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Abstract

We discuss the Paris-Wilkie translation from bounded arithmetic
proofs to bounded depth propositional proofs in both relativized and
non-relativized forms. We describe normal forms for proofs in bounded
arithmetic, and a definition of Σ′ -depth for PK-proofs that makes the
translation from bounded arithmetic to propositional logic particularly
transparent.

Using this, we give new proofs of the witnessing theorems for S1
2

and T 1
2 ; namely, new proofs that the Σb

1 -definable functions of S1
2

are polynomial time computable and that the Σb
1 -definable functions

of T 1
2 are in Polynomial Local Search (PLS). Both proofs generalize

to Σb
i -definable functions of Si

2 and T i
2 .

1 Introduction

From its inception, bounded arithmetic has been intended to connect to
low-level complexity classes. Parikh’s definition [17] of I∆0 was intended
to relate to the linear-time hierarchy. The introduction of the Ω1 axiom by
Wilkie and Paris [22] and the corresponding introduction of the smash (#)
function by Nelson [16] were originally motivated by the need to arithmetize
the syntax of metamathematics, but these were quickly recognized as
axiomatizations of the growth-rate of polynomial time functions. The
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modern formulation of bounded arithmetic in its “Si
2” and “T i

2 ” forms
by Buss [3, 4] included a complete characterization of the proof theoretic
strengths of a hierarchy of theories in terms of the polynomial time hierarchy.

A second connection between theories of bounded arithmetic and com-
putational complexity is via the connection between provability in theories
of bounded arithmetic and provability in propositional logic. There are two
distinct kinds of connections between bounded arithmetic and propositional
proofs. The first is due to Steve Cook [7] who provided a translation between
PV and polynomial-size extended Frege (eF ) proofs. (By [3], the theory PV
is conservative over S1

2 , so the same translation applies to S1
2 -proofs.) This

approach has been extended by a number of people, including Dowd [9]
and Kraj́ıček-Pudlák [15], to apply a number of theories, including all the
fragments Si

2 and T i
2 . Analogous translations for NC1 have been given by

Arai [1] and Cook and Morioka [8]. The second connection was initiated by
Paris and Wilkie [18]. In this approach, a proof in bounded arithmetic is
transformed into a propositional proof (a Frege proof) where the formulas
all have constant depth, with “depth” measured in terms of alternations of
AND’s and OR’s. It is this second connection that we will be exploring in
the present paper, and we present more details below.

In recent years, there has been a large research effort aimed at establishing
upper bounds and especially lower bounds on the size of propositional
proofs. On the other hand, research in fragments of bounded arithmetic has
not received a comparable level of attention. The present author believes,
however, that bounded arithmetic should be kept in mind while doing
propositional proof complexity: if nothing else, it provides a touchstone or
metric which allows us to evaluate the quality of the research in propositional
proof complexity.

The outline of the present paper is as follows: Section 2 quickly introduces
theories of bounded arithmetic, and discusses normal forms for proofs in Si

2

and T i
2 that are useful for the Paris-Wilkie translations. We assume some

familiarity with fragments of bounded arithmetic, for this, the reader may
consult [3, 10, 13]. Section 3 discusses bounded depth Frege systems, called
Σ′ -depth d PK-proof systems, which are tailored to work well for translating
from bounded arithmetic theories. Section 4 contains the theorems about
the Paris-Wilkie translation from fragments of bounded arithmetic to the
PK-proof systems. The material in this section is fairly conventional,
but there are a couple new aspects; most importantly, the Paris-Wilkie
translation is applied not only to “relativized” theories Si

2(α) and T i
2(α),

but also to the unrelativized theories Si
2 and T i

2 . Section 5 gives new
proofs for the “Main Theorems” for the theories S1

2 and T 1
2 ; namely, that
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their provably total functions are precisely the polynomial time computable
functions and the projections of polynomial local search (PLS) functions.
These new proofs are based on first translating to the setting of constant
depth PK-proofs.

