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Abstract

Justification Logic studies epistemic and provability phenomena by introducing justi-
fications/proofs into the language in the form of justification terms. Pure justification
logics serve as counterparts of traditional modal epistemic logics, and hybrid logics
combine epistemic modalities with justification terms. The computational complex-
ity of pure justification logics is typically lower than that of the corresponding modal
logics. Moreover, the so-called reflected fragments, which still contain complete infor-
mation about the respective justification logics, are known to be in NP for a wide range
of justification logics, pure and hybrid alike. This paper shows that, under reasonable
additional restrictions, these reflected fragments are NP-complete, thereby proving a
matching lower bound. The proof method is then extended to provide a uniform proof
that the corresponding full pure justification logics are IT5-hard, reproving and gener-
alizing an earlier result by Milnikel.

1. Introduction

Justification Logic is an emerging field that studies provability, knowledge, and
belief via explicit proofs or justifications that are part of the language. A justification
logic is essentially a refined analogue of a modal epistemic logic. Whereas the latter
uses [F to indicate that F' is known to be true, a justification logic uses ¢: F instead,
where ¢ is a term that describes a ‘justification’ or proof of F. This construction enables
justification logics to reason about both formulas and proofs at the same time, avoiding
the need to treat provability at the metalevel.

Because Justification Logic can reason directly about explicit proofs, it provides
more concrete and constructive analogues of modal epistemic logics. For example,
the modal distribution axiom LI(F — G) — (OF — G) is replaced in Justification
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Logic by the axiom s : (F — G) — (t: F — (s - 1) : G). The latter replaces the
distribution axiom with a computationally explicit construction. Justification logics
are very promising for structural proof theory and have already proved to be fruitful
in finding new approaches to common knowledge ([4, 12]), the Logical Omniscience
Problem ([7, 8]), and self-referentiality of proofs ([22]). For further discussion on the
various applications of Justification Logic, see [6].

The goal of the present paper is to provide a uniform method of proving lower
bounds for the Derivability Problems in various justification logics and their reflected
fragments by reduction from problems similar to the Vertex Cover Problem. We begin
by reviewing some definitions of justification logics.

The historically first justification logic, the Logic of Proofs LP, was introduced
by Sergei Artemov [2] to provide a provability semantics for the modal logic S4 (see
also [3]). The language of LP

Fi=p|L|(F->F)|t:F,
tu=x|c|@E- D@+t

contains an additional operator ¢ : F, read ‘term ¢ serves as a justification/proof of
formula F.’ Here p stands for a sentence letter, x for a justification variable, and c¢ for
a justification constant. Formulas of the form ¢: F' are called justification assertions.

Statements ¢ : F can be seen as refinements of modal statements [JF because the
latter say that F' is known, whereas the former additionally provide a rationale for
such knowledge. This relationship is demonstrated through the recursively defined
operation of forgetful projection that maps justification formulas to modal formulas:
(t: F)° = OJ(F°), and commutes with Boolean connectives: (F — G)° = F° — G°,
where p° = pand L° = L.

Axioms and rules of LP:

Al. A complete axiomatization of classical propositional logic by finitely many axiom
schemes; rule modus ponens;

A2. Application Axiom s:(F—>G)—> (t:F - (s-1:G);

A3. Monotonicity Axiom s:F—>(s+1):F, t:F > (s+1):F,
A4. Factivity Axiom t:F > F,

AS. Positive Introspection Axiom t:F > t:t:F,

R4. Axiom Internalization Rule I
c:
where A is an axiom of LP and c is a justification constant.
LP is the exact counterpart of S4 (note the similarity of their axioms): namely, let
X° ={F° | F € X} for a set X of justification formulas and let LP be identified with the
set of its theorems, then

3 An earlier version of this paper appeared in the proceedings of LECS 2009 ([13]).



Table 1: Axioms for Justification Logics

Justification Present
axiom scheme in logics
A4, t:F > F JT,LP
AS5. t:F - t:t:F J4,JD4,LP
A7. t:1—> L JD, JD4

Theorem 1 (Realization Theorem, [2, 3]). LP° = S4.

Other epistemic modal logics have their own justification counterparts in the same
sense. Counterparts of the modal logics K, D, T, K4, and D4 were developed by
Vladimir Brezhnev in [11]. These justification logics, named J, JD, JT, J4, and JD4 re-
spectively, are all subsystems of LP and share the A1-A3 portion of its axiom system.
The remaining two axiom schemes are included dependent on whether or not their
forgetful projections are axioms of the respective modal logic. In addition, JD and
JD4 require a new axiom scheme:*

A7. Consistency t:l—> 1,

whose forgetful projection is the modal Seriality Axiom. Complete details can be found
in Table 1.

Finally, the rule R4 for J4 and JD4 is written the same way as for LP, but of course
it now applies to the axioms of J4, respectively JD4. The logics without the Positive
Introspection Axiom AS still require some restricted form of positive introspection for
constants which is embedded into the Axiom Internalization Rule:

R4'. Axiom Internalization Rule R
eeden . oilleleic:A
N——

n

where A is an axiom of the logic, c is a justification constant, and n > 0 is an
integer.
This form of the Axiom Internalization Rule is used for J, JD, and JT.

Theorem 2 (Realization Theorem, [11]).
J° =K, JD° =D, JT° =T,
J4° = K4, JD4° = D4.

All these justification logics are pure in the sense that only terms are present in the
language, but not modalities. In [4], Artemov studied hybrid® justification logics T, LP,

4The apparent break in the numeration of axioms is due to the Negative Introspection Axiom A6 that
remains outside the scope of this paper. The numbering of rules follows [5].

3The term “hybrid justification logic” is used here differently from [16], where it is a hybrid of hybrid
logic and a justification logic, whereas in our case it is a hybrid of a modal logic and a justification logic.



S4,LP, and S5,LP. These combine terms with modalities for several agents (a single-
agent variant S4,LP was originally developed by Artemov jointly with Elena Nogina,
see [9]).

Axioms and rules of T,LP, S4,LP, and S5, LP:

Let ML € {T, S4, S5}.

1. Axioms and rules of the multimodal logic ML,,.

2. Axioms and rules of the justification logic LP.

3. Connection axiom. Foreachi=1,...,n, t:F — O,F.

The Axiom Internalization Rule R4 in 2. is extended to apply to all axioms of ML, LP.

For some applications (e.g., to avoid Logical Omniscience [7] or to study self-
referentiality [22]) the use of constants needs to be restricted; this is achieved using
constant specifications. A constant specification CS for a justification logic JL is a set
of instances of the rule R4 for this logic:

CS C {c:A| Ais an axiom of JL, c is a justification constant} .

Given a constant specification CS for JL, the logic JL¢s is the result of replacing the
Axiom Internalization Rule in JL (R4 or R4') by its relativized version, respectively
by:

c:AeCS
R4cs. _
cs c:A
| c:AeCS . .
R4CS. T Te Tlelecd where n > 0 is an integer.

The Realization Theorem holds for a pure justification logic JL with a constant
specification CS, i.e., (JLcs)° = ML = JL°, iff CS is axiomatically appropriate:

Definition 3. A constant specification CS for a logic JL is called:

e axiomatically appropriate® if every axiom of JL is justified by at least one constant;

e schematic’ if each constant justifies several (maybe 0) axiom schemes and only
them;

e schematically injective® if it is schematic and each constant justifies no more than
one axiom scheme.

The following is the fundamental property of justification logics, closely related to
the Realization Theorem:

Lemma 4 (Constructive Necessitation. [2, 4, 5]). Let CS be an axiomatically appro-
priate constant specification for a justification logic JL. For any theorem F of JL¢s,
there exists a +-free ground’ justification term s such that JLgs + s F.

The term is due to Melvin Fitting.

7The term is due to Robert Milnikel although the idea goes back to Alexey Mkrtychev.
8The term is due to Milnikel.

9 A justification term is called ground if it contains no occurrences of justification variables.



Whereas it is well known that the Derivability Problems for the modal logics K, D,
T, K4, D4, and S4 are PSPACE-complete ([23]), it was shown that

Theorem 5 ([19, 21, 1]). Let JL € {J,JD,JT,J4,dD4,LP} and CS be an axiomati-
cally appropriate and schematic constant specification'® for JL. Then the Derivability
Problem for JLcs is in T15.

In particular, LP itself is in IT}.

Remark 6. The restriction on the constant specification being axiomatically appropri-
ate in the preceding theorem is not necessary for J, JT, J4, and LP.

Robert Milnikel proved some matching lower bounds, namely:
Theorem 7 ([24]).

1. LP¢s is Hg -hard provided CS is axiomatically appropriate and schematically
injective;

2. Jles is Hg -hard provided CS is axiomatically appropriate and schematic.

The so-called reflected fragment rLP of the Logic of Proofs was studied by Nikolai
Krupski in [18].

