
The NP-Completeness of Reflected Fragments

of Justification Logics

Samuel R. Buss1,⋆ and Roman Kuznets2,⋆⋆

1 Department of Mathematics, University of California, San Diego
La Jolla, CA 92093-0112, USA

sbuss@ucsd.edu

2 Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland

kuznets@iam.unibe.ch

Abstract. Justification Logic studies epistemic and provability phe-
nomena by introducing justifications/proofs into the language in the
form of justification terms. Pure justification logics serve as counter-
parts of traditional modal epistemic logics, and hybrid logics combine
epistemic modalities with justification terms. The computational com-
plexity of pure justification logics is typically lower than that of the
corresponding modal logics. Moreover, the so-called reflected fragments,
which still contain complete information about the respective justifica-
tion logics, are known to be in NP for a wide range of justification logics,
pure and hybrid alike. This paper shows that, under reasonable addi-
tional restrictions, these reflected fragments are NP-complete, thereby
proving a matching lower bound.

1 Introduction and Main Definitions

Justification Logic is an emerging field that studies provability, knowledge, and
belief via explicit proofs or justifications that are part of the language. A justifi-
cation logic is essentially a refined analogue of a modal epistemic logic. Whereas
a modal epistemic logic uses the formula �F to indicate that F is known to be
true, a justification logic uses t : F instead, where t is a term that describes a
‘justification’ or proof of F . This construction allows justification logics to rea-
son about both formulas and proofs at the same time, avoiding the need to treat
provability at the metalevel.

Because Justification Logic can reason directly about explicit proofs, it pro-
vides more concrete and constructive analogues of modal epistemic logics. For
example, the modal distribution axiom �(F → G) → (�F → �G) is replaced in

⋆ Partially supported by NSF grant DMS–0700533.
⋆⋆ Supported by Swiss National Science Foundation grant 200021–117699. The initial

stages of the research were partially supported by a CUNY Graduate Center Re-
search Grant for Doctoral Students.

Justification Logic by the axiom s : (F → G) → (t :F → (s · t) :G). The latter re-
places the distribution axiom with a computationally explicit construction. Jus-
tification logics are very promising for structural proof theory and have already
proven to be fruitful in finding new approaches to common knowledge ([Art06])
and Logical Omniscience Problem ([AK06]). For further discussion on the various
applications of Justification Logic, see [Art08b].

The goal of the present paper is to prove the NP-hardness of the Derivability
Problem for the reflected fragments of justification logics, matching the already
known upper bound. We begin by reviewing some definitions of justification
logics.

The first justification logic, the Logic of Proofs LP, was introduced by Arte-
mov [Art95] to provide a provability semantics for the modal logic S4 (see
also [Art01]). The language of LP

F ::= p | ⊥ | (F → F) | t :F ,

t ::= x | c | (t · t) | (t + t) | ! t

contains an additional operator t :F , read ‘term t serves as a justification/proof
of formula F .’ Here p stands for a sentence letter, x for a justification variable,
and c for a justification constant.

Statements t :F can be seen as refinements of modal statements �F because
the latter say that F is known whereas the former additionally provide a ratio-
nale for such knowledge. This relationship is demonstrated through the recur-
sively defined operation of forgetful projection that maps justification formulas
to modal formulas: (t : F)◦ = �(F ◦), and commutes with Boolean connectives:
(F → G)◦ = F ◦ → G◦, where p◦ = p and ⊥◦ = ⊥.

Axioms and rules of LP:

A1. A complete axiomatization of classical propositional logic by finitely many
axiom schemes; rule modus ponens

A2. Application Axiom s : (F → G) → (t :F → (s · t) :G)
A3. Monotonicity Axiom s :F → (s + t) :F , t :F → (s + t) :F
A4. Factivity Axiom t :F → F

A5. Positive Introspection Axiom t :F → ! t :t :F
R4. Axiom Internalization Rule:

c :A
where A is an axiom and c is a justification constant

LP is the exact counterpart of S4 (note the similarity of their axioms): namely,
let X◦ = {F ◦ | F ∈ X} for a set X of justification formulas and let LP be
identified with the set of its theorems, then

Theorem 1 (Realization Theorem, [Art95, Art01]). LP
◦ = S4.

For some applications (e.g., to avoid Logical Omniscience [AK06] or to study
self-referentiality [Kuz08c]) the use of constants needs to be restricted; this is
achieved using constant specifications. A constant specification CS is a set of
instances of rule R4:

CS ⊆ {c :A | A is an axiom, c is a justification constant} .

2

Given a constant specification CS, the logic LPCS is the result of replacing R4
in LP by its relativized version:

R4CS . Relativized Axiom Internalization Rule:
c :A ∈ CS

c :A

For the Realization Theorem to hold, i.e., for (LPCS)◦ = S4, it is necessary and
sufficient that CS be axiomatically appropriate:

Definition. A constant specification CS is called:

– axiomatically appropriate3 if every axiom is justified by at least one constant;
– schematic4 if each constant justifies several (maybe 0) axiom schemes and

only them;
– schematically injective5 if it is schematic and each constant justifies no more

than one axiom scheme.

