively with level equal to d.
– Based on level information returned, backtrack to a ppropriate level unsettting

variables at higher levels.
• When exit at top level – unsatisfiable.

Keeping track of variable levels allows the algorithm to “fast backtrack” up multiple levels 
of the tree.  This makes the algorithm is potentially less severely impacted by bad 
choices of variables.

The use of unit-propagation makes tracking levels easy and natural.
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Example of clause learning

Decision literal p ContradictionFirst UIP

Blue for top level Yellow for lower level literal

b

a

w

v

u

t

s

r

p

q

z

y

~x

x

Clauses: {~y,~z, x},  {~p,~a,r}, etc. (One per unit propagation.)
First UIP Learned Clause: {~a,~u,~s,~w,~v}.
Whole top level learned clause: {~p,~a,~u,~b,~w,~v}.
With First-UIP: Both p and s can be set false when backtracking.
New level of ~s is set to max. level of u,v,w.

First UIP Cut
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Additional refinements:

• Clause unlearning:  Clauses that are old, not recently used, can be discarded.  
Likewise, clauses that are too large should not be learned, or should be quickly 
discarded.  (SatDiego software does not do this [yet], but instead remembers all 
clauses forever.) 

• Restarts. After a short period of not succeeding, restart the process from scratch, 
maintaining the list of learned clauses.  (The SatDiego software does not do this.)

• Pure literals: These are literals that appear only positively or only negatively.  These 
may be set without loss of generality.  Doing this will not affect learned clauses since 
the pure literals will not appear in learned clauses (since only falsified clauses 
contribute to learned clauses), nor does this affect the falsification or satisfaction of 
the other clauses.

Can affect the variable selection process.

• Variable watching: Many implementations use “2-literal watching” to speed up the 
update process for setting (and un-setting) values for variables.  The SatDiego
software does not do this, partly since it is not compatible with all variable selection 
methods.  Instead we update all clauses containing a given variable, and update all 
variables occuring in these clauses to maintain counts of the occurences.

As an alternate optimization, SatDiego uses a literal resorting method that 
dynamically sorts clause numbers in variables’ arrays to put the active (unsatisfied) 
clauses at the beginning of the variables’ lists, and the unactive clauses at the end of 
the lists.  This approximately doubles the speed of updating the status of clauses and 
literals in the clauses (the improvement is especially good in the unsetting part).
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Can we improve by using 2-CNF reasoning instead of just Unit Propagation?

Motivation: 2-CNF reasoning is complete, and easy.  Could potentially improve the 
search process by drawing more conclusions earlier.

Observation: All 2-CNF conclusions can follow from Unit Propagation, provided that the 
correct variable is selected.  

For example: If the variable x is forced true by 2-CNF reasoning, then one can reach the 
same conclusion by setting x to the value false and using Unit Propogation to reach a 
contradiction.

Thus, 2-CNF reasoning can be implemented via variable selection and unit propagation.
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Experiments on Pigeonhole Tautologies.

PHP
n+1
n

PHP
4
3

PHP
12
11

PHP
7
6

PHP
9
8

PHP
10
9

PHP
11
10

- Tautology expressing exists no injection from [n+1] to [n].

--14.99217

32.636287992.74097

2.53628790.51793

0.3403190.0769

0.07190.0129

0.050.05

TimeStepsTime (s)StepsFormula

No Clause LearningClause Learning



13

Problems from SAT Race 2006 Test Suite #1

125311453velev-sss-1.0-cl

3596474224920velev-live-sat-1.0-03

675867000velev-eng-uns-1.0-04a

666546944velev-eng-uns-1.0-04

469472117426vange-color-inc-54

19466039598stric-bmc-ibm-12

32370059056stric-bmc-ibm-10

4848314809schup-l2s-s04-abp4

7049223936manol-pipe-g7n

11819240371manol-pipe-g6bid

11092037452manol-pipe-f6n

10957037002manol-pipe-f6b

438562148051manol-pipe-c6nid_s

609478204664manol-pipe-c10ni_s

7764325900hoons-vbmc-s04-07

96849729grieu-vmpc-s05-27r

11579140196een-tipb-sr06-tc6b

484831163647een-tipb-sr06-par1

# clauses# variablesProblem

Tests were run on 
the 18 easiest 
qualifying problems 
chosen by the SAT-
Race 2006 
organizers.

The problems are 
“real-world” industrial 
problems.
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Variable selection methods tested

1. Greedy variable:  Choose variables in the order presented in the problem.  E.g., 
find first unsatisfied clause, select first unset literal.  Set it True.

2. DLCS:  Find the variable with the most number of total occurrences.  Set it to 
either True or False (based on whether more positive occurrences or more 
negative occurrences).  

3. Conflict – Fading. Each variable used in a conflict clause has is priority 
increased by a constant value.  Priorities fade multiplicatively.  Select highest 
priority unset variable.

4. Anti-greedy variable. Find the last unsatisfiable clause, usually this means the 
last clause to have been learned that is not satisfied.  Choose first unset literal 
from that clause.  Set it True.