Definition 8. For any justification logic JLgs with a constant specification CS, the
reflected fragment of the logic consists of all provable justification assertions:

I’JLCS:{IZF|JL(;3|-IZF} .

We will write rdLcs + t: F to mean ¢ : F € rdLcs. At the end of this section, we will
present an axiomatization for several reflected fragments via *-calculi, which would
make the use of - more natural.

A reflected fragment bears complete information about the underlying logic as the
following theorem shows:

Theorem 9 ([18, 21]). Let JL € {J,JD,JT,J4,JD4,LP, T,LP,S4,LP, S5,LP} and
CS be an axiomatically appropriate constant specification for JL. Then

Jlgs+ F — @Adrdles Ft:F .

(The requirement of axiomatic appropriateness is necessary only for the =-direction. )

The =-direction constitutes the Constructive Necessitation Property (Lemma 4).
The =-direction easily follows from the Factivity Axiom A4 for all logics but J, JD,
J4, and JD4 that do not have Factivity. For these four logics, the statement can be
proved semantically using F-models (see [15] for their description) or syntactically by
transforming a derivation of 7: F in the respective *-calculus into a derivation of F in
the underlying justification logic (the details of this transformation can be found in [21,
proof of Lemma 3.4.10]).

1071 all complexity results, we always assume CS to be polynomial-time decidable.



Table 2: *-Calculi

Calculus Axioms and rules Used for

*CS *CS', *A2, *A3 rdes, Dcs, W Tes

*!CS *CS, *A2, *A3, xAS5 I’J4cs, I’JD4(;3, I’LPCS,
rT,LPcs,rS4,LPcs,rS5,LPcs

Theorem 10 ([18, 21]). Let JL € {J,JD,JT,J4,JD4,LP,T,LP,S4,LP, S5,LP} and
CS be a schematic constant specification for JL. The Derivability Problem for rJLcs,
the reflected fragment of JL¢s, is in NP,

To prove Theorem 10 for rLP¢s, N. Krupski developed an axiomatization for rLP¢s
that we will call the *!cs-calculus.

Axioms and rules of the =!;s-calculus:

*CS. Axioms: for any c:A € CS, Cc:A;
(F->G t:F
*A2. Application Rule si(F > G) ;
s-1:G
s F t:F
A3. Sum Rul - :
* um e s+t F s+t F
.. . t:F
*AS. Positive Introspection Rule T F

In [21], this calculus was shown to also axiomatize the logics rJ4¢s, rJD4cs, rT,LP¢cs,
rS4,LPcs, and rS5,LP¢s. In particular, the three logics LP¢s, J4¢s, and JD4¢s all use
the *!¢s-calculus to axiomatize their reflected fragments. The reflected fragments rdcs,
rdD¢s, and rJT¢g of the three theories which do not have positive introspection are all
axiomatized by the *¢s-calculus which is obtained by omitting the rule *A5 from the
x]os-calculus while simultaneously extending the set of axioms to include:

*CS'. Axioms: for any c:A € CS and any integern >0, !!---lc:...:ll¢:leic:A.
——

Note that axioms =CS are instances of *CS' with n = 0. Therefore, *CS can be used
both in the *cs- and the *!-g-calculi.

We collectively call the *¢s- and the *!cg-calculi the *-calculi, which are summa-
rized in Table 2. As can be seen from the preceding discussion and the summarizing
table, there are only two calculi that axiomatize the reflected fragments of various pure
and hybrid justification logics. More precisely, the rules of the *-calculus for a given
justification logic JL¢s depend solely on whether JL enjoys full positive introspection
while the axioms of this %-calculus are read from CS and thus indirectly depend on the
axioms of JL.

In Theorem 37 below, we will show that the same rules can be used in the setting
where there are non-logical axioms in addition to the *CS or *CS' axioms.



The first main result of the present paper, Theorem 33, is a lower bound on the com-
plexity of reflected fragments that matches the upper bound of Theorem 10; namely,
we show that the Derivability Problems for many reflected fragments are NP-complete.
The proof is by a many-one polynomial-time reduction from a known NP-complete
problem, the Vertex Cover Problem. As in Milnikel’s lower bound for LP¢s, we have
to impose an additional restriction that CS be axiomatically appropriate and schemat-
ically injective. The reduction method is then extended to establish a lower bound
on the complexity of full pure justification logics that also matches the upper bound
of Theorem 5; this gives a reproof of the Hg -hardness results of [24] and extends the
results to additional justification logics.

The paper is structured as follows. Section 2 defines a coding of graphs by propo-
sitional formulas and shows how the existence of a vertex cover can be described in
terms of these formulas. Section 3 develops justification terms that encode several
standard methods of propositional reasoning. Although the formulas that describe the
existence of a vertex cover depend on the cover itself rather than only on its size, Sect. 4
shows how to eliminate this dependency by using the terms from Sect. 3 to encode par-
ticular derivations of the formulas from Sect. 2. Section 5 finishes the proof of the
polynomial-time reduction. This reduction is used in Sect. 6 to establish a criterion for
NP-hardness of reflected fragments and to apply it to a wide range of them. Section 7
lays the groundwork for proving lower bounds for full pure justification logics, which
is done in Sect. 8 by generalizing the Vertex Cover Problem to a Hg -complete version.
Finally, Sect. 9 explores the restrictions on the constant specification necessary for the
proved lower bounds.

2. Graph Coding and Preliminaries

A graph G = (V, E) has a finite set V of vertices and a finite set E of undirected
edges. We assume w.l.o.g. that V = {1,..., N} for some N and represent an edge e
between vertices k and [ as the set e = {k, [} with its endpoints denoted by v;(e) < v;(e).
A vertex cover for G is a set C of vertices such that each edge e € E has at least one
endpoint in C. The Vertex Cover (VC) Problem is the problem of determining whether
a given graph G has a vertex cover of a size < L for a given integer L > 0. The Vertex
Cover Problem is one of the classic NP-complete problems.

We define below formulas F'y, F¢, and Fg that will help build a many-one reduction
from VC to the reflected fragments of justification logics. These formulas will include
large conjunctions. To avoid the dependence of derivations on a vertex cover, we will
use balanced conjunctions (see [10]):

Definition 11. Each formula is a balanced conjunction of depth 0. If A and B are both
balanced conjunctions of depth k, then A A B is a balanced conjunction of depth k + 1.

Clearly, a balanced conjunction of depth k is also a balanced conjunction of depth /
for any 0 < [ < k. Thus, we are mainly interested in how deeply a given formula is
conjunctively balanced. Unless stated otherwise, for any conjunction C; A -+ A Cox
of 2 formulas, we assume that the omitted parentheses are such that the resulting
balanced conjunction has the maximal possible depth, i.e., depth > k.



We also need to refer to C;’s that form a conjunction C| A -+ A Cx. The follow-
ing inductive definition of depth k conjuncts, or simply k-conjuncts, generalizes the
definition of conjuncts in an ordinary conjunction:

Definition 12. Each formula is a 0-conjunct of itself. If C A D is a k-conjunct of a
formula F, then C and D are both (k + 1)-conjuncts of F.

For instance, the conjuncts of an ordinary conjunction are its 1-conjuncts; all C;’s in
Ci A -+ A Cx are its k-conjuncts. More generally, any balanced conjunction of depth k
has exactly 2F occurrences of k-conjuncts (with possibly several occurrences of the
same formula).

To make a full use of balanced conjunctions, it is convenient to restrict attention to
instances of the Vertex Cover Problem for graphs in which both the number of vertices
and the number of edges are powers of 2. These are called binary exponential graphs.
It is also helpful to only consider vertex covers whose size is a power of 2; these we call
binary exponential vertex covers. Fortunately, the version of the Vertex Cover Problem
restricted to binary exponential graphs and their binary exponential vertex covers is
also NP-complete:

Theorem 13. The Binary Vertex Cover (BVC) Problem of determining whether a given
binary exponential graph G has a vertex cover of size < 2 for a given integer [ > 0 is
NP-complete.

Proof. Since each instance of BVC is also an instance of the standard VC problem,
and since VC is NP-complete, it suffices to construct a polynomial-time many-one
reduction from VC to BVC. Suppose we are given an instance of VC; namely, we are
given a graph Gy and an integer L and wish to determine if G has a vertex cover of
size < L. We give a polynomial-time procedure that constructs a binary exponential
graph G and a value [ so that Gy has a vertex cover of size < L iff G has a vertex
cover of size < 2'. The graph G is constructed in three stages; each stage causes only a
constant factor increase in the size of the graph.