Whereas it is well known that the Derivability Problem for S4 is PSPACE-
complete ([Lad77]), it was shown in [Kuz00] that the same problem for LPCS

is in Π
p
2 for any schematic CS (we always assume CS to be polynomial time

decidable); in particular, LP itself is in Π
p
2 . Milnikel in [Mil07] proved a match-

ing lower bound, the Π
p
2 -hardness of LPCS under the assumption that CS is

axiomatically appropriate and schematically injective.
The so-called reflected fragment rLP of the Logic of Proofs was first studied

by N. Krupski in [Kru03] (see also [Kru06]):

Definition. For any justification logic JLCS with a constant specification CS,
its reflected fragment is

rJLCS = {t :F | JLCS ⊢ t :F} .

We will write rJLCS ⊢ t :F to mean t :F ∈ rJLCS .

The reflected fragment bears complete information about the logic as the fol-
lowing theorem shows:

Theorem 2 ([Kru03, Kru06]). For any axiomatically appropriate CS,

LPCS ⊢ F ⇐⇒ (∃t)rLPCS ⊢ t :F .

The =⇒-direction constitutes the Constructive Necessitation Property (for de-
tails, see [Art01]); the ⇐=-direction easily follows from Factivity Axiom A4.

Theorem 3 ([Kru03, Kru06]). For any schematic CS, the Derivability Prob-
lem for rLPCS is in NP.

3 The term is due to Fitting.
4 The term is due to Milnikel although the idea goes back to Mkrtychev.
5 The term is due to Milnikel.

3

To prove this theorem, N. Krupski developed an independent axiomatization
for rLPCS that we will call the ∗-calculus.
Axioms and rules of the ∗-calculus:

∗CS. For any c :A ∈ CS axiom c :A

∗A2. Application Rule
s : (F → G) t :F

s · t :G

∗A3. Sum Rule
s :F

s + t :F

t :F

s + t :F

∗A5. Positive Introspection Rule
t :F

! t :t :F

In this paper, we prove the matching lower bound for rLPCS , namely that
the Derivability Problem for rLPCS is NP-complete. The proof is by a many-
one polynomial-time reduction from a known NP-complete problem, the Vertex
Cover problem. As in Milnikel’s lower bound for LPCS , we have to impose the
additional restriction that CS is axiomatically appropriate and schematically
injective.

The paper is structured as follows. Section 2 defines a coding of a graph
by propositional formulas and shows how the existence of a vertex cover can
be described in terms of these formulas. Section 3 develops justification terms
that encode several standard methods of propositional reasoning. Although the
formulas that describe the existence of a vertex cover depend on the cover itself
rather than only on its size, Sect. 4 shows how to eliminate this dependency by
using the terms from Sect. 3 to encode particular derivations of the formulas from
Sect. 2. Section 5 finishes the proof of the polynomial-time reduction. Section 6
discusses extending this result to other justification logics.

2 Graph Coding and Preliminaries

A graph G = 〈V, E〉 has a finite set V of vertices and a finite set E of undirected
edges. We assume w.l.o.g. that V = {1, . . . , N} for some N , and we represent
an edge e between vertices k and l as the set e = {k, l} with the endpoints
denoted by v1(e) < v2(e). A vertex cover for G is a set C of vertices such that
each edge e ∈ E has at least one endpoint in C. The Vertex Cover problem is
the problem of, given a graph G and an L ≥ 0, determining if G has a vertex
cover of size ≤ L. The Vertex Cover problem is one of the classic NP-complete
problems.

We define below formulas FV , FC , and FG that will help build a many-
one reduction from Vertex Cover to rLPCS . These formulas will include large
conjunctions. To avoid the dependence of the LPCS-derivations on the vertex
cover, we will use balanced conjunctions (see [BB93]):

Definition. Each formula is a balanced conjunction of depth 0. If A and B are
both balanced conjunctions of depth k, then A ∧ B is a balanced conjunction of
depth k + 1.

4

Clearly, a balanced conjunction of depth k is also a balanced conjunction of
depth l for any 0 ≤ l ≤ k. Thus, we are mainly interested in how deeply a
given formula is conjunctively balanced. For any conjunction C1 ∧ · · · ∧ C2k of
2k formulas, we assume that the omitted parentheses are such that the resulting
balanced conjunction has the maximal possible depth, i.e., depth ≥ k.

We also need to refer to Ci’s that form F = C1 ∧ · · · ∧ C2k . The following
inductive definition of depth k conjuncts, or simply k-conjuncts, generalizes the
definition of conjuncts in an ordinary conjunction:

Definition. Each formula is a 0-conjunct of itself. If C ∧ D is a k-conjunct of
formula F , then C and D are both (k + 1)-conjuncts of F .

For instance, the conjuncts of an ordinary conjunction are its 1-conjuncts; all Ci’s
in C1∧· · ·∧C2k are its k-conjuncts. More generally, any balanced conjunction of
depth k must have exactly 2k occurrences of k-conjuncts (with possibly several
occurrences of the same formula).