2 Proofs in theories of bounded arithmetic

The traditional language of bounded arithmetic includes the function and
relation symbols 0, S , +, · , #, b1

2xc , |x| , and ≤ . To these can be added
the symbols β(i, w) and 〈〉 and ∗ , where β(i, w) is the Gödel beta function,
where 〈〉 is the empty sequence, and where the ∗ function concatenates an
element to a sequence, so

〈x1, . . . xk〉 ∗ y = 〈x1, . . . xk, y〉.

Adding these symbols and their defining equations yields a conservative
extension of the theories Si

2 and T i
2 , for i ≥ 1 [3]. The particular formulation

of the sequence coding functions is not terribly important, but they should
be definable by polynomial size formulas.1

The theories Si
2 and T i

2 are formulated using the sequent calculus,
LKB, which includes rules for bounded quantifiers. Quantifiers of the form
(Qx ≤ t) are called bounded quantifiers, and ones of the form (Qx ≤ |t|)
are called sharply bounded quantifiers. Formulas that contain only (sharply)
bounded quantifiers are called (sharply) bounded formulas. The set ∆b

0 =
Σb

0 = Πb
0 is the set of sharply bounded formulas. For i ≥ 0, the classes Σb

i

and Πb
i of bounded formulas are defined by counting alternations of bounded

quantifiers, ignoring the sharply bounded ones. The theories Si
2 and T i

2 are
usually defined using the Σb

i -PIND and Σb
i -IND rules, respectively, which

are
Σb

i -PIND: A(0) ∧ (∀x)(A(b1
2xc) → A(x)) → (∀x)(A(x)),

and
Σb

i -IND: A(0) ∧ (∀x)(A(x) → A(x + 1)) → (∀x)(A(x)).

For the purpose of simplifying the translation from bounded arithmetic,
we now introduce some well-known syntactically restricted versions of
bounded arithmetic. A formula is said to be a form restricted Σb

1 formula if
it has the form

(∃x ≤ t)(∀y ≤ |s|)B,

1Alternatively, the MSP and LSP functions could be used instead of the more
powerful sequence coding functions, c.f. [19].
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where B is quantifier-free and possibly one or both of the quantifiers are
omitted. In particular, every quantifier-free formula is form restricted Σb

1 .
The class of form restricted Πb

1 formulas is defined dually. For i > 1,
a formula is form restricted Σb

i (resp., form restricted Πb
i ), if either it is

form restricted Πb
i−1 (resp., form restricted Σb

i−1 ) or it consists of a single
bounded existential (resp., bounded universal quantifier) in front of a form
restricted Πb

i−1 (resp., form restricted Σb
i−1 ) formula.

Because the extra β function and sequence coding functions are included
in the language, every Σb

i (resp., Πb
i ) formula is equivalent to a form

restricted Σb
i (resp., Πb

i ) formula. Furthermore, this equivalence can be
proved in Si

2 (and, in T i
2 ) using induction on only form restricted Σb

1

formulas; to prove this, see the methods of [3]. From this it follows, using
free cut elimination (c.f., Takeuti [20]), that if A is a form restricted Σb

i

formula that is a consequence of Si
2 or T i

2 , then there is a proof P of A in
that theory such that every formula in P is a form restricted Σb

i formula.
Let P be a proof in Si

2 or T i
2 . The variables ~a which occur freely in

the endsequent of P are called the parameter variables of P . A quantifier
(Qx ≤ t) appearing in P is said to be restricted by parameter variables
provided the term t contains no variables other than parameter variables. A
free variable z in P is said to be restricted by parameter variables iff either
(a) it is a parameter variable or (b) every cedent which contains an occurrence
of z also contains an antecedent formula of the form z ≤ t(~a) bounding z
in terms of the parameter variables ~a . From Buss [3] or Takeuti [21], it is
known that if a proof P contains only bounded quantifiers, then it can be
converted into a proof of the same endsequent such that all quantifiers and
all variables in P ′ are restricted by parameter variables. Now, the proof P ′

cannot be obtained in polynomial time from P since it may be exponentially
larger;2 however, the quantifier complexity of the formulas in P ′ is no greater
than the quantifier complexity of formulas in P .

