NP-Completeness of Reflected Fragments of Justification Logics

Sam Buss (UCSD) and Roman Kuznets (Bern) sbuss@math.ucsd.edu and kuzents@iam.unibe.ch

Logical Foundations of Computer Science, 2009

Logic of Proofs (LP)

The Logic of Proofs, LP, is a Justification Logic [Artemov, 1995] and provides an explicit analogue of modal logic, where necessitation (\Box) is replaced by explicit proof terms.

Definition (Propositional Justification Logic)

Formulas. $F := p \mid \perp \mid (F \rightarrow F) \mid t:F$. Terms. $t := x \mid c \mid (t \cdot t) \mid (t + t) \mid !t$.

t: F is intended to mean that "t is a justification or proof of F".

イロト イヨト イヨト イヨト

Axioms and rules of LP

A1. Finite set of axiom schemes for propositional logicA2. $s: (F \to G) \to t: F \to (s \cdot t): G$ ApplicationA3. $s: F \to (s + t): F,$ $t: F \to (s + t): F$ MonotonicityA4. $t: F \to F$ FactivityA5. $t: F \to !t: t: F$ Positive IntrospectionR4. c: Awhere A is an axiom and c is a justification constantR5. Modus ponensR5. Modus ponens

イロト イヨト イヨト イヨト

2

Forgetful projection

The forgetful projection $F \mapsto F^{\circ}$ on formulas respects Boolean connectives and replaces t: G with $\Box G$.

Theorem (Realization Theorem, Artemov, 1995)

 $LP^{\circ} = S4.$

When transforming S4-proofs to LP-proofs, the justfication terms may be exponentially large in the size of the formula, but can be polynomially bounded by the size of a cut-free S4-proof. [Brezhnev-Kuznets, 2008.]

Reflected Logic of Proofs, rLP

Definition (Krupski, 2006)

 $\mathsf{rLP} = \{t: F \mid \mathsf{LP} \vDash t: F\}.$

Theorem

 $LP \vdash F$ if and only if $rLP \vdash t: F$ for some t.

Definition (Constant Specification, CS)

It is convenient to restrict the Internalization rule to allow exactly one constant symbol to justify each particular schematic axiom A1-A5. E.g., c_{\wedge} justifies any instance of $A \rightarrow B \rightarrow A \wedge B$ and similarly for the other usual axiom schemes for propositional logic.

The notations LP_{CS} and rLP_{CS} are used for the Logic of Proofs under the constant specification CS.

Theorem (Realization Theorem, again)

 $LP^{\circ}_{CS} = S4.$

Theorem (Ladner, 1977)

The derivability problem for S4 is PSPACE complete.

Theorem (Kuznets, 2000; Milnikel, 2007)

The derivability problem for LP_{CS} is Π_2^p -complete.

イロト イヨト イヨト イヨト

Theorem (Kuznets, 2006)

The derivability problem for rLP_{CS} is in NP.

Theorem (this talk)

The derivability problem for rLP_{CS} is NP-hard, and hence NP-complete.

Since the $\mathsf{rLP}_{\mathcal{CS}}$ proofs are polynomial size, we obtain

Corollary

The k-provability problem of deciding if rLP has a proof of t: F of length $\leq k$ symbols is NP-complete.

<ロ> <同> <同> <三> < 回> < 回> < 三>

The following provides a normalization theorem for $\mathsf{rLP}_{\mathcal{CS}}.$

Theorem (Krupski, 2006)

The reflected system rLP_{CS} is axiomatized by the *-calculus: *CS Axioms c: A for any c: $A \in CS$. *A2 $\frac{s:F \rightarrow G}{s \cdot t:G}$ *A3 $\frac{s:F}{s+t:F}$ $\frac{t:F}{s+t:F}$ *A5 $\frac{t:F}{!t:t:f}$

This allows a very direct proof search algorithm, where the only non-deterministic component is choosing how to apply the Sum (+) rule, and choosing a formula F when applying the Application (\cdot) rule.