To make full use of balanced conjunctions, it is convenient to restrict at-
tention to instances of the Vertex Cover problem for graphs in which both the
number of vertices and the number of edges are powers of 2. These are called
binary exponential graphs. It is also helpful to only consider vertex covers whose
size is a power of 2; these we call binary exponential vertex covers. Fortunately,
the version of the Vertex Cover (VC) problem restricted to binary exponential
graphs and their binary exponential vertex covers is also NP-complete:

Theorem 4. The Binary Vertex Cover (BVC) problem of determining for a
given binary exponential graph G and a given l ≥ 0 whether G has a vertex
cover of size ≤ 2l is NP-complete.

Proof. Since BVC is an instance of the standard VC problem, and since VC is
NP-complete, it suffices to construct a polynomial-time many-one reduction
from VC to BVC. Suppose we are given an instance of VC; namely, we are
given a graph G0 and an integer L and wish to determine if G0 has a vertex
cover of size ≤ L. We give a polynomial time procedure that constructs a binary
exponential graph G and a value l so that G0 has a vertex cover of size ≤ L iff
G has a vertex cover of size ≤ 2l. The graph G is constructed in three stages;
each stage causes only a constant factor increase in the size of the graph.

Stage 1. Increasing the size of the vertex cover. Let 0 ≤ L′ < L such that
L + L′ = 2l − 1 for some integer l ≥ 0. The graph G′ = 〈V ′, E′〉 is obtained
from G0 by adding 2L′ new vertices broken into L′ disjoint pairs with the vertices
in each pair joined by a new edge (L′ new edges overall). G0 has a vertex cover
of size ≤ L iff G′ has a vertex cover of size ≤ 2l − 1.

Stage 2. Increasing the number of edges. Choose integer 0 < M ′′ ≤ |E′| such
that |E′| + M ′′ = 2m for some integer m ≥ 0. The graph G′′ = 〈V ′′, E′′〉 is
obtained by adding M ′′ + 1 new vertices to G′ with one of these vertices joined
to all M ′′ others (M ′′ new edges overall). G′ has a vertex cover of size ≤ 2l − 1
iff G′′ has a vertex cover of size ≤ 2l.

5

Stage 3. Increasing the number of vertices. Choose integer 0 ≤ N ′′′ < |V ′′| such
that |V ′′|+ N ′′′ = 2n for some integer n ≥ 0. The graph G = G′′′ is obtained by
adding N ′′′ isolated vertices to G′′. G′′ has a vertex cover of size ≤ 2l iff G′′′ has
a vertex cover of size ≤ 2l.

It is clear from the construction that G is a binary exponential graph such
that G0 has a vertex cover of size ≤ L iff G has a vertex cover of size ≤ 2l. ⊓⊔

Definition. Let G = 〈V, E〉 be a binary exponential graph with edge set E =
{e1, . . . , e2m}. Let C = {i1, i2, . . . , i2l} ⊆ V be a possible binary exponential
vertex cover for G, where i1 < i2 < · · · < i2l . We define the following formulas:

a. FC = pi1 ∧ · · · ∧ pi
2l

.

b. For each edge e = {k, l}, where k < l, Fe = pk ∨ pl = pv1(e) ∨ pv2(e).

c. FG = Fe1
∧ · · · ∧ Fe2m .

The proof of the following properties of the translation is an easy exercise
(⊢ denotes derivability in classical propositional logic):

Lemma 5. For any binary exponential graph G = 〈V, E〉 and any binary expo-
nential set C ⊆ V ,
1. ⊢ FV → FG ;
2. ⊢ FV → FC ;
3. ⊢ FC → FG iff C is a vertex cover for G.

Our goal is to reduce BVC to derivability in rLPCS for a certain class of CS.
To this end, we take a particular derivation of FV → FG that proceeds by
first proving FV → FC , followed by an attempt at a proof of FC → FG that
succeeds iff C is a vertex cover. Finally, hypothetical syllogism (HS) is applied
to infer FV → FG. We further encode this derivation as a justification term t

so that rLPCS ⊢ t : (FV → FG) iff C is a vertex cover. In BVC we need to
determine whether there exists a vertex cover of (at most) a given size rather
than whether a given set of vertices is a vertex cover. Thus, t : (FV → FG) should
not depend on C but may (and should) depend on the size of C. Since C has
already been “syllogized away” from formula FV → FG, it remains to make sure
that term t only depends on the size of C. Although the derivations of FV → FC

and FC → FG have C explicitly present in them, the terms encoding them, and
therefore t, can be made independent of C. This is the main reason why we use
balanced conjunctions: this way all k-conjuncts are interchangeable.

Note about the use of constants. Throughout the paper, the minimum re-
quirement on CS would be axiomatic appropriateness and schematicness. As a
consequence, we can always assume that for any axiom scheme there exists a con-
stant justifying it. So it makes sense to choose one such constant for each axiom
scheme. The list of names for these fixed constants along with the corresponding

6

axiom schemes consistently used in the paper can be found below:

rLPCS ⊢ c1 : (X → (Y → X))
rLPCS ⊢ c2 : ((X → (Y → Z)) → ((X → Y) → (X → Z)))
rLPCS ⊢ c∧1 : (X ∧ Y → X)
rLPCS ⊢ c∧2 : (X ∧ Y → Y)
rLPCS ⊢ c∧ : (X → (Y → X ∧ Y))
rLPCS ⊢ c∨1 : (X → X ∨ Y)
rLPCS ⊢ c∨2 : (Y → X ∨ Y)

Note that we have assumed that certain axiom schemes are present among the
propositional axioms chosen for A1. The beginning of Sect. 5 discusses why this
assumption is not essential.