Definition Let P be a proof in a theory of bounded arithmetic. The
proof P is said to be a restricted-Σb

i proof provided (a) every formula is
in P is a form restricted Σb

i formula, (b) every quantifier in P is bounded
and is restricted by parameter variables of P , and (c) all free variables in P
are restricted by parameter variables.

Theorem 1 Let i ≥ 1 and R be one of the theories Si
2 or T i

2 . Further let
A be a form restricted Σb

i formula which is a consequence of R . Then, there
2For a construction that makes the proof exponentially larger when restricting by

parameter variables, see [5].
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is a restricted-Σb
i R-proof of A.

As discussed above, the theorem follows from the constructions in Buss [3].

3 Bounded depth PK-proof systems

This section formulates bounded depth PK-proofs in a manner optimized for
translating from bounded arithmetic. Our main sources for the constructions
are the definition of Σ-depth d proofs by Kraj́ıček [12] and the subsequent
definition of Θ-depth d proofs by Beckmann and Buss [2]. Both these
definitions use a size parameter, a function S(n). When the bottom fanin of
a formula is less than log S(n), then it does not count toward the Σ-depth,
and counts only 1

2 towards the Θ-depth. The size parameter S(n) is
generally an upper bound on the size of PK-proofs.

The PK proof system we use is a Tait-style system (not a Gentzen-style
system). Each line of the proof is called a cedent, and consists of a finite set
of formulas. The intended meaning of the cedent is the disjunction of the
formulas appearing in it. We use capital Greek letters, Γ, ∆, etc., to denote
cedents.

Formulas are formed from propositional variables p , negated proposi-
tional variables p , and unbounded fanin conjunctions (

∧
) and disjunctions

(
∨

). The formulas p and p are called literals. If ϕ is a formula, the negation
of ϕ is denoted ϕ and is obtained from ϕ by replacing each literal by its
negation and interchanging conjunctions and disjunctions.

The rules of inference are as follows. First, the logical initial cedents are
the Neg and Taut

Neg: p, p and Taut: Γ

where in the Taut inference, Γ is any tautology. (We shall restrict the use
of Taut axioms; note that the Neg axioms are a special case of the Taut
axioms.) Second, if the proof is a proof of A ² Γ, where A is a set of
cedents, then the following non-logical axioms are allowed: ∆ and

∨
∆ for

any cedent ∆ ∈ A . (This convention comes from [2].) Third, the following
rules of inference are allowed:

∨
:

Γ, ϕi0 , where i0 ∈ I
Γ,

∨
i∈I ϕi

∧
: Γ, ϕi for all i ∈ I

Γ,
∧

i∈I ϕi

Weakening: Γ
Γ, ∆

Cut: Γ, ϕ Γ, ϕ

Γ
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Given the above axioms and rules of inference, the notion of PK-proof
is defined in the usual way. Proofs can be either tree-like or sequence-like
but, unless stated otherwise, are presumed to be tree-like. Proof size will be
measured by the number of occurrences of symbols in the proof; a proof is
said to have size S provided it has ≤ S many symbols.

Definition Let S be a proof size parameter (size upper bound). The
formulas that have Σ′ -depth d with respect to S are inductively defined as
follows:

a. If ϕ has size ≤ log S , then ϕ has Σ′ -depth 0.

b. If ϕ has Σ′ -depth d , then it has Σ′ -depth d′ for all d′ > d .

c. If ϕi has Σ′ -depth d for all i ∈ I , then
∨

i∈I ϕi and
∧

i∈I ϕi have
Σ′ -depth (d + 1).

When talking about Σ′ -depth, we usually omit mention of the proof size
parameter S , but it is always implicitly included.