Stage 1. Increasing the size of vertex covers. Choose an integer 0 < L’ < L such that
L+ L = 2! —1 for some integer [ > 0. A graph G’ = (V’, E’) is obtained from G,
by adding 2L’ new vertices broken into L’ disjoint pairs with the vertices in each pair
joined by a new edge (L’ new edges overall). The graph Gy has a vertex cover of
size < L iff the graph G’ has a vertex cover of size < 2/ — 1.

Stage 2. Increasing the number of edges. Choose an integer 0 < M” < |E’| such that
|[E’| + M”" = 2™ for some integer m > 0. A graph G”" = (V"', E”) is obtained by adding
M" + 1 new vertices to G’ with one of these vertices joined to all M”" others (M" new
edges overall). The graph G’ has a vertex cover of size < 2/ — 1 iff the graph G’ has a
vertex cover of size < 2'.

Stage 3. Increasing the number of vertices. Choose an integer 0 < N/ < |V”| such
that |V”’| + N”” = 2% for some integer k > 0. A graph G = G’ is obtained by adding
N"" isolated vertices to G”’. The graph G” has a vertex cover of size < 2/ iff the
graph G” has a vertex cover of size < 2'.

It is clear from the construction that G is a binary exponential graph such that
Gy has a vertex cover of size < L iff G has a vertex cover of size < 2. ]



Definition 14. Let G = (V, E) be a binary exponential graph with E = {e},...,em}.
We define the following formulas:

a. Foreach edge e; = {ij,ir} € E, where i) < i, Fe = piy V Pi, = Pui(e) V Dwste)-

b. Let C = {iy,i3,...,in} C V be a possible binary exponential vertex cover for G,
where i} <ip <--- <iy. Define Fc = p;, A--- A Piy-

c. Fg=Fo A---AF,,.

The proof of the following properties is an easy exercise (+ denotes derivability in
classical propositional logic):

Lemma 15. For any binary exponential graph G = (V, E) and any binary exponential
setCCV,

1. +Fy—>Fg ;

2.rFy > F¢ ;

3.+ Fc > Fg iff C is a vertex cover for G.

Our goal is to reduce BVC to derivability in a given reflected fragment. To this
end, we consider a particular derivation of Fy — Fg that proceeds by first proving
Fy — Fc, then attempting to prove F¢ — Fg, succeeding in the attempt iff C is a
vertex cover, and finally applying hypothetical syllogism (HS) to infer Fy — Fg. We
further encode this derivation as a justification term ¢ so that rdL¢s + t: (Fy — Fg) iff
C is a vertex cover. In BVC we need to determine whether there exists a vertex cover of
(at most) a given size rather than whether a given set of vertices is a vertex cover. Thus,
t:(Fy — F¢) should not depend on C but may (and should) depend on the size of C.
Since C has already been “syllogized away” from the formula Fy — Fg, it remains
to make sure that the term ¢ only depends on the size of C. Although any derivations
of Fy — F¢ and of F¢ — F necessarily explicitly depend on C, the terms encoding
them, and therefore ¢, can be made independent of C. This is the main reason why we
use balanced conjunctions: this way all k-conjuncts are interchangeable.

Instead of giving a proof for one particular type of reflected fragments and explain-
ing how to adjust it to other cases as in [13], we will now formulate conditions under
which a reflected fragment fits our construction. These conditions have the following
form: for certain individual axiom schemes or their sets there must exist a term that
justifies exactly the axioms from this scheme or this set of schemes respectively.

Definition 16. A reflected fragment rJLcg is called fitting if it has ground terms cy, ¢;,
Cal.A2> Ca, and ¢y vo Wwith the following properties:

rJLCS FoC F
rdles+ F
rJLCS F C/\l,/\2:F
rdles F ca F
rJLCS F o Cvive: F

F=X—- (Y - X)),

Fe(X-> Y -2)>(X->Y)—> X - 2)),
F=X;AX, = X;), wherei=1ori=2, €))
F=X—> (Y > XAY)),

F=(X;—> X, VX)), wherei=1ori=2,

11017

where X, Y, Z, X;, and X; are arbitrary formulas.



Most natural schematically injective constant specifications for justification logics yield
fitting reflected fragments. Note that terms ¢y, ¢, and ¢, should justify exactly one
commonly used propositional axiom scheme each. In fact, if these axiom schemes are
part of Al for a particular justification logic JL and if CS is schematically injective,
these terms may have an especially simple form: they can be constants justifying their
respective axiom schemes. The two terms caj 42 and cyy,v2 should justify two com-
monly used axiom schemes each. In general, they can be modeled by the sums of
terms corresponding to those axiom schemes. That is to say, caj..2 can be defined to
be ca1 + ca2, Where ¢y justifies exactly the scheme X A X, — X;. Similarly, ¢y v2 can
generally be set equal to ¢y + ¢y for appropriate terms ¢y and cyy;.

We shall prove the NP-hardness of fitting reflected fragments by giving a reduction
from BVC to derivability in the reflected fragment. Therefore, our complexity lower
bounds hold for any fitting reflected logic, and they do not depend on the particular
propositional axiomatization chosen, or the particular form of the five terms from (1).
In fact, as will be shown, it is not even important that the operation + be present.

3. Justification Terms Encoding Propositional Reasoning

Throughout the section, we assume that a reflected fragment rdL¢s is fitting. All *-
derivations in this and the next two sections can be performed in either of the =-calculi.
In each case, the choice of the %-calculus is made based on the underlying reflected
fragment according to Table 2.

The size of terms is defined in a standard way: |c| = |x| = 1 for any constant ¢ and
any variable x, |(z- )| = |[(t+ s)| = |t] +|s| + 1, | ¢ = || + 1.

Note that all the terms from (1) have size O(1) because there are only five of them.

Lemma 17 (Encoding the Hypothetical Syllogism Rule). The operation
syl(t, s) = (c2 - (c1 - 8)) - ¢t
with |syl(z, s)| = |t| + |s| + O(1) encodes the Hypothetical Syllogism Rule, i.e.,

H = A — C such that for some B

Mles F syl s):H = rdles F1:(A — B) and rdlgcs F 5:(B — O).

Proof. (). Here are the key elements of a derivation of r: (A — B),s: (B — C) +
syl(t, s) : (A — C) (parts of the derivation following from the “fit” of the reflected
fragment are omitted):

¢ : (B>C)—=A—>(B-0) (fit)
s : (B->0O (Hyp)
cprs 1 (A->(B-0) (xA2)
¢ : (A>B->C)>(A->B) - A->0)) (*iv)
ca-(cres) @ (A->B)—>A-0) (xA2)
t : A-> B (Hyp)
(cr-(c1-8)t : (A->C0O) (xA2)

(=). Consider an arbitrary derivation of syl(z, s) : H in the =-calculus. It can easily
be seen that any such derivation must have the same key elements as the one used for

10



the «<=-direction above: the only difference can be in the choice of formulas for the
terms cy, ¢, §, and ¢. Since the reflected fragment is fitting, we know which formulas
can be proved by c; and c;. Thus, we can shape this as a unification problem: find
formulas X1, Y1, X», Y2, Z,, X;, and X, such that rdL¢cs + s: X, rdLgs F £:X;, and the
following is a *-calculus derivation of s: X, ¢: X; + syl(z, s) : H modulo derivability of
statements from (1):

L. c1: (X = (Y1 - X)) (fir)

2. s: X (Hyp)
3. c-5:(Y1 - X)) (xA2)
4. 2: (X2 = (Y2 = 22)) = (X2 = Y2) > (X2 — Zp))) (fiD)

5. (a9 ((Xa-o ) - (X2 > Z)) (xA2)
6. t: X, (Hyp)
T.(cy-(c1-98)-t:H (*A2)

To make the applications of the rule *A2 work in lines 3, 5, and 7, the unification
variables have to satisfy the following equations:

X1 =X from 3. 2)

> >Z)=Y - X from 5. 3)
X->Nh=X from 7. “4)

X, > 7Z,=H from 7. &)

By (2) and (3), X; = X; = Y» — Z,. This equation combined with (4) and (5) shows
that H is indeed an implication that follows by HS from X; and X justified by ¢ and s
respectively. O

Lemma 18 (Stripping k conjunctions). For any integer k > O there exists a term t of
size O(k) that encodes the operation of stripping k conjunctions, i.e.,

rdles + #x: D = D = H — C, where C is a k-conjunct of H.
Proof. We prove by induction on k that the conditions are satisfied for
fhp=(c2-c1)-cr,
tkr1 = Sylcarpns 1) -

Since |te1| = |tel + lcarnzl + O(1) = [t + O(1), it is clear that |tx| = [tp] + kO(1) = O(k).
Base case, k = 0. (). If C is a O-conjunct of H, then H = C, and it is easy

to see that 7y corresponds to the standard derivation of the tautology C — C from

propositional axioms (cf. combinator skk).