3 Justification Terms Encoding Propositional Reasoning

For all lemmas in the section, schematicness and axiomatic appropriateness are
sufficient for the ⇐=-direction; schematic injectivity is required for the =⇒-
direction only.

The size of terms is defined in a standard way: |c| = |x| = 1 for any constant
and any variable, |(t · s)| = |(t + s)| = |t| + |s| + 1, | ! t| = |t| + 1.

Lemma 6 (Encoding the Hypothetical Syllogism Rule). The operation

syl(t, s) =
(

c2 · (c1 · s)
)

· t

with |syl(t, s)| = |t| + |s| + 5 encodes the Hypothetical Syllogism Rule, i.e.,

rLPCS ⊢ syl(t, s) :H ⇐⇒
H = A → C such that for some B

rLPCS ⊢ t : (A → B) and rLPCS ⊢ s : (B → C).

Proof. (⇐=). Here is a derivation of t : (A → B), s : (B → C) ⊢ syl(t, s) :(A → C):

c1 : ((B → C) → (A → (B → C))) (∗CS)
s : (B → C) (Hyp)

c1 · s : (A → (B → C)) (∗A2)
c2 : ((A → (B → C)) → ((A → B) → (A → C))) (∗CS)

c2 · (c1 · s) : ((A → B) → (A → C)) (∗A2)
t : (A → B) (Hyp)

(c2 · (c1 · s)) · t : (A → C) (∗A2)

(=⇒). Consider an arbitrary derivation of syl(t, s) : H in the ∗-calculus. It can
easily be seen that any such derivation must have the same structure as the
one used for the ⇐=-direction above: the only difference can be in the choice of
axioms for constants c1 and c2 and of formulas for terms s and t. Since CS is
schematically injective, we know the form of axioms proven by c1 and c2. Thus,
we can shape this as a unification problem: find X1, Y1, X2, Y2, Z2, Xs, and Xt

7

such that rLPCS ⊢ s :Xs, rLPCS ⊢ t :Xt, and the following is a ∗-calculus deriva-
tion of s :Xs, t :Xt ⊢ syl(t, s) :H :

1. c1 : (X1 → (Y1 → X1)) (∗CS)
2. s :Xs (Hyp)
3. c1 · s : (Y1 → X1) (∗A2)
4. c2 : ((X2 → (Y2 → Z2)) → ((X2 → Y2) → (X2 → Z2))) (∗CS)
5. c2 · (c1 · s) : ((X2 → Y2) → (X2 → Z2)) (∗A2)
6. t :Xt (Hyp)
7. (c2 · (c1 · s)) · t :H (∗A2)

To make the applications of rule ∗A2 work in lines 3, 5, and 7, the unification
variables have to satisfy the following equations:

X1 = Xs from 3. (1)

X2 → (Y2 → Z2) = Y1 → X1 from 5. (2)

X2 → Y2 = Xt from 7. (3)

X2 → Z2 = H from 7. (4)

By (1) and (2), Xs = X1 = Y2 → Z2. This equation combined with (3) and (4)
shows that H is indeed an implication that follows by HS from Xt and Xs

justified by t and s respectively. ⊓⊔

Lemma 7 (Stripping k conjunctions). For any integer k ≥ 0 there exists a
term tk of size O(k) that encodes the operation of stripping k conjunctions, i.e.,

rLPCS ⊢ tk :D ⇐⇒ D = H → C, where C is a k-conjunct of H.

Proof. We prove by induction on k that the conditions are satisfied for

t0 = (c2 · c1) · c1 ,

tk+1 = syl(c∧1 + c∧2, tk) .

It is clear that |tk| = 8k + 5 because |t0| = 5 and |tk+1| = |tk| + 8.
Base case, k = 0. (⇐=). If C is a 0-conjunct of H , then H = C, and it is easy

to see that t0 corresponds to the standard derivation of the tautology C → C.
(=⇒). Any ∗-derivation of t0 :D must have the form:

1. c2 : ((X2 → (Y2 → Z2)) → ((X2 → Y2) → (X2 → Z2))) (∗CS)
2. c1 : (X1 → (Y1 → X1)) (∗CS)
3. c2 · c1 : ((X2 → Y2) → (X2 → Z2)) (∗A2)
4. c1 : (X3 → (Y3 → X3)) (∗CS)
5. (c2 · c1) · c1 : D (∗A2)

For ∗A2 from line 5 to be valid, it is necessary that D = X2 → Z2. It follows
from ∗A2 in line 3 that X2 → (Y2 → Z2) = X1 → (Y1 → X1), in which case
X2 = X1 = Z2. Therefore, D = X2 → X2, which is an implication from a
formula to its 0-conjunct.

