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Logic of Proofs (LP)

The Logic of Proofs, LP, is a Justification Logic [Artemov, 1995]
and provides an explicit analogue of modal logic, where
necessitation (�) is replaced by explicit proof terms.

Definition (Propositional Justification Logic)

Formulas. F := p | ⊥ | (F → F ) | t :F .
Terms. t := x | c | (t · t) | (t + t) | !t.

t :F is intended to mean that “t is a justification or proof of F ”.
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Axioms and rules of LP

A1. Finite set of axiom schemes for propositional logic

A2. s : (F → G )→ t :F → (s · t) :G Application

A3. s :F → (s + t) :F , t :F → (s + t) :F Monotonicity

A4. t :F → F Factivity

A5. t :F → !t : t :F Positive Introspection

R4.
c :A

where A is an axiom and c is a justification constant

R5. Modus ponens
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Forgetful projection

The forgetful projection F 7→ F ◦ on formulas respects Boolean
connectives and replaces t :G with �G .

Theorem (Realization Theorem, Artemov, 1995)

LP◦ = S4.

When transforming S4-proofs to LP-proofs, the justfication terms
may be exponentially large in the size of the formula, but can be
polynomially bounded by the size of a cut-free S4-proof.
[Brezhnev-Kuznets, 2008.]
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Reflected Logic of Proofs, rLP

Definition (Krupski, 2006)

rLP = {t :F | LP � t :F}.

Theorem

LP ` F if and only if rLP ` t :F for some t.

Definition (Constant Specification, CS)

It is convenient to restrict the Internalization rule to allow exactly
one constant symbol to justify each particular schematic axiom
A1-A5. E.g., c∧ justifies any instance of A→ B → A ∧ B and
similarly for the other usual axiom schemes for propositional logic.

The notations LPCS and rLPCS are used for the Logic of Proofs
under the constant specification CS.
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Theorem (Realization Theorem, again)

LP◦CS = S4.

Theorem (Ladner, 1977)

The derivability problem for S4 is PSPACE complete.

Theorem (Kuznets, 2000; Milnikel, 2007)

The derivability problem for LPCS is Πp
2-complete.
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Theorem (Kuznets, 2006)

The derivability problem for rLPCS is in NP.

Theorem (this talk)

The derivability problem for rLPCS is NP-hard, and hence
NP-complete.

Since the rLPCS proofs are polynomial size, we obtain

Corollary

The k-provability problem of deciding if rLP has a proof of t :F of
length ≤ k symbols is NP-complete.
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The following provides a normalization theorem for rLPCS .

Theorem (Krupski, 2006)

The reflected system rLPCS is axiomatized by the *-calculus:

*CS Axioms c :A for any c :A ∈ CS.

*A2 s :F → G t :F
s · t :G

*A3 s :F
s + t :F

t :F
s + t :F

*A5 t :F
!t : t : f

This allows a very direct proof search algorithm, where the only
non-deterministic component is choosing how to apply the
Sum (+) rule, and choosing a formula F when applying the
Application (·) rule.
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We use a reduction to the Binary Vertex Cover problem, which is a
Vertex Cover problem in which the number of nodes, the number
of edges, and the sought-for vertex cover are all powers of 2.

Lemma

The Binary Vertex Cover is NP-complete.

Given an instance G = (V , E ) of Binary Vertex Cover, we use

Variables pi , one for each vertex xi of the graph.

Fe := (pa ∨ pb) for each edge e = {xa, xb}.
FG := Fe1 ∧ Fe1 ∧ · · · ∧ Fe2m .

FV := p1 ∧ p2 ∧ · · · ∧ p2k .

FC := pi1 ∧ pi2 ∧ · · · ∧ pi
2`

,, for {pij}j a potential vertex cover.

The conjunctions are all balanced.
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Lemma

The following are valid:

FV → FG .

FV → FC .

FC → FG , if and only if C is a vertex cover for G.

The proof of FV → FG will proceed by choosing a vertex cover C
and proving proving

FV → FC

FC → FG , (works if C is vertex cover),

and then combining the two proofs with a cut.
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Lemma

There is a proof term t such that t :G holds for exactly the
formulas t : (A ∧ B)→ A and t : (A ∧ B)→ B, for A and B any
formulas.

Proof: Let c∧1 :A ∧ B → A and c∧2 :A ∧ B → B be from the
constant specification CS. Set t := c∧1 + c∧2 .

Lemma

There is a proof term syl(s, t) which justifies exactly the formulas
A→ C such that t :A→ B and s :B → C .

Proof: Let c1 :A→ B → A and
c2 : (A→ B → C )→ (A→ B)→ (A→ C ).
Set syl(s, t) := (c2 · (c1 · s)) · t.
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Lemma

There is a term t such that t :FV → pi for all i , and t justifies only
(substitution instances of) these formulas.

Proof: Iterate the construction of first lemma k times combining
terms with the syl term..

Lemma

There is a term sk,` such that t justifies exactly the
formulas FV → FC where FC and FV are balanced conjunctions of
depth ` and depth k.

Proof: Use the previous lemma 2` times, and combine these with a
term that justifies precisely the formulas
(A→ B)→ (A→ C )→ (A→ B ∧ C ).
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Lemma

There is a term t such that, if C is a vertex cover and if e is an
edge, then t :FC → Fe .

The term t depends only the depth ` of FC .

Lemma

There is a term t`,m such that, if C a vertex cover, then
t :FC → FG .

Lemma

We have syl(t`,m, sk,`) :FV → FG if and only if G has a vertex
cover C of size ≤ k.

This completes the proof of NP-hardness of rLPCS .
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Other justification logics, J, JD, JT, JD4 correspond to modal
logics K, D, T, D4 [Brezhnev, 2000]. Hybrid logics combine
justifications and epistemic modalities for multiple agents.

Similar constructions apply to these theories.

The reflected fragments admit a *-calculus. [Kuznets, 2008]

The reflected fragments are in NP. [K’08].

The reflected fragments are NP-complete.
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the end
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