(=). Any =*-derivation of #;: D must have the following key elements:

1 (X2 > (Y22 24) = (X2 > V) = (X2 > Z)  (fir)
2. C1 I(Xl - (Y1 - Xl)) (ﬁt)
3. CyC :((Xz - Y2) — (Xz — Zz)) (*AZ)
4 C1 :(X3 g (Y3 - X3)) (ﬁt)
5. (ca-c1)-c1:D (xA2)

11



For A2 from line 5 to be valid, it is necessary that D = X, — Z,. It follows from *A2
in line 3 that X, — (Y, — %) = X; — (Y; — X)), in which case X, = X| = Z,.
Therefore, D = X, — X;, which is an implication from a formula to its O-conjunct.
Induction step. (). Let H be a formula with a (k + 1)-conjunct C. Then H must
be of the form H; A H, with C being a k-conjunct of H; for some i = 1,2. By the
induction hypothesis, rdL¢s + # : (H; — C) for this i. For bothi = 1 and i = 2
rdles F (ca1n2) i (H — H;). Then, by Lemma 17, rdLgs + x4 : (H — C).
(=). By the induction hypothesis, #; justifies only implications from a formula to
one of its k-conjuncts. Since rdlLgs is fitting, ca1.2 justifies only implications from
a formula to one of its 1-conjuncts. By Lemma 17, #,; justifies only hypothetical
syllogisms obtained from the latter and the former, but a k-conjunct of a 1-conjunct of
a formula is its (k + 1)-conjunct. O

Lemma 19. For any term s and any integer | > 0 there exists a term conj(s,[) of
size O (|s|21) with the following property:

D=B— Ciy A ACy such that

les Feonj(s,):D =y (B C) foralli=1,....2.

Proof. We prove by induction on [ that the conditions are satisfied for

conj(s, 0) = syl(s, fp) ,
conj(s, [+ 1) = (c2 - syl(conj(s, D), cA)) -conj(s, [) .

It is not hard to see that |conj(s, [)| = 2/(ls| + K + L) — L, where K and L are constants
such that |conj(s, 0)] = |s| + K and |conj(s, [ + 1)| = 2|conj(s, [)| + L.

Base case, | = 0. (). For any formula C, rdL¢s + f: (C — C) by Lemma 18.
Then, by Lemma 17, rdL¢s + s: (B — C) implies rdL¢s F syl(s, tp): (B — C).
(=). By Lemma 17, syl(s, #y) justifies only implications B — C for which there exists
a formula A such that rdLcs + s:(B — A) and rdLgs + #p: (A — C). By Lemma 18, the
latter implies A = C. Therefore, rdLgs + s:(B — C).!!

Induction step. (). Let H = C; A --- A Cys1 WithrdLgs + 5: (B — C;) for all its
(I + 1)-conjuncts C;. Then H = H; A H,, where Cy,C»,...,Cy are I-conjuncts of H,
and Cyi41, Coiyp, ..., Com are [-conjuncts of H,. By the induction hypothesis,

rdLcs F conj(s,l): (B — Hy) , (6)
rdLcs F conj(s,l): (B — Hy) . @)

In addition, rdL¢s + ¢ : (H; — (Hy = H; A H»)); in other words,
rJLcsl-C/\Z(Hl —)(H2—>H)) . (8)
From (8) and (6) by Lemma 17, for s’ = syl(conj(s, [), cx) we have

tdles + 8" (B — (Hy, — H)) .

"Note that, in general, conj(s, 0) = s does not satisfy the =-direction.
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Then, from (7) and rdLgs F ¢3: (B — (Hy — H)) — (B — Hy) — (B — H))):
rdles Fcr - 8" : (B — Hy) = (B — H)) and, finally,
rdlcs + (¢cz - §7) - conj(s,[): (B — H) .

It remains to note that conj(s,! + 1) = (c¢; - 5") - conj(s, ).
(=). By Lemma 17, the rule
t:(A—>B) s:(B—>C()
syl(z, $): (A — C)

Sy

is admissible in both =-calculi. So any #-derivation of conj(s,/ + 1) : D must contain
the following key elements (we have already incorporated the induction hypothesis
about conj(s, [) as well as Lemma 17):

1 conj(s,0):(B—>Cy ACy A---ACy) (IH)
2 ch:(Xpn > (YA > XA AYY) (fit)
3. s (B> Yy = X\ AYR) (Syl)
4. (X -> N —>24)-> (2> n)-> X —>2) (fin
5 -8 (X2 > 1) - (Xa > 2)) (xA2)
6. conj(s,0): (B" = Coiyg A Cotgp A=+ A Cot) (IH)
7.(cy - s") - conj(s,l): D (xA2)
where rdLes F s:(B — C;) and rdLgs + s:(B" — Coy;) fori=1,...,2% Let us collect

all unification equations necessary for this to be a valid fragment of a *-derivation:

CiNCyA---ANCy =X, from 3. ©))

B> Y\,> X AYN)=X, > (Y > 7)) from 5. (10)

B 5 Cuiy ACupp A+ ANCyi =Xo - Yy from 7. an
X, »>Z,=D from 7. (12)

By (10) and (11), B = X, = B’". Thus, rJLgs + s:(B — C;) fori =1,...,2"*1. Also
Y=Y =Cuy ACyya Ao ACoi
again by (10) and (11). So, by (9) and (10),
Zy =X AYA=(CiACy A~ ANCyu) AN(Coizy ACoizg A+ A Coit) .

By (12), D is indeed an implication from B to this balanced conjunction for all of whose
(I + 1)-conjuncts the term s justifies their entailment from B. O

In the following, a I-disjunct is defined analogously to a 1-conjunct.

Lemma 20. For the term disj = ¢y v2 of size O(1),
rdLcs F disj: D — D = B — H, where B is a I-disjunct of H.

Proof. Easily follows from the fact that the reflected fragment is fitting. U
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4. Reduction from Vertex Cover, Part I

We now use the justification terms from the previous section to build a polynomi-
al-time many-one reduction from BVC to a fitting reflected fragment rdL¢gs.

Lemma 21. Let a term of size O (k2’) be defined by
tr— = conj(ty, 1) .
For any binary exponential graph G = (V, E) with |V| = 2F and any set C C V of size 2/,
rdles F tir: (Fy — Fe) .

Proof. lconj(t, D = O (|n[2') = O (k2').

All [-conjuncts p; of F¢, where i € C, must be k-conjuncts of Fy. Thus, for
any of them by Lemma 18, rdL¢s + # : (Fy — p;). Now, by Lemma 19, we have
rdLcs F conj(ty, ): (Fy — Fc). O

Lemma 22. Let a term of size O(l) be defined by
liedge = Syl(ll, dlSJ) .

For any binary exponential graph G = (V,E), any set C C V of size 2!, and any
edgee € E,

rdles F tisedge : (Fe — F,) = e is covered by C.

Proof. |syl(t;,disj)| = |t;| + |disj| + O(1) = O(l) + O(1) = O(I).

(&=).Ifi € en C is the vertex in C that covers e, then p; is a 1-disjunct of F,, so
rdLcs + disj : (p; — F,) by Lemma 20. But p; is also an /-conjunct of F¢, so, by
Lemma 18, rdL¢gs F t; : (F¢ — p;). Finally, rdLcs + syl(4,disj) : (F¢ — F,) by
Lemma 17.

(==). If C does not cover e, it is easy to see that ¢ — F, is not valid propositionally.
All justification logics are conservative over classical propositional logic, therefore
JLles ¥ F¢ — F,. By Theorem 9, rdL¢s ¥ s:(F¢c — F,) for any term s. U

Lemma 23. Let a term of size O (12™) be defined by
Slsm = Conj(tl—wdge, m) .

For any binary exponential graph G = (V,E) with |E| = 2™ and any set C C V of
size 2!,

rdles b Siom: (Fc = Fg) = C is a vertex cover for G.
Proof. conj(tiedge: M) = O ([tioeagel2™) = O (127).
(). If C is a vertex cover, then rdles + fisedee @ (Fc — F,) for all e € E, by
Lemma 22. All m-conjuncts of F are F,’s with e € E. Hence, by Lemma 19, we have
r‘JLCS F Conj(tlﬂedges m):(Fc — Fg).
(=). If C is not a vertex cover, by Lemma 15.3, formula F¢ — F¢ is not valid

propositionally. The same argument as in the previous lemma shows that for any term s
I'JLCS}A s:(Fc — Fp). U
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Theorem 24. Let a term of size O (k2') + O (12") be defined by
ksiom = Syl(tk—ﬂa S[—»m) .

For any binary exponential graph G = (V,E) with |V| = 2% and |E| = 2" and any
integer 0 < [ <k,

G has a vertex cover of size < 2! = rdles F tisism :(Fy — Fg) .