8

Induction step. (⇐=). Let H be a formula with a (k + 1)-conjunct C. Then
H must be of the form H1 ∧ H2 with C being a k-conjunct of Hi for some
i = 1, 2. By the induction hypothesis, rLPCS ⊢ tk : (Hi → C) for this i. Since,
in addition, rLPCS ⊢ c∧1 : (H → H1) and rLPCS ⊢ c∧2 : (H → H2), by rule ∗A3,
rLPCS ⊢ (c∧1 + c∧2) : (H → Hi) for both i = 1 and i = 2. Then, by Lemma 6,
rLPCS ⊢ tk+1 : (H → C).
(=⇒). By the induction hypothesis, tk justifies only implications from a formula
to one of its k-conjuncts. It is clear from rule ∗A3 that c∧1 + c∧2 justifies only
implications from a formula to one of its 1-conjuncts. By Lemma 6, tk+1 justifies
only hypothetical syllogisms obtained from the latter and the former, but a k-
conjunct of a 1-conjunct of a formula is its (k + 1)-conjunct. ⊓⊔

Lemma 8. For any term s and any integer l ≥ 0 there exists a term conj(s, l)
of size O(|s|2l) with the following property:

rLPCS ⊢ conj(s, l) :D ⇐⇒
D = B → C1 ∧ · · · ∧ C2l such that
rLPCS ⊢ s : (B → Ci) for all i = 1, . . . , 2l.

Proof. We prove by induction on l that the conditions are satisfied for

conj(s, 0) = syl(s, t0) ,

conj(s, l + 1) =
(

c2 · syl
(

conj(s, l), c∧
)

)

· conj(s, l) .

It is not hard to see that |conj(s, l)| = 2l(|s|+19)−9 because |conj(s, 0)| = |s|+10
and |conj(s, l + 1)| = 2|conj(s, l)| + 9.

Base case, l = 0. (⇐=). For any C, rLPCS ⊢ t0 : (C → C) by Lemma 7. Then,
by Lemma 6, rLPCS ⊢ s : (B → C) implies rLPCS ⊢ syl(s, t0) :(B → C).
(=⇒). By Lemma 6, syl(s, t0) justifies only implications B → C for which there
exists an A such that rLPCS ⊢ s : (B → A) and rLPCS ⊢ t0 : (A → C). By
Lemma 7, the latter implies A = C. Therefore, rLPCS ⊢ s : (B → C).6

Induction step. (⇐=). Let H = C1∧· · ·∧C2l+1 with rLPCS ⊢ s : (B → Ci) for
all its (l+1)-conjuncts. Then H = H1∧H2 where C1, C2, . . . , C2l are l-conjuncts
of H1 and C2l+1, C2l+2, . . . , C2l+1 are l-conjuncts of H2. By the induction hy-
pothesis,

rLPCS ⊢ conj(s, l) :(B → H1) , (5)

rLPCS ⊢ conj(s, l) :(B → H2) . (6)

In addition, rLPCS ⊢ c∧ : (H1 → (H2 → H1 ∧ H2)); in other words,

rLPCS ⊢ c∧ : (H1 → (H2 → H)) . (7)

From (7) and (5) by Lemma 6, for s′ = syl(conj(s, l), c∧) we have

rLPCS ⊢ s′ : (B → (H2 → H)) .

6 Note that, in general, conj(s, 0) = s does not satisfy the =⇒-direction.

9

Then, from (6) and rLPCS ⊢ c2 : ((B → (H2 → H)) → ((B → H2) → (B → H))):

rLPCS ⊢ c2 · s
′ : ((B → H2) → (B → H)) and, finally,

rLPCS ⊢ (c2 · s
′) · conj(s, l) :(B → H) .

It remains to note that conj(s, l + 1) = (c2 · s
′) · conj(s, l).

(=⇒). By Lemma 6, the rule

t : (A → B) s : (B → C)

syl(t, s) :(A → C)
(Syl)

is admissible in the ∗-calculus. So any ∗-derivation of conj(s, l + 1) : D must
contain the following key elements (we have already incorporated the induction
hypothesis about conj(s, l) as well as Lemma 6):

1. conj(s, l) : (B → C1 ∧ C2 ∧ · · · ∧ C2l) (IH)
2. c∧ : (X∧ → (Y∧ → X∧ ∧ Y∧)) (∗CS)
3. s′ : (B → (Y∧ → X∧ ∧ Y∧)) (Syl)
4. c2 : ((X2 → (Y2 → Z2)) → ((X2 → Y2) → (X2 → Z2))) (∗CS)
5. c2 · s

′ : ((X2 → Y2) → (X2 → Z2)) (∗A2)
6. conj(s, l) : (B′ → C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1) (IH)
7. (c2 · s

′) · conj(s, l) :D (∗A2)

where rLPCS ⊢ s : (B → Ci) and rLPCS ⊢ s : (B′ → C2l+i) for i = 1, . . . , 2l. Let
us collect all unification equations necessary for this to be a valid fragment of a
∗-derivation:

C1 ∧ C2 ∧ · · · ∧ C2l = X∧ from 3. (8)

B → (Y∧ → X∧ ∧ Y∧) = X2 → (Y2 → Z2) from 5. (9)

B′ → C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1 = X2 → Y2 from 7. (10)

X2 → Z2 = D from 7. (11)

By (9) and (10), B = X2 = B′. Thus, rLPCS ⊢ s : (B → Ci) for i = 1, . . . , 2l+1.
Also

Y∧ = Y2 = C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1 ,

again by (9) and (10). So, by (8) and (9),

Z2 = X∧ ∧ Y∧ = (C1 ∧ C2 ∧ · · · ∧ C2l) ∧ (C2l+1 ∧ C2l+2 ∧ · · · ∧ C2l+1) .