We can now state the restrictions that will be placed on the Taut axioms;
namely, the Taut axioms are allowed only for cedents Γ such that

∨
Γ has

Σ′ -depth 0; i.e., only for cedents that have size at most log S .

Definition Let S be a size parameter. Let P be an PK-proof. We say
that P is a Σ′ -depth d proof of size S provided that the following hold:
P has ≤ S symbols, every formula in P has Σ′ -depth d , and every Taut
axiom has size ≤ log S .

Kraj́ıček [12] defined a notion of Σ-depth d which is almost identical to
the notion of Σ′ -depth d . His definition differed only in the base case of
d = 0, as he required ϕ to be a disjunction or conjunction of ≤ log S literals.
It is not hard to see that, for d ≥ 1, the notions of Σ-depth and Σ′ coincide
semantically at least, because a Σ′ -depth d formula may be translated into
a Σ-depth d formula by expressing its Σ′ -depth 0 subformulas in disjunctive
or conjunctive normal form. It has become common to refer to Σ-depth d
formulas as formulas of depth (d+ 1

2). Beckmann and Buss [2] use the name
Θ-depth d where d is any half integer to unify the notions of depth and
Σ-depth. Our definition of PK-proofs of Σ′ -depth d corresponds to what
Beckmann-Buss refers to as (d + 1

2)-LK-proofs.
It is worth remarking about the Taut axioms that they do not add

much to the provability strength of PK-proofs. Since a Taut axiom has size
bounded by log S , it can be proved outright by a proof of size O(S log S)
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using only Neg axioms. Thus, if Taut axioms were disallowed, it would only
change proof size polynomially (and for us, polynomial changes in proof size
are unimportant).

We are usually interested in asymptotic results. Thus, we will have a
family of proofs, indexed by n . The nth proof Pn will be size bounded by
S(n), and will prove some statement An ² ϕn , for some set An of cedents
and some formula ϕn , where possibly An is empty or ϕn is the empty
cedent. When translating from bounded arithmetic, Pn will be a proof
about the property holding for parameter variables of ≤ n bits in length.

4 Translating from bounded arithmetic to PK

We now describe the transformation from bounded arithmetic Sd
2 - or T d

2 -
proofs, d ≥ 1, into PK-proofs of Σ′ -depth d . Suppose P is a proof in
bounded arithmetic. W.l.o.g., there is a single parameter variable x for P .
We choose an integer n , which will be an upper bound on |x| , and the
translation to propositional logic will then apply to values for x such that
|x| ≤ n .

The usual convention for a bounded arithmetic proof P is that it is
formulated in the sequent calculus. However, we convert it into a Tait-style
proof by the simple expedient of negating all formulas that appear in the
antecedent, those plus the formulas in the succedent form a cedent in a
Tait-style proof, which we call PTait . The sequent calculus rules become
Tait calculus rules in the obvious fashion.

We start by describing the translation of quantifier-free formulas. Each
variable u is bounded by the parameter variable, and thus there is an upper
bound nu on the number of bits in the binary representation of the value
of u . (Note nx = n .) We use propositional variables pu,i , with 0 ≤ i < nu ,
to represent the bits of u . Now, given any atomic formula ϕ(~u) over the
language of bounded arithmetic, there is a polynomial-size propositional
formula ϕ n which is the translation of ϕ(~u). The formula ϕ n involves
the propositional variables puk,i for the bits of the free variables appearing
in ϕ , and the value of ϕ n gives the truth value of ϕ . It is well-known how
to form the formulas ϕ n (c.f., [13]): the key point is that polynomial size
propositional formulas may be used to describe the effects of the functions
and predicates of bounded arithmetic. Because of the fact we have the Taut
axioms, the details of the formation of these propositional formulas is not
particularly important.

The translations ϕ n of quantifier-free formulas are size nO(1) , i.e.,

7



polynomial-size. They are defined by letting ϕ ∧ ψ n be ϕ n ∧ ψ n ,

letting ϕ ∨ ψ n be ϕ n ∨ ψ n , and letting ¬ϕ n be ϕ n . We will
be constructing proofs of size S(n) = 2nO(1)

; thus, these formulas will be
Σ′ -depth 0.