Proof. 1syltists Sim)| = ltiil + Isiml + O(1) = O (k2) + O (127).

By Lemma 21, rdlLgs F tiey; : (Fy — F¢) for any set C C V of size 2/. If G has a
vertex cover of size < 2/, it can be enlarged to a vertex cover of size 2'. Let C be such
a vertex cover of size 2/. Then, by Lemma 23, rdL¢s v sj—m : (Fc — Fg). Thus, by
Lemma 17, rdLgs F syl(tx—, Si—m) 1 (Fy — Fg). O

Note that the term #;—,;—,, depends only on size 2! of a vertex cover and on how
many vertices and edges G has.

5. Reduction from Vertex Cover, Part II

To finish the polynomial-time reduction from BVC to any fitting reflected frag-
ment rdL¢g it now remains to prove the other direction:

rdles F tisimm: (Fy = Fg) = G has a vertex cover of size < 2.

Lemma 25 (Converse to Lemma 21).

H=B- D,
rdlcs F it H = where D is a balanced conjunction of depth > |
whose all I-conjuncts are k-conjuncts of B.

Proof. By definition, #;_,; = conj(#, [), so by Lemma 19, it justifies only implications
B— C A ANCywithrdlgs F t;: (B — C;) fori = 1,...,2!. By Lemma 18, the
term #;, justifies only implications from a formula to its k-conjuncts. O

Lemma 26 (Converse to Lemma 22).

H=B—- DV Dy,

rdles + ¢ ‘H = . . ;
¢S T foedge where either Dy or D, is an I-conjunct of B.

Proof. By definition, fj_egee = Syl(#,disj). By Lemma 17, H can only be an impli-
cation B — D such that rdL¢s + #;: (B — C) and rdL¢cgs + disj: (C — D) for some
formula C. By Lemma 20, the latter statement implies that D = D vV D, with C = D;
for some i = 1,2. By Lemma 18, D; is an /-conjunct of B. O

Lemma 27 (Converse to Lemma 23).

H=B— (C;VD))A---AN(Cy V Do),
rdles F Siom H = where either C; or D; is an l-conjunct of B
foreachi=1,...,2™
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Proof. By definition, s, = conj(#/edge, m). By Lemma 19, H must be an implication
from some formula B to a balanced conjunction of depth > m such that, for all its m-
conjuncts F, rdLes F fieqge : (B — F). By Lemma 26, each of these m-conjuncts must
be a disjunction with one of its 1-disjuncts being an /-conjunct of B. O

Theorem 28 (Converse to Theorem 24).

H=B—> (Cy;VD))A---AN(Cym V Dym)
rlcs F tisiom:H = and there is a size < 2 set X of k-conjuncts of B
with either C; € X or D; € X foreachi=1,...,2™.

Proof. By definition, ty_;,, = syl(tx—i, Si»m). By Lemma 17, H = B — F with
(@) rdles +F trsi: (B — Q), (b) rdlcs + 8§15, : (Q — F) for some formula Q. From (a),
by Lemma 25, Q must be a conjunction Q; A --- A Qy such that all its /-conjuncts Q;
are also k-conjuncts of B. So the set X = {Q; | i = 1,...,2/} has size < 2/ (because
of possible repetitions) and consists of k-conjuncts of B. It now follows from (b), by
Lemma 27, that F = (C; V Dy) A --+ A (Com V Dyon) with either C; or D; being an
I-conjunct of Q for each i = 1,...,2", i.e., with either C; € X or D; € X for each
i=1,...,2™ O

Theorem 29. For any binary exponential graph G = (V, E) with |V| = 2F and |E| = 2™
and any integer 0 < [ <k,

rdles b tisim : (Fy — Fg) = G has a vertex cover of size < 2\,

Proof. The «=-direction was proved in Theorem 24. We now prove the =-direction.
Fy — Fg already has the form prescribed by Theorem 28. The only k-conjuncts
of Fy are the sentence letters pq,..., po. Therefore, there must exist a set X of < 2!
of these sentence letters such that for each m-conjunct F, of F at least one of the
1-disjuncts of F,, i.e., either p, ) O py,(), is in X. This literally means that G has a set
of < 2! vertices that covers all the edges of G. O

6. Lower Bounds for Reflected Fragments
Theorem 30. For any fitting reflected fragment rJLcs, derivability in rdL¢cs is NP-hard.

Proof. 1t is easy to see that both Fy and Fg have size polynomial in the size of G.
As for the term #_,;_,,,, it was shown in Theorem 24 that |ty_,;—,;,| = O (k2’) + 0 (2™),
which is polynomial in the size of G provided [ < k (BVC for [ > k is trivial). Thus,
Theorem 29 shows that rJL¢gs is NP-hard. O

It is time now to reap the fruits of the preceding theorem by showing that a wide
range of constant specifications produce fitting reflected fragments.

In the following proof, we need to perform operations on schemes of formulas
rather than on individual formulas. Thus, it is convenient to represent axiom schemes

using the Substitution Rule:
X

Xo

)
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where o is any substitution of formulas for sentence letters (see, for instance, the for-
mulation of classical propositional logic in [14, Sect. 1.3]). In justification logics, we
additionally have to allow substitutions o to replace justification variables with justifi-
cation terms.

The Substitution Rule allows to make axiomatizations finite because each axiom
scheme can be replaced by a single axiom A such that each of infinitely many instances
of the axiom scheme is a substitution instance of A. Note that in general we cannot use
this representation to define JL¢cs because CS need not be schematic. It is easy to see
that

Lemma 31 (Substitution Property, [3, 4, 5]). The Substitution Rule is admissible for a
Jjustification logic JL¢s, and hence for rdLcs, iff CS is schematic.

Strictly speaking, we presented axiom schemes (e.g., for LP) using variables over
formulas and variables over terms, e.g., t: F — F is understood in the sense that it is an
axiom for any term ¢ and any formula F. Each axiom scheme written in this way can be
easily converted to an axiom in the corresponding system with the Substitution Rule by
replacing distinct variables over formulas by distinct sentence letters and distinct vari-
ables over terms by distinct justification variables, e.g., the scheme ¢: FF — F becomes
a formula x : p — p. The latter will be called a most general instance (mgi) of the
former (note that an mgi is not unique: the choice of sentence letters and justification
variables plays no role).

By analogy with axiom schemes, a scheme of formulas with an mgi F is the set

{Fo | o is a substitution} .

Lemma 32. Ler JL € {J,JD,JT,J4,JD4,LP,T,LP,S4,LP,S5,LP}. Any schemati-
cally injective and axiomatically appropriate constant specification CS for JL yields a
fitting reflected fragment rJLcgs.

Proof. All formulas that fit the five patterns from (1) can be broken into seven schemes
of propositional tautologies with mgi’s

p—@—p, (13)
p—o@->M->(p>g9—>(p@P-r), (14)
P1ANp2—p1, (15)
P1LAD2 > P2, (16)
pr—=>@—->pAhq , a7
p1r—=>piVvVp, (18)
pP2—=>p1Vpr, (19)

where p, g, r, p1, and p, are distinct sentence letters (strictly speaking, we should
have used a distinct set of sentence letters for each mgi). Let A stand for any of these
seven mgi’s. For each JL, its axiomatization contains Al, i.e., a full axiomatization
of classical propositional logic. Therefore, the propositional tautology A is a theorem
of JL¢s. Since CS is axiomatically appropriate, by Lemma 4, there exists a term s,
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which contains neither + nor any justification variables, such that JLgs + s : A, and
hence rdL¢s + s: A. By the Substitution Property (Lemma 31), rdL¢s + s: (Ao) for
any substitution o. In other words, the term s satisfies (1) in the <=-direction for the
respective axiom scheme.