By (11), D is indeed an implication from B to this balanced conjunction for all
of whose (l + 1)-conjuncts term s justifies their entailment from B. ⊓⊔

Lemma 9. For the term disj = c∨1 + c∨2 of size O(1),

rLPCS ⊢ disj :D ⇐⇒ D = B → H, where B is a disjunct of H.

Proof. Easily follows from ∗A3 and ∗CS. ⊓⊔

10

4 Reduction from Vertex Cover, Part I

We now use the justification terms from the previous section to build a polyno-
mial-time many-one reduction from BVC to rLPCS . In this section, it is sufficient
for CS to be schematic and axiomatically appropriate.

Lemma 10. Let a term of size O(k2l) be defined by

tk→l = conj(tk, l) .

For any binary exponential graph G = 〈V, E〉 with |V | = 2k and any set C ⊆ V

of size 2l,
rLPCS ⊢ tk→l : (FV → FC) .

Proof. |conj(tk, l)| = O
(

|tk|2
l
)

= O(k2l).
All l-conjuncts pi of FC , where i ∈ C, must be k-conjuncts of FV . Thus, for

any of them by Lemma 7, rLPCS ⊢ tk : (FV → pi). Now, by Lemma 8, we have
rLPCS ⊢ conj(tk, l) :(FV → FC). ⊓⊔

Lemma 11. Let a term of size O(l) be defined by

tl→edge = syl(tl, disj) .

For any binary exponential graph G = 〈V, E〉, any set C ⊆ V of size 2l, and any
edge e ∈ E,

rLPCS ⊢ tl→edge : (FC → Fe) ⇐⇒ e is covered by C.

Proof. |syl(tl, disj)| = |tl| + |disj| + 5 = O(l) + O(1) = O(l).
(⇐=). If i ∈ e ∩ C is the vertex in C that covers e, then pi is a disjunct of Fe,
so rLPCS ⊢ disj : (pi → Fe) by Lemma 9. But pi is also an l-conjunct of FC , so,
by Lemma 7, rLPCS ⊢ tl : (FC → pi). Finally, rLPCS ⊢ syl(tl, disj) : (FC → Fe) by
Lemma 6.
(=⇒). If C does not cover e, it is easy to see that FC → Fe is not valid, therefore,
rLPCS 0 s : (FC → Fe) for any term s. ⊓⊔

Lemma 12. Let a term of size O(l2m) be defined by

sl→m = conj(tl→edge, m) .

For any binary exponential graph G = 〈V, E〉 with |E| = 2m and any set C ⊆ V

of size 2l,

rLPCS ⊢ sl→m : (FC → FG) ⇐⇒ C is a vertex cover for G.

Proof. |conj(tl→edge, m)| = O(|tl→edge|2
m) = O(l2m).

(⇐=). If C is a vertex cover, then rLPCS ⊢ tl→edge : (FC → Fe) for all e ∈ E,
by Lemma 11. All m-conjuncts of FG are Fe’s with e ∈ E. Hence, by Lemma 8,
rLPCS ⊢ conj(tl→edge, m) :(FC → FG).
(=⇒). If C is not a vertex cover, by Lemma 5.3, formula FC → FG is not valid,
hence rLPCS 0 s : (FC → FG) for any term s. ⊓⊔

11

Theorem 13. Let a term of size O(k2l) + O(l2m) be defined by

tk→l→m = syl(tk→l, sl→m) .

For any binary exponential graph G = 〈V, E〉 with |V | = 2k and |E| = 2m and
any integer 0 ≤ l ≤ k,

G has a vertex cover of size ≤ 2l =⇒ rLPCS ⊢ tk→l→m : (FV → FG) .

Proof. |syl(tk→l, sl→m)| = |tk→l| + |sl→m| + 5 = O(k2l) + O(l2m).
By Lemma 10, rLPCS ⊢ tk→l : (FV → FC) for any set C ⊆ V of size 2l. If G has

a vertex cover of size ≤ 2l, it can be enlarged to a vertex cover of size 2l. Let C be
such a vertex cover of size 2l. Then, by Lemma 12, rLPCS ⊢ sl→m : (FC → FG).
Thus, by Lemma 6, rLPCS ⊢ syl(tk→l, sl→m) :(FV → FG). ⊓⊔

Note that the term tk→l→m depends only on size 2l of a vertex cover C and
the numbers of vertices and edges of G.

5 Reduction from Vertex Cover, Part II

Earlier, we promised to show that the choice of a particular axiomatization for
the propositional logic has no impact on our results. Indeed, for all results in
Sect. 4 as well as for the ⇐=-directions in Sect. 3, any finite schematic axioma-
tization would suffice. For an alternative set of propositional axiom schemes, the
constants would simply be replaced by corresponding ground terms that justify
the former axioms in the new system. These new terms would have size O(1).
It follows from the proof of Theorem 13 that the derivation of FV → FG we
intended to represent by term tk→l→m fails. We use the condition of schematic
injectivity to make sure that no other derivation of tautology FV → FG acci-
dentally falls under the scope of tk→l→m. In doing so, it is instrumental that
we can provide a term (not necessarily a constant) that justifies all tautologies
from a particular scheme and only them. Although non-atomic terms contain-
ing + typically justify several schemes of formulas even if CS is schematically
injective, it is possible to justify all propositional tautologies by +-free terms
(see [Art01]), which justify at most one scheme. Using this observation, it is not
hard to show that our results (including the ones to follow in this section) are,
in fact, independent of the propositional axiom schemes chosen for A1.