Second, we describe the translation of the sharply bounded formulas
in PTait . These have the form (∀y ≤ |s|)B or (∃y ≤ |s|)B . Because
the term s contains only parameter variables as variables, and since the
parameter variables have at most n bits, we can find a bound ny = nO(1)

such that |s| ≤ ny for all values of parameter variables with binary length
≤ n . Then, we translate the formula (∀y ≤ |s|)B to

(∀y ≤ |s|)B n =
ny∧
i=0

y ≤ |s| → B n/(y 7→ i). (1)

The last notation, “ψ/(y 7→ i)” means replace the variables py,i representing
the bits of y by constants 0 or 1 as given by the bits of the integer i .3

The propositional formula (1) has size only nO(1) . Thus, it has Σ′ -depth 0
for suitably large S(n) = 2nO(1)

. Existential sharply bounded formulas are
translated similarly, but using a disjunction instead of a conjunction.

Third, we describe the translation of a formula with a general bounded
quantifier, say (∀y ≤ t)B . By the fact t contains only parameter variables,
we can find an integer ny = nO(1) such |t| ≤ ny whenever the parameter
variables have length ≤ n . The formula is then translated to

(∀y ≤ t)B n =
2ny−1∧

i=0

y ≤ t → B n/(y 7→ i). (2)

A dual construction works for bounded existential quantifiers.
It is clear that this translation maps Σb

d and Πb
d bounded arithmetic

formulas to Σ′ -depth d propositional formulas.
So far, we have discussed how to translate individual formulas. Next,

we discuss how cedents of PTait are translated. Given a cedent Γ, let
~y = y1, . . . , yk be the non-parameter variables in the cedent. For each yi ,
there is a formula ¬yj ≤ tj in the cedent where tj involves only parameter
variables. Find, for each j , a integer nj = nO(1) such that |tj | ≤ nj holds

3The subscript n in the notation indicates that the parameter variable, x , has ≤ n
bits in its binary representation. Other variables such as y may have more bits. In (1),
y will have ny = O(|n|) bits. In (2), y will have ny = nO(1) bits, i.e., polynomially
many bits.
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whenever the parameter variables have values of length ≤ n . Then, for each
choice of values i1 < 2n1 , . . . , ik < 2nk , form the sequent

Γ n/(y1 7→ i1, . . . , yk 7→ ik).

The notation Γ n indicates forming the cedent by taking the propositional
translation of each formula in Γ. Note that each cedent of P has become a
large number of cedents; the total number of propositional cedents is easily
calculated to be O(2nO(1)

). Also note that the only free variables in the
translated cedents are the propositional variables px,i associated with the
parameter variable x .

The next two theorems describe the well-known Paris-Wilkie translation
from bounded arithmetic to propositional logic. The notion of a polynomial
time uniform proof is defined analogously to the definition of a uniform
circuit. We won’t define this notion completely, but merely state that a
polynomial time uniform proof is a proof that can be effectively described by
and traversed by a polynomial time procedure. Note that a polynomial time
uniform proof can be exponentially big: the uniformity means that there are
polynomial time algorithms for describing the structure of the proof and the
formulas in the proof. This is similar to the way the “connection language”
of circuits can be used to uniformly define a family of circuits.

The height of a proof is the maximum number of cedents along any
branch of the proof tree.

Theorem 2 Let i ≥ 1. Suppose A(x) is a form restricted Σb
i formula of

bounded arithmetic. Let A n denote the propositional translation of A;
A n has free variables px,i , for i < n.

a. Suppose Si
2 ` A. Then there is a function S(n) = 2nO(1)

such that, for
all n, A n has a Σ′ -depth i proof of size S(n). Furthermore, this
proof has height O(log log S(n)) and contains only O(1) many formulas
in each cedent. In addition, the proof is polynomial-time uniform.

b. Suppose T i
2 ` A. Then there is a function S(n) = 2nO(1)

such that, for
all n, A n has a Σ′ -depth i proof of size S(n). Furthermore, this
proof has height O(log S(n)) and contains only O(1) many formulas
per cedent. In addition, the proof is polynomial-time uniform.