(ロ) (同) (E) (E) (E)

We use a reduction to the *Binary Vertex Cover* problem, which is a Vertex Cover problem in which the number of nodes, the number of edges, and the sought-for vertex cover are all powers of 2.

Lemma

The Binary Vertex Cover is NP-complete.

Given an instance G = (V, E) of Binary Vertex Cover, we use

• Variables p_i , one for each vertex x_i of the graph.

•
$$F_e := (p_a \lor p_b)$$
 for each edge $e = \{x_a, x_b\}$.

•
$$F_G := F_{e_1} \wedge F_{e_1} \wedge \cdots \wedge F_{e_{2^m}}$$

•
$$F_V := p_1 \wedge p_2 \wedge \cdots \wedge p_{2^k}$$
.

• $F_C := p_{i_1} \land p_{i_2} \land \dots \land p_{i_{2^\ell}}$,, for $\{p_{i_j}\}_j$ a potential vertex cover.

イロン イヨン イヨン イヨン

The conjunctions are all balanced.

The following are valid:

- $F_V \to F_G$.
- $F_V \to F_C$.
- $F_C \rightarrow F_G$, if and only if C is a vertex cover for G.

The proof of $F_V \rightarrow F_G$ will proceed by choosing a vertex cover C and proving proving

- $F_V \rightarrow F_C$
- $F_C \rightarrow F_G$, (works if C is vertex cover),

and then combining the two proofs with a cut.

イロン イヨン イヨン イヨン

There is a proof term t such that t: G holds for exactly the formulas $t: (A \land B) \to A$ and $t: (A \land B) \to B$, for A and B any formulas.

Proof: Let $c_{\wedge_1}: A \wedge B \to A$ and $c_{\wedge_2}: A \wedge B \to B$ be from the constant specification CS. Set $t := c_{\wedge 1} + c_{\wedge_2}$.

Lemma

There is a proof term syl(s, t) which justifies exactly the formulas $A \rightarrow C$ such that $t: A \rightarrow B$ and $s: B \rightarrow C$.

Proof: Let
$$c_1: A \to B \to A$$
 and
 $c_2: (A \to B \to C) \to (A \to B) \to (A \to C).$
Set $syl(s, t) := (c_2 \cdot (c_1 \cdot s)) \cdot t.$

イロト イヨト イヨト イヨト

There is a term t such that $t: F_V \rightarrow p_i$ for all i, and t justifies only (substitution instances of) these formulas.

Proof: Iterate the construction of first lemma k times combining terms with the syl term.

Lemma

There is a term $s_{k,\ell}$ such that t justifies exactly the formulas $F_V \rightarrow F_C$ where F_C and F_V are balanced conjunctions of depth ℓ and depth k.

Proof: Use the previous lemma 2^{ℓ} times, and combine these with a term that justifies precisely the formulas $(A \rightarrow B) \rightarrow (A \rightarrow C) \rightarrow (A \rightarrow B \land C)$.

イロン イ部ン イヨン イヨン 三日

There is a term t such that, if C is a vertex cover and if e is an edge, then $t: F_C \to F_e$.

The term *t* depends only the depth ℓ of F_C .

Lemma

There is a term $t_{\ell,m}$ such that, if C a vertex cover, then $t: F_C \to F_G$.

Lemma

We have $syl(t_{\ell,m}, s_{k,\ell}): F_V \to F_G$ if and only if G has a vertex cover C of size $\leq k$.

This completes the proof of NP-hardness of rLP_{CS} .

(ロ) (同) (E) (E) (E)

Other justification logics, J, JD, JT, JD4 correspond to modal logics K, D, T, D4 [Brezhnev, 2000]. Hybrid logics combine justifications and epistemic modalities for multiple agents.

Similar constructions apply to these theories.

- The reflected fragments admit a *-calculus. [Kuznets, 2008]
- The reflected fragments are in NP. [K'08].
- The reflected fragments are NP-complete.

- A 同 ト - A 三 ト - A 三 ト

the end

▲□→ ▲圖→ ▲温→ ▲温→

æ