To finish the polynomial-time reduction from BVC to rLPCS it now remains
to prove the other direction:

rLPCS ⊢ tk→l→m : (FV → FG) =⇒ G has a vertex cover of size ≤ 2l.

In this section, we again need the strongest restrictions on CS: to be axiomati-
cally appropriate and schematically injective.

Lemma 14 (Converse to Lemma 10).

rLPCS ⊢ tk→l :H =⇒
H = B → D,
where D is a balanced conjunction of depth ≥ l

whose all l-conjuncts are k-conjuncts of B.

12

Proof. By definition, tk→l = conj(tk, l), so by Lemma 8, it justifies only impli-
cations B → C1 ∧ · · · ∧ C2l with rLPCS ⊢ tk : (B → Ci) for i = 1, . . . , 2l. By
Lemma 7, term tk only justifies implications from a formula to its k-conjuncts.

⊓⊔

Lemma 15 (Converse to Lemma 11).

rLPCS ⊢ tl→edge :H =⇒
H = B → D1 ∨ D2,
where either D1 or D2 is an l-conjunct of B.

Proof. By definition, tl→edge = syl(tl, disj). By Lemma 6, H can only be an
implication B → D such that rLPCS ⊢ tl : (B → C) and rLPCS ⊢ disj : (C → D)
for some C. By Lemma 9, the latter statement implies that D = D1 ∨ D2 with
C = Di for some i = 1, 2. By Lemma 7, Di is an l-conjunct of B. ⊓⊔

Lemma 16 (Converse to Lemma 12).

rLPCS ⊢ sl→m :H =⇒
H = B → (C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m),
where either Ci or Di is an l-conjunct of B

for each i = 1, . . . , 2m.

Proof. By definition, sl→m = conj(tl→edge, m). By Lemma 8, H must be an
implication from some B to a balanced conjunction of depth ≥ m such that, for
all its m-conjuncts F , rLPCS ⊢ tl→edge : (B → F). By Lemma 15, each of these
m-conjuncts must be a disjunction with one of the disjuncts being an l-conjunct
of B. ⊓⊔

Theorem 17 (Converse to Theorem 13).

rLPCS ⊢ tk→l→m :H =⇒
H = B → (C1 ∨ D1) ∧ · · · ∧ (C2m ∨ D2m),
and there is a size ≤ 2l set X of k-conjuncts of B

with either Ci ∈ X or Di ∈ X for each i = 1, . . . , 2m.

Proof. By definition, tk→l→m = syl(tk→l, sl→m). By Lemma 6, H = B → F

with (a) rLPCS ⊢ tk→l : (B → Q), (b) rLPCS ⊢ sl→m : (Q → F) for some Q.
From (a), by Lemma 14, Q = Q1 ∧ · · · ∧ Q2l whose all l-conjuncts Qi’s are also
k-conjuncts of B. So X = {Qi | i = 1, . . . , 2l} is a size ≤ 2l set (with possible
repetitions) of k-conjuncts of B. It follows now from (b), by Lemma 16, that
F = (C1∨D1)∧· · ·∧ (C2m ∨D2m) with either Ci or Di being an l-conjunct of Q

for each i = 1, . . . , 2m, i.e., with either Ci ∈ X or Di ∈ X for each i = 1, . . . , 2m.
⊓⊔

Theorem 18. For any binary exponential graph G = 〈V, E〉 with |V | = 2k and
|E| = 2m and any integer 0 ≤ l ≤ k,

rLPCS ⊢ tk→l→m : (FV → FG) ⇐⇒ G has a vertex cover of size ≤ 2l.

Proof. The ⇐=-direction was proven in Theorem 13. We now prove the =⇒-
direction. FV → FG already has the form prescribed by Theorem 17. The only

13

k-conjuncts of FV are sentence letters p1, . . . , p2k . Therefore, there must exist a
set X of ≤ 2l of these sentence letters such that for each m-conjunct Fe of FG

at least one of its disjuncts, pv1(e) or pv2(e), is in X . This literally means that

in G there is a set of ≤ 2l vertices that covers all edges. ⊓⊔

Theorem 19. For an axiomatically appropriate and schematically injective CS,
derivability in rLPCS is NP-complete.