For the = -direction, it is sufficient to note that for any +-free ground term ¢ the

set
CS(t)={F|rdlgs +t:F}

is either empty or a scheme whose mgi we will denote by A,. This statement can be
proved by induction on the size of t. For constants, it is guaranteed by the schematic
injectivity of CS. Justification variables do not occur in ground terms. If CS(¢') is
empty, so is CS(!#'). Otherwise,

o for logics with *!cg as their *-calculus,
CS(!'t!)={:F|FeCS{)} =
{t'":(Ay0) | o is a substitution} = {(' : Ay)o | o is a substitution} . (20)

The last equality follows from the fact that ' does not contain variables. Thus,
in this case A, =t :Ap.

o In the logics with *¢g as their *-calculus, fort' = !---1¢,n >0,
——

n

CS(!!\-;‘_!/C) = {&,‘_-/!c:...:! lcilcic:A|c:AeCS) =
n n
{u\-/n_}c:...:! le:le:c:(Aq0) | o is a substitution} =
n
{(&/-Jc‘...:! Ic:lc:c:A.)o | o is a substitution}

n

sothat Ay, ..y, =!!--lc:...:!lc:!c:c:A. where the existence of A, is
N ) S——
n+l n
guaranteed by the schematic injectivity of CS. For all other terms, CS(!t") = 0
independent of CS(?’).
Finally,

CS(t; - 1) ={G | @F)(F - G eCS(t)) and F € CS(2))} =1
(G| @F)™do)(do)(F - G=A,01and F = A, 00)) . (21)

It follows from Theorem 9 that A, cannot be a single sentence letter. Clearly, if the
main connective of A, is not an implication, then CS(#, - ) = 0. It remains to consider
the case A;, = B — C. If B cannot be unified with A,,, then CS(#; - ;) = 0. Otherwise,
there must exist a most common unifier (mgu) 7 = mgu(B, A,,). Any formula F in (21)
must be a substitution instance of both B and A,,. Hence there must exist a substitu-
tion o such that F = Bro = A,70o. Accordingly, any formula G € CS(#; - ;) must
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have the form Cto. It follows that CS(¢; - 1) = {Cto | o is a substitution}. Thus,
in this case, A, = Ct = Cmgu(B, A,,). Clearly, the operation +, which enables us
to combine several different schemes, would have broken this pattern, but it does not
occur in 7.

Thus, our term s must justify some scheme, of which the formula A is an instance,
i.e., A = A o for some substitution o~. It can be checked that, if Boo = A and B is a
tautology, then B = A. Hence, A; = A by Theorem 9.

Therefore, the ground term s justifies exactly the scheme with mgi A. This discus-
sion shows that there exist terms ¢, ¢, and ¢, that justify exactly the schemes with
mgi’s (13), (14), and (17) respectively, as well as terms cp;, a2, Cvi, and ¢y, for the
schemes with mgi’s (15), (16), (18), and (19) respectively. It remains to note that the
term cy| + cy; satisfies all the requirements of ¢y v, and the term ¢, + ¢y, fits the role
of CALA2- O

Theorem 33. Let CS be a schematically injective and axiomatically appropriate con-
stant specification for JL € {J,JD,JT,J4,JD4,LP, T,LP,S4,LP, S5,LP}. Then deriv-
ability in rdL¢cs is NP-complete.

Proof. 1t was proved in [18, 21] that rdL¢s is in NP. By Lemma 32, rdLgs is fitting.
Thus, by Theorem 29, rdL¢gs is NP-hard. O

7. Reflected Justification Logics with Hypotheses

The goal of this section is to extend the *-calculi to situations where rJL is aug-
mented with additional axioms. This will be important for the proof of Theorem 44
in the next section that shows the H;’ -hardness of the Derivability Problems for pure
justification logics.

Some proofs in this section will be semantic. Accordingly, we introduce the sim-
plest semantics for pure justification logics, that of symbolic models, also called Mkr-
tychev models or simply M-models. This semantics was first introduced for LP by
Alexey Mkrtychev in [25] and extended to other pure justification logics in [19].

Definition 34. Let CS be a constant specification for a pure justification logic JL €
{J,JD,JT,J4,JD4,LP}. An M-model for JLcs is a pair I = (V, A), where V is a
propositional valuation and A is an admissible evidence function for JLcs. Informally,
an admissible evidence function specifies for each term ¢ and formula F whether ¢ is
considered admissible evidence for F. If A(t, F) = True, we say that A satisfies t: F.
Being satisfied by A is one of the criteria necessary for ¢: F' to hold in an M-model.
Formally, a function A: Tm X Fm — {True, False} is called an admissible evidence
Sfunction for a justification logic JLcg iff it is closed under deduction in the *-calculus
for the reflected fragment rdLcs (see Table 2). That is to say, if an admissible evidence
function A satisfies a set X of justification assertions and X F, s: G in the respective
x-calculus, then A must also satisfy s:G. In addition, if JL € {JD,JD4}, an admissible
evidence function for JL¢cs must satisfy the following condition: A(t, L) = False for
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all terms z. We will use (A(¢, F) as an abbreviation for (A(¢, F) = True and also ~A(t, F)
as an abbreviation for A(t, F) = False.”
Finally, the truth relation 9t E H is defined as follows:

MEP iff V(P) = True;
Boolean connectives behave classically;
M E Fand A, F) if JL € {JT,LP},

MEF  iff .
{ﬂ(r, F) if JL € {J,JD, J4, JD4}.

Let CS be a constant specification for a pure justification logic JL and I be any set
of formulas. We write JLcs{I'} to denote the closure of JLos U I' under modus ponens.
It is easy to verify that the deduction theorem holds for JL¢s, and hence we have that

JLes{THH A iff there exists a finite set Iy C I" such that JL¢s + /\ Iy—A .

Definition 35. Suppose that every formula in I" has the form 7: A, i.e., I" consists only
of justification assertions. We define the following calculi:

*csr = #cs + T and #lesar = *les + T . (22)

That is to say, in each case the set of axioms is extended by all justification assertions
from I while the rules remain the same and can be freely applied to the new axioms.
When the type of a *-calculus and a particular CS are clear from the context or when
they can be arbitrary, we will use the term *p-calculus.

It is natural to ask whether a given #r-calculus can prove every formula in the re-
flected fragment of JLos{I'} for the respective JL;s. Unfortunately, there are cases
where this does not hold. As an example from Kuznets [21], consider the situation
for LP¢s where I' = {c: p,c: —p}. Then, via the Factivity Axiom, LP;s{I'} is incon-
sistent, whereas there are certainly justification assertions that cannot be proved in the
#lcsr-calculus. Thus, we need additional restrictions on I'. For this, we introduce the
following

Definition 36. A set of justification assertions I' is called factive provided that, when-
evert: A €T, either (a) A is of the form s: Band A € T or (b) A is a purely propo-
sitional'3 formula. The set of purely propositional formulas A such that 7: A € T for
some term ¢ is called the propositional content of T, and is denoted Prop(I'). We call a
factive set I" consistent provided Prop(I') is (propositionally) consistent.

The next theorem generalizes N. Krupski’s Theorem 5.1 from [18].

Theorem 37. Let I be a consistent factive set of justification assertions and CS be a
constant specification for a pure justification logic JL € {J,JD,JT, J4,JD4, LP}. Then,
for any formula of the form t: F, we have

JlesilT} H1:F & r 11 F

for the respective xr-calculus.

12N, Krupski and Mkrtychev used the notation F' € () instead of A(t, F) and F ¢ *(¢) instead of = A(t, F).
3 A purely propositional formula is one that does not contain any justification terms.
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Proof. The proof is similar to the proof of Theorem 5.1 from [18], which in turn uses
constructions of Mkrtychev [25]. The <=-direction follows from the fact that any sp-
derivation can be easily converted into a derivation in JL;s{I'}. Indeed, all axioms of
the sp-calculus are either instances of axiom internalization in JLgs or members of '
and hence axioms of JLos{I'}. Each rule in sr-calculus translates into the corresponding
axiom of JL followed by one or two applications of modus ponens.

We prove the = -direction by showing its contrapositive. Suppose *r ¥ t: F. Let
the function Ar: Tm X Fm — {True, False} be defined by

Ar(s, G) = srks:G .

For JL € {J,dD,JT}, whereby %1 = s¢s4r, it is clear that Ar is an admissible evi-
dence function for JT¢g; similarly, for JL € {J4,JD4, LP}, when s = *!cg,r, we have
that Ar is an admissible evidence function for LPcs. Note that any constant specifi-
cation for J or JD can also serve as a constant specification for JT because all axioms
of J and JD are also axioms of JT. Similarly, if a constant specification can be used
for J4 or JD4, it can also be used for LP. In either case, by definition Ar satisfies all
justification assertions from I but does not satisfy 7: F' by our assumption.

Since I' is consistent, there exists a propositional valuation V that satisfies Prop(I').
Consider the M-model 9t = (V, Ar) for JT¢s or for LP¢s respectively. Note that
M ¥ t: F since =Ar(t, F). In addition, for either JT¢cs or LPcs we can prove that

Sk:...:81:G €T, where G is a purely propositional formula. The base case, k = 1,
follows from G € Prop(I).

The existence of a JTgs-model (an LP¢s-model) where all formulas from I" hold
while ¢ : F is false shows that JTgs{I'} ¥ ¢ : F (respectively LPcs{I’} ¥ t: F). But
every Jcs- or JD¢s-derivation is also a JT¢s-derivation (for the same CS); similarly,
any J4¢s- or JD4¢s-derivation is also an LP¢g-derivation. Hence JLos{I'} ¥ ¢: F. This
completes the proof of Theorem 37. O

By analogy with rdL¢cs we will denote the reflected fragment of JLos{I'}
rdles{T} ={t:F | JLgs{T} F £ F} .