Proof The proof is based on the above constructions: For any n , apply the
translation Γ n to each sequent Γ in the proof PTait , then combine these
into a valid PK-proof. Recall that each cedent in PTait becomes multiple
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propositional cedents; the propositional proof must prove all of these cedents.
The formation of the propositional proof is fairly straightforward, but a
couple cases merit comment.

First, consider a propositional inference in PTait ; for instance, an ∧:right
inference of the form

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ

In this case, the form restricted Σb
1 formulas ϕ and ψ must actually be

quantifier free. The ∧:right inference translates into the following PK-proof
fragment

Γ n, ϕ n

Γ n, ψ n

ψ ∧ ϕ n, ϕ n, ψ n Weakening
Γ n, ψ ∧ ϕ n, ϕ n, ψ n Cut

Γ n, ψ ∧ ϕ n, ϕ n Cut
Γ n, ψ ∧ ϕ n

Note that the upper right sequent is a Taut axiom.
Second, consider an induction inference in PTait . For part a., the

induction is a PIND inference. This translates into nO(1) Cut inferences in
the PK-proof. By balancing the tree of cuts, the height (maximal number
of cuts along any path) is only O(log n).

For part b., an IND inference in a T i
2 -proof becomes 2nO(1)

Cut
inferences; after balancing, this becomes height nO(1) . 2

The previous theorem described a Paris-Wilkie translation for the
theories S1

2 and T 1
2 ; however, prior uses of the Paris-Wilkie translation have

generally applied to the relativized theories of bounded arithmetic, Si
2(α)

and T i
2(α), which are augmented to include an uninterpreted predicate

symbol α . For this, new propositional symbols qj are used to represent the
Boolean truth value of α(j).

If t is a term, there are two natural ways to define α(t) n . Let
tMax = tMax(n) be an upper bound on the value of t(~a) when the parameter
variables ~a have integer values of binary length ≤ n . Note that tMax = 2nO(1)

suffices for this. Then, the two translations of α(t) n are:

tMax∨
i=0

( t = i n ∧ qi) (3)
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or
tMax∧
i=0

( t = i n → qi) (4)

where t = i n is the polynomial size formula that states that the value of t
is the integer i .

We want to define a new notion of Σα -depth, which generalizes the notion
of Σ′ -depth to formulas that contain subformulas of the forms (3) or (4). For
this, define α-Boolean formulas to be propositional formulas in the language
containing Boolean literals, constants 0 and 1, unbounded connectives

∨
and

∧
, and a new unbounded connective α with the restriction that no

occurrence of α may be in the scope of another occurrence of α .
An α-Boolean formula χ can be converted into an ordinary Boolean

formula χ′ by replacing each subformula α(b1, . . . , bm) by

2m−1∨
i=0

(
∧
j

b
(ij)
j ∧ qi),

where each bj is a Boolean formula and where b
(ij)
j is either bj or bj

depending on whether the j th bit of the binary representation of i is 1 or 0,
respectively. If χ has size m , then we say χ′ has α-size m . If χ′ cannot be
obtained in this way, it is defined to have α-size equal to infinity.

This allows the following definition of Σα -depth, which generalizes the
notion of Σ′ -depth.4

Definition Let S be a proof size parameter (size upper bound). The
formulas that have Σα -depth d with respect to S are inductively defined as
follows:

a. If ϕ has α-size ≤ log S , then ϕ has Σ′ -depth 0.

b. If ϕ has Σα -depth d , then it has Σα -depth d′ for all d′ > d .

c. If ϕi has Σα -depth d for all i ∈ I , then
∨

i∈I ϕi and
∧

i∈I ϕi have
Σα -depth (d + 1).