Proof. It was proven in [Kru03] that rLPCS is in NP. It is easy to see that both
FV and FG have size polynomial in the size of G. As for term tk→l→m, it was
shown in Theorem 13 that |tk→l→m| = O(k2l) + O(l2m), which is polynomial in
the size of G provided l ≤ k (BVC for l > k is trivial). Thus, Theorem 18 shows
that rLPCS is NP-hard. ⊓⊔

6 Other Justification Logics

Justification counterparts J, JD, JT, J4, and JD4 of modal logics K, D, T, K4,
and D4 respectively have been developed in [Bre00] (see also [Art08a]). In ad-
dition, there are several hybrid logics combining justifications and epistemic
modalities for multiple agents: TnLPCS , S4nLPCS , and S5nLPCS (see [Art06]). It
was shown in [Kuz08a] that their reflected fragments rJ4CS , rJD4CS , rTnLPCS ,
rS4nLPCS , and rS5nLPCS are axiomatized by the same ∗-calculus as rLPCS ,
whereas axiomatization for rJCS , rJDCS , and rJTCS is obtained by dropping ∗A5
for arbitrary terms while simultaneously integrating it into ∗CS for constants.
This immediately yields that the Derivability Problem for all these logics is in NP
for any schematic CS (see [Kuz08a]).

For lack of space, we cannot provide sufficient details here; we will just
mention that hybrid logics rTnLPCS , rS4nLPCS , and rS5nLPCS are conserva-
tive over rLPCS′ , where CS′ is the modality-free part of CS. On the other hand,
rJCS , rJDCS , rJTCS , rJ4CS , and rJD4CS are strictly weaker than rLPCS , but all
the reasoning involved in constructing term tk→l→m can easily be performed in
them too.

Theorem 20. For an axiomatically appropriate and schematically injective con-
stant specification CS, the Derivability Problem for rJCS , rJDCS , rJTCS , rJ4CS ,
rJD4CS , rTnLPCS , rS4nLPCS , and rS5nLPCS is NP-complete.

Acknowledgments.

We are grateful to Sergei Artemov for playing the role of a catalyst for this
research project. We thank the anonymous referees for their comments.

References

[AK06] Sergei [N.] Artemov and Roman Kuznets. Logical omniscience via proof
complexity. In Zoltán Ésik, editor, Computer Science Logic, 20th Interna-
tional Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged,

14

Hungary, September 25–29, 2006, Proceedings, volume 4207 of Lecture Notes
in Computer Science, pages 135–149. Springer, 2006.

[Art95] Sergei N. Artemov. Operational modal logic. Technical Report MSI 95–29,
Cornell University, December 1995.

[Art01] Sergei N. Artemov. Explicit provability and constructive semantics. Bulletin
of Symbolic Logic, 7(1):1–36, March 2001.

[Art06] Sergei [N.] Artemov. Justified common knowledge. Theoretical Computer
Science, 357(1–3):4–22, July 2006.

[Art08a] Sergei [N.] Artemov. The logic of justification. Technical Report TR–
2008010, CUNY Ph.D. Program in Computer Science, September 2008.

[Art08b] Sergei [N.] Artemov. Why do we need Justification Logic? Technical Report
TR–2008014, CUNY Ph.D. Program in Computer Science, September 2008.

[BB93] Maria Luisa Bonet and Samuel R. Buss. The deduction rule and linear and
near-linear proof simulations. Journal of Symbolic Logic, 58(2):688–709,
June 1993.

[Bre00] Vladimir N. Brezhnev. On explicit counterparts of modal logics. Technical
Report CFIS 2000–05, Cornell University, 2000.

[Kru03] Nikolai V. Krupski. On the complexity of the reflected logic of proofs.
Technical Report TR–2003007, CUNY Ph.D. Program in Computer Science,
May 2003.

[Kru06] Nikolai V. Krupski. On the complexity of the reflected logic of proofs.
Theoretical Computer Science, 357(1–3):136–142, July 2006.

[Kuz00] Roman Kuznets. On the complexity of explicit modal logics. In Pe-
ter G. Clote and Helmut Schwichtenberg, editors, Computer Science Logic,
14th International Workshop, CSL 2000, Annual Conference of the EACSL,
Fischbachau, Germany, August 21–26, 2000, Proceedings, volume 1862 of
Lecture Notes in Computer Science, pages 371–383. Springer, 2000. Errata
concerning the explicit counterparts of D and D4 are published as [Kuz08b].

[Kuz08a] Roman Kuznets. Complexity Issues in Justification Logic. PhD thesis,
CUNY Graduate Center, May 2008.

[Kuz08b] Roman Kuznets. Complexity through tableaux in justification logic. In
Abstracts of Plenary Talks, Tutorials, Special Sessions, Contributed Talks
of Logic Colloquium 2008 (LC’08), pages 38–39, Bern, Switzerland, July
3–8, 2008. Abstract.

[Kuz08c] Roman Kuznets. Self-referentiality of justified knowledge. In Edward A.
Hirsch, Alexander A. Razborov, Alexei Semenov, and Anatol Slissenko, ed-
itors, Third International Computer Science Symposium in Russia, CSR
2008, Moscow, Russia, June 7–12, 2008, Proceedings, volume 5010 of Lec-
ture Notes in Computer Science, pages 228–239. Springer, 2008.

[Lad77] Richard E. Ladner. The computational complexity of provability in systems
of modal propositional logic. SIAM Journal on Computing, 6(3):467–480,
September 1977.

[Mil07] Robert Milnikel. Derivability in certain subsystems of the Logic of Proofs
is Π

p

2
-complete. Annals of Pure and Applied Logic, 145(3):223–239, March

2007.

15