5. Anti-greedy – clause. If no current clause, find last unsatisfiable clause and 
make it current.  Find first unset literal in current clause, and set it False.
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Variable selection methods – continued

2-CNF methods:  
Process all 2-clauses, to find all implications.  If any variable has a value forced, set that 

variable.  Otherwise, do one of:

Method (a): Find  the variable x for with the set Sx is as “large” as possible.  Here 
Sx is the set of variables that will be forced to have a value by x’s being set to 
a particular value.

Method (b): Find the longest chain of variables x0, x1, …, xk each of which implies 
the next by 2-CNF reasoning.  Set true in reverse order , one at a time.

6. 2-CNF – Conflict fading. Measure the priority of a chain x0, x1, …, xk by using the 
sum of their conflict fading priorities.

7. 2-CNF – DLCS. Measure the priority of a chain by using the sum of the DLCS 
scores (literal occurrence counts).

Only methods of type (b) have been implemented.
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Comparison of Variable Selection Algorithms

104 / 52 / 3Variable from clause – Anti-greedy order

72 / 24 / 3Variable – Anti-greedy order

112 / 24 / 3Variable – Greedy order

48 / 92 / 1Conflict fading

116 / 53 / 4DLCS

108 / 82 / 32 CNF variable – DLCS

85 / 62 / 22 CNF variable – conflict fading

# times failed# times in top three# times bestVariable selection method

Comparison of 19 easier tests from qualifying rounds of Sat Race 2006. 
Counts “n / m” mean w.r.t. number of decision branches and number of variables set 
(respectively).

Algorithms are in “pure” form: No restarts, and no learned clauses are discarded.

Number of tests is small and results perhaps not statistically significant.  (Behavior has 
a large variance.)  Nonetheless, the difference between methods is surprisingly small.

Overall however, Conflict Fading is the best (as is usual in the literature.)
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[New] Method of FirstDIP Clause Learning
FirstUIP - Unique Implication Point - clause learning (illustrated earlier) is usually considered 

the best clause learning method.
SatDiego implements a FirstDIP – Dual Implication Point – method too.  In some cases, 

there is a natural smallest DIP clause to be learned (that is not a consequence of the 
current set of 2-SAT clauses).

Potential advantages: 
(1) FirstDIP Clauses are smaller than FirstUIP clauses. 
(2) FirstDIP Clauses are not immediately falsified, hence may be more useful.

Improvement in 51 tests (various variable selection methods) was statistically significant:,

L = Log10(UIP+DIP clause learning performance / UIP clause learning performance):
% = Corresponding percent improvement of UIP+DIP over DIP.

0.300.240.21Std dev L

0.130.160.17L (Log Ratio)

34%44%49%Approx. % improvement

Run time
Number Unit 
Propagations

Number 
Decisions

Similar work: Pipatsrsawat-Darwiche [t.a.,2009+] discuss DIP learning with UIP learning in 
cases where the DIP is not locally “absorbed”, and report similar improvements.  They 
achieve this without needing 2-CNF reasoning.
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Example of DIP clause learning

Decision literal: p

ContradictionFirst UIP

Blue for top level Yellow for lower level literal

b

a

w

v

u

t

s

r

p

~q

~z

y

~d

c

First DIP Learned Clause: {~a,~c,d,~v}.
First UIP Learned Clause: {~a,~u,~s,~w,~v}.
With First-UIP/DIP: Both p and s can be set false when backtracking.

First UIP Cut

~x

x

First DIP Cut
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Fifo versus Lifo Variable order for Unit Propagation
Our original tests used a “Lifo” (Last-in-first-out) variable order during unit propagation.  

That is, as new variables became unit variables, used the last one that became unit 
first.

Later, we tried a a “Fifo” (First-in-first-out) order.

Improvement in 26 tests (conflict fading and 2-SAT conflict fading only) was somewhat 
significant:

(Improvements look dramatic, but test size is smaller, and standard deviation is larger.)
L = Log10(Fifo Unit Propagation performance / Lifo Unit Propagation performance):
% = Corresponding percent improvement of UIP+DIP over DIP.

0.830.710.45Std dev L

0.320.280.15L (Log Ratio)

108%88%44%Approx. % improvement

Run time
Number Unit 
Propagations

Number 
Decisions

I do not know what order is used in the extant SAT solver programs.
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Discussion points – possible future research

• How helpful are 
– (a) clause learning versus 
– (b) tracking decision levels carefully?  
Experimental results?

• Are there better clause learning methods? 
• Are there better variable order selection methods?
• Can the FIFO/LIFO/2CNF variable order insights be e xtended to give 

substantially better methods?  (This is my next project for SAT solvers.)
• Better statistical analysis. 

The effectiveness of variable selection order seems to have a high variance.  
E.g.,  small changes in the conflict fade rate can have large differences in the 
algorithm’s performance.

Analyses of experimental comparisons different algorithms ought to come 
with a “level of confidence”/”statistical significance” rating.

• SatDiego should discard old learned clauses (i.e., g arbage collection).
• Restarts are reported to be very important.  SatDiego does not yet 

implement these.
• Experiment with changing variable selection order d ynamically, for 

instance, combine restarts with changes in variable selection order.
• Since conflict fading works best (??), SatDiego shou ld implement 2-

literal watching.  Or, should just be based on extant efficient solvers.