As we proved, rdLcs{I'} is axiomatized by its respective #r-calculus. Note that the
only difference between a *-calculus and its corresponding sr-calculus is the addition
of axioms I'. Therefore, a reflected fragment rJL;s{I'} is axiomatized by the same
x-calculus as rdJL¢gs as far as rules are concerned. Consequently, there are still only
two sets of rules chosen based on whether full positive introspection holds in JL. The
differences between these *-calculi, as in the case of rdL¢g, is in their axioms.

As a consequence of the above construction, other results that N. Krupski [18]
established for LP¢s also hold for JLgs{I'}. First, by the minimality of the admissible
evidence function Ar, the disjunction property for formulas of the form s: F'V¢: G holds
for JLes{I'} (cf. Corollary 2 of [18]). Similarly, if CS is schematic (and polynomially
decidable) and I' is finite, then the Derivability Problem for a *p-calculus is in NP for
either of the calculi, i.e., rdLcs{I'} is in NP. This is proved by a construction similar
to the one used in the proof of Theorem 5.2 in [18], the main difference being that
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derivations in rdL¢s{I'} correspond to rdJLgs-derivations from hypotheses I', whereas
N. Krupski considered only derivations without hypotheses.

For us, the importance of Theorem 37 lies in the fact that the results of Sects. 3-5
translate to rdLcs{I'} for a proper subclass of consistent factive sets I'.

Lemma 38. Let CS be a constant specification for a pure justification logic JL €
{J,dD,JT,J4,JD4, LP} such that the reflected fragment rdLcs is fitting. Let T be a
consistent factive set of justification assertions such that the only terms that occur in T’
are justification variables. Then Lemmas 17-20, 22, 23, 26, and 27 all still hold if
rdLcs is uniformly replaced by rJLcs{T’} in the statements of the lemmas.

Proof. Since any derivation in rdJLcg is also a derivation in rJLcs{I'}, the proofs of the
«=-directions in all these lemmas do not require any changes. The =-directions also
hold because the only terms that gain additional provably justified formulas in rdL¢s{I’}
are those that contain justification variables from I', but no variables have been used for
construction of the terms in the proofs of all these lemmas. O

8. A Lower Bound for Full Justification Logics

Sections 4 and 5 established a reduction from the Vertex Cover Problem to the
Derivability Problem in a given reflected fragment thereby proving NP-hardness of the
latter. In the present section, we extend the proof method and obtain stronger lower
bounds for full (non-reflected) pure justification logics JLcs.!* We first prove that a
quantified version of the Vertex Cover Problem is Hg -hard by reducing co-QSAT); to
it. Then we reduce this Quantified Vertex Cover Problem to the Derivability Problem
in a given justification logic.

Definition 39. By co-QSAT, we mean the following problem. Let ¢ be any 3CNF for-
mula, i.e., a propositional formula in conjunctive normal form with exactly three lit-
erals in each clause. Given such a ¢ with its sentence letters partitioned into two sets

Y

P={pi,....pp)and 4 = {qi,...,qg)}, determine whether
Y= (p1)--(pp)Eq1) - - - Tgg)e (23)
is true.

The following theorem is standard. Several of its slightly different variants can be
found, for instance, in [26, 27, 28].

Theorem 40. co-QSAT, is I15-complete.

14 Applying this method to hybrid logics does not make sense since they are mostly at least PSPACE-hard
by virtue of being conservative over the corresponding modal logic. As for S5;LP, the only hybrid logic that
may not be PSPACE-hard, its conservativity over LP would easily yield the lower bound that can be obtained
by our method.
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Lety = (V) 3G)Cy A -+ A C,) be a formula of type (23), where each C; is a
3-clause: C; = L;; VLipV L3, i=1,...,r. Eachliteral L;; must be p;, =pj, g}, or =g;
for some j.

Given ¢ we construct a graph G, = (V,, E,) with vertices labeled by literals (the
construction is identical with the reduction of 3SAT to VC as given in [17]). The graph
is defined as follows:

e For each clause C;, i = 1,...,r, in ¢ we have a triangle of pairwise joined ver-
tices ¢; 1, ¢i2, and ¢;3 in Gy. Each vertex c;, is labeled by the corresponding lit-
eral L; ;. These are called clause vertices and clause edges.

e For each sentence letter g, there are two vertices v and v;; joined by an edge. The
vertex v;o is labeled with g; and v;; is labeled with —¢g;. These are called literal
vertices and literal edges.

e For each sentence letter p;, there are two vertices u;o and u;; joined by an edge.
The vertex ujq is labeled with p; and u;, is labeled with —p;. These are also called
literal vertices and literal edges.

e A clause vertex and a literal vertex are joined by a connecting edge iff they are
labeled by the same literal.

There are 3r + 2N vertices in Gy, where N = |F| + |7]; namely, 3r clause vertices and
2N literal vertices. Similarly, there are 6r + N edges in G,; namely, 3r clause edges,
N literal edges, and 37 connecting edges.

As is argued in [17], G, has a vertex cover of size < 2r + N iff ¢ is satisfiable.
First, any vertex cover of G, must have at least 2r + N vertices since a vertex cover
must contain at least one vertex for each literal edge and at least two vertices from each
clause triangle. Second, since any vertex cover C of size 2r + N must contain exactly
one literal vertex per literal edge in the graph, it is possible to define a propositional
valuation ¢ by letting 7¢(L) = True for exactly those literals that label literal vertices
from the vertex cover. It is not hard to see that this valuation 7¢ satisfies ¢. Conversely,
if 7 is any valuation that satisfies ¢, then there exists a vertex cover C of size 2r + N
such that T = 7.

Definition 41. Let & denote a (partial) valuation with domain j. A vertex cover C
of Gy is called its mr-cover if C contains all literal vertices labeled by literals from the
set

{pj | 7(p)) = True} U{-p; | n(pj) = False} .
The above discussion yields the following proposition.

Proposition 42. A sentence Y as in (23) is true iff for every valuation & with domain p,
the graph Gy, has a r-cover of size 2r + N.

In order to work with balanced conjunctions, we modify Gy, to transform the ques-
tions about the existence of m-covers into Binary Vertex Cover Problems. For this, we
construct a graph G:// that has the following properties: (a) G:p has 2 + 2|7| vertices,

(b) G'w has 2" edges, (c) the sought-for m-covers have size 2/, and (d) the size of G(’p
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is linear in the size of y. In effect, G}, is a binary exponential graph, except that the
vertices ujo and u;;, labeled p; and —p; respectively, are not counted. The construc-
tion of G(p from G, mimics that from the proof of Theorem 13: to ensure (c), add extra
pairs of vertices joined by edges; to ensure (b), add a “star”-shape as in Stage 2 of the
proof of Theorem 13; then, to ensure (a), add extra isolated vertices. By construction,
Proposition 42 now implies the following property of G

Proposition 43. A sentence y as in (23) is true iff for every valuation & with domain p,
the graph G, has a m-cover of size 2L,

We are now ready to prove the Hg -hardness of the Derivability Problem for JL¢s.

Theorem 44. Let CS be a constant specification for a pure justification logic JL €
{J,dD,JT,J4, D4, LP} such that the reflected fragment rdLcs is fitting. Then the Deriv-
ability Problem for JL¢s is 11, -hard.

Proof. We prove the theorem by reduction from co-QSAT,. Given a formula ¢ as
in (23), we construct the graph G:p as described above and apply to this graph the
encoding from Definition 14. We define a set I'y, of formulas by

T, = f{upvaplji=1...I8) .

where p; is a sentence letter that corresponds to the literal vertex u;o and p; is a sen-
tence letter that corresponds to the literal vertex ;. Intuitively, the sentence letter p;
in the encoding corresponds to the literal p; in the formula  while the sentence let-
ter p; corresponds to the literal —p;, which explains the chosen notation. We hope that
the resulting small collision of notation — p; is the sentence letter that encodes the
literal vertex that corresponds to the literal p; — will facilitate understanding rather
than hinder it.