Theorem 3 Let i ≥ 1. Suppose A(x) is a form restricted Σb
i(α) formula of

bounded arithmetic possibly involving α . Let A n denote the propositional
translation of A. A n has free variables px,i , for i < n and qi for i < 2nO(1)

.
4It is possible to define Σα -size in a more general fashion, but this needlessly adds

major difficulties to the details of translating from bounded arithmetic to propositional
proofs. Thus we prefer the ad-hoc, but direct, approach used in this definition.
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a. Suppose Si
2(α) ` A. Then there is a function S(n) = 2nO(1)

such that,
for all n, A n has a Σα -depth i proof of size S(n). Furthermore, this
proof has height O(log log S(n)) and contains only O(1) many formulas
in each cedent. In addition, the proof is polynomial-time uniform.

b. Suppose T i
2(α) ` A. Then there is a function S(n) = 2nO(1)

such that,
for all n, A n has a Σα -depth i proof of size S(n). Furthermore, this
proof has height O(log S(n)) and contains only O(1) many formulas
per cedent. In addition, the proof is polynomial-time uniform.

The proof of Theorem 3 is very similar to the proof of Theorem 2; we leave
the proof to the reader.

5 New proofs for witnessing theorems

We now use the Paris-Wilkie translation as refined in Theorem 2 to prove
the “main” witnessing theorems for S1

2 and T 1
2 . We then also generalize the

proofs to get witnessing theorems for Si
2 and T i

2 . With the exception of the
theorem for T i

2 with i > 1, these witnessing theorems are not new; they were
first proved for Si

2 by Buss [3] and for T 1
2 by Buss-Kraj́ıček [6]. The novelty

is that we prove them via the Paris-Wilkie translation to propositional logic.
We start with the “Main Theorem” for S1

2 .

Theorem 4 (Buss [3]) Suppose that A(x, y) ∈ Σb
1 and that S1

2 proves
(∀x)(∃y)A(x, y). Then there is a polynomial time function f(x) = y such
that for all x ∈ N, A(x, f(x)) holds.

Proof By a well-known theorem of Parikh [17], S1
2 can also prove

(∃y ≤ s(x))A(x, y) for some term s . Now, x is the parameter variable.
Applying Theorem 2(a) yields a Σ′ -depth 1 proof; adding a Cut to the end
of this proof turns the proof into a refutation R of the formula

(∀y ≤ s(x))¬A(x, y) . (5)

The refutation R ends with the empty cedent.
We shall describe a polynomial time procedure that is given a particular

value for x (i.e., settings for the propositional variables px,i ) and traverses
the refutation R until it arrives at a false initial cedent. Of necessity this
false initial cedent is the cedent (5), and when it is reached, the procedure
will know a value y that falsifies the cedent. This value for y will be the
value of f(x).
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We shall describe the action of this procedure informally; however,
the refutation R has a polynomial time uniform structure, since it was
obtained by translating a bounded arithmetic proof. Therefore, this informal
description can be carried out by a polynomial time procedure. To clarify
the exact structure of proof, we specify that whenever a cut occurs on a
Σ′ -depth 1 formula ϕ that the right upper cedent contains ϕ if ϕ is a
conjunction and contains ϕ if ϕ is a disjunction. (This convention preserves
the order of cut hypotheses in the order they appeared in the bounded
arithmetic proof.)

The polynomial time procedure acts as follows: it starts at the root of the
proof and traverses the proof upward, backtracking as needed as described
below. At each stage, the procedure is at some cedent Γ in the proof that it
believes to be false. In particular, every Σ′ -depth 0 formula in Γ evaluates
to have value False. (Recall that the variables px,i are the only variables
in R , and the procedure has values for these.) Furthermore, for any formula
in Γ which is a conjunction of Σ′ -depth 0 formulas, the procedure knows of
a particular conjunct which is false. For the formulas which are a disjunction
of Σ′