Let v, be the conjunction of the formulas in I'y. (Unlike the other conjunctions
we work with, y, need not be balanced.) Let V[p be the set of all vertices of Gf//’ and
let Vl’p’ = V(’p \{ujo,uji | j=1,...,|1). Note that |V,;,'| = 2% is a power of two. We
define K, to be

Ky = vt (Fvy > Fg),

where a term #;_,  plays a role similar to #,;, and is defined below. To prove

Theorem 44 it will suffice to show that JL¢s F Ky, iff i/ is true.
By the deduction theorem, JL¢s F Ky iff

Jles{Ty} + t,’(_ﬂ_,m:(FVJ - FG&) . 24)
For any valuation 7 with domain g, define
Ve = Apjla(p)) = True} U (p; | n(p;) = False)

and let I'y ; be the set of formulas {x: L | L € V,}. Note that for any valuation 7 with
domain 7 the set Iy, is a finite consistent factive set of justification assertions and the
only term that occurs in it is the justification variable x. Hence, by Lemma 38, for any
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valuation 7 with domain g, Lemmas 17-20, 22, 23, 26, and 27 hold for JlesiTy -
Consider the assertions

Jles{Ty ) + tl/c—>l—>m:(FV.2' - Fg) . (25)

Clearly, (24) holds iff (25) holds for all 7. Thus, by Theorem 37 and Proposition 43, in
order to prove Theorem 44, it will suffice to prove the following

Lemma 45. For all valuations © with domain p,
: ol
rlestTyx) F oo (Fyy = Fg,) — G, has a m-cover of size 2/,

where by the derivability in rJLcs{Ty .} we understand the derivability in the corre-
sponding #r,  -calculus.

Proof. The proof of this lemma is very much like the proof of Theorem 29, but we still
need to define the term t,'(_)l_)m. First, let t,’(_) , be the term conj(t; + c;-x,1). By almost

exactly the same reasoning as in Lemma 21, for any set C of size 2/ with C C VyUVa
rJLCS{l",,,,,,,} F tllc—ﬂ:(FVl'/ - F¢) . (26)

Indeed, by Lemma 18, rdL¢s + t;: (F vy = L) for any sentence letter L that corresponds
to a vertex from V&,’ . Itis easy to see that rdLes{Ty 1} + c1-x: (F vy = L)forany L € V,
because rdLcs + ¢1:(L — (Fyy — L)). Thus, (26) follows by Lemma 19.

The converse is proved in a way similar to Lemma 25. In particular, by Lemma 19,
rdlesilyz} + 1, : H holds precisely for formulas H of the form B — D, where
D is a balanced conjunction of depth > [ such that for every I-conjunct C; of D we have
rdlesily )} F (e +c1x) :(B — C;). By Lemma 18, the term #; only justifies implications
from a formula to its k-conjunct. Clearly, c; - x only justifies implications ¥ — L
with L € V. Therefore,

all /-conjuncts of D that are not in V; must be k-conjuncts of B. 27

Note that |t,_ | = O (k2l) as was |t

Now define 7;_,, ,  to be the term syl(z;_,, si—n). By exactly the same argument as
in Theorem 24, using the same Lemmas 17 and 23, with (26) replacing the claim of
Lemma 21, we have

G, has a n-cover of size < 2l < Vyl = rlesilyal b l;/(_d_)mi(Fv;' - Fg,) .

Conversely, Theorem 28 holds for rdL¢s{I'y »} in place of rdLcs, except that now
the set X can contain sentence letters L € V; in addition to k-conjuncts of B. Indeed,
Lemmas 17 and 27 hold for rdL¢s{I'y ). The claim of Lemma 25 is here replaced
by (27), which allows elements of V, in X along with k-conjuncts of B.

Lemma 45 now follows by exactly the same argument as in the proof of Theo-
rem 29. O

This completes the proof of Theorem 44. O
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Theorem 46. Let CS be a schematically injective and axiomatically appropriate con-
stant specification for a pure justification logic JL € {J,JD,JT,J4,JD4,LP}. Then the
Derivability Problem for JLcs is 1T, -hard.

Proof. By Lemma 32, rlL¢s is fitting. Thus, by Theorem 44, JL¢g is IT; -hard. O

Theorem 47. Let CS be a schematically injective and axiomatically appropriate con-
stant specification for a pure justification logic JL € {J,JD,JT,J4,JD4,LP}. Then the
Derivability Problem for JLcs is IT,-complete.

Proof. 1t was proved in [19, 21, 1] that JL¢g is in Hg . On the other hand, the H’z’—
hardness follows from Theorem 46. O

The lower bound from Theorem 46 was first proved for LP¢g by Milnikel in [24]. A
slightly stronger result can be found there for J4¢s: it is IT;-hard for any schematic and
axiomatically appropriate CS. The results for the other four logics are new. By anal-
ogy with Milnikel’s result for J4¢s, we conjecture that the requirement of schematic
injectivity in Theorem 46 for J¢s can be relaxed to that of schematicness.

9. The Role of CS

Our method for proving lower bounds for both justification logics and their re-
flected fragments as well as Milnikel’s original proof of the lower bound for LP¢g
from [24] require CS to be axiomatically appropriate and schematically injective. A
natural question arises: whether these two conditions on CS are essential for proving
the lower bounds? In particular, is LP itself Hg -hard? Although we cannot answer the
latter question, in this section we will try to explore the dependency of the lower bound
on a constant specification.

It is clear that neither schematic injectivity nor axiomatic appropriateness are nec-
essary for the lower bounds to hold. In particular,

Lemma 48. Ler JL € {J,JdD,JT,J4,JD4,LP,T,LP,S4,LP,S5,LP}. There exists a
constant specification CS for JL that is neither schematically injective nor axiomati-
cally appropriate such that rdLgs is NP-hard. If JL € {J,JD,JT,J4,JD4, LP}, then, in
addition, JLcs is T15-hard.

Proof. Letterms cy, ¢z, ca1.02, Ca, and cyp,v2 from (1) be constants. Let all tautologies
from the right sides of the five equivalencies in (1) be axioms from Al. Finally, let
a constant specification CS be such that all five equivalencies from (1) hold while no
other constant justifies any axioms at all. Then the reflected fragment rdL¢s is clearly
fitting. Thus, by Theorem 30, rJLcs is NP-hard. In addition, if JL is a pure justifica-
tion logic, by Theorem 44, JL¢g is I15-hard. At the same time, this CS is surely not
axiomatically appropriate. It is not schematically injective either since constants cj a2
and ¢y v2 justify two axiom schemes each.

The constructed constant specification is schematic, but even the schematicness
condition is easy to violate provided the constants ci, ¢2, Ca1.42, Ca, and ¢y vz remain
schematic. It should be noted that schematicness is often needed to prove the matching
upper bound. U
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The constant specification from the proof of the previous lemma also demonstrates
another curious fact: the +-operation does not play a big role in the lower bound on the
complexity of the logic.

Lemma 49. Ler JL € {J,JD,JT,J4,JD4,LP,T,LP,S4,LP,S5,LP}. There exists a
constant specification CS such that the +-free reflected fragment of JLcs is NP-hard.

Proof. Although + was used to construct terms caj a2 and cyp vz for schematically
injective constant specifications, it is not required for the constant specification CS
from the proof of Lemma 48. Nowhere else in our reduction was + used. Therefore,
even if axiom A3 and rule *A3 are omitted from the axiomatizations of JL and of
its reflected fragment respectively and the operation + is dropped from the language
completely (see [15] for precise definitions) the resulting +-free reflected fragment is
still fitting and, hence, NP-hard. O

However, the ability of one term to justify several axiom schemes does seem to
be necessary for the proven lower bounds. This ability can be ensured already on the
level of constants, without the use of +. However, if the lack of + is coupled with
the schematic injectivity of a constant specification, then all terms effectively become
schematically injective and the reflected fragment is polynomially decidable, which
can be shown by analyzing N. Krupski’s algorithm from [18].

The preceding discussion shows that the lower bounds are, in some sense, local.
Namely, they can be ensured by finitely many constants using only a small portion
of propositional reasoning. In fact, the proof of the existence of undecidable LP¢g
from [20] has a similar flavor: only a few constants are sufficient to make the logic un-
decidable. For instance, it is possible that JL¢s can be shown to be H; -hard using one
part of the constant specification CS and to be undecidable using another part. There-
fore, the requirements of schematicness and/or schematic injectivity can be relaxed to
apply only to a small subset of justification constants.

Since axiomatic appropriateness is also a local property, it becomes clear that it is
independent of whether the reflected fragment is fitting. In particular, Lemma 48 can
be easily reformulated for an axiomatically appropriate but not schematically injective
constant specification. The only change in the proof would be an addition of a sixth
constant that proves all the axioms.

However little of internalization is used in the proof of our lower bounds, it cannot
be dispensed of completely:

Lemma 50. Ler JL € {J,JD,JT,J4,JD4,LP,T,LP,S4,LP,S5,LP}. There exists a
schematically injective but not axiomatically appropriate constant specification CS
for JL such that rvJLcs is in P. If JL € {J,JD,JT,J4,LP}, then, in addition, JLcs is
in co-NP.

Proof. 1t has been known that LP with the empty constant specification CS = 0 is in
co-NP. Its reflected fragment is trivially in P since it is empty. Extending these results
to other justification logics is straightforward. O

The preceding lemma can also be proved using a non-empty schematically injective
constant specification, but the proof is much more involved.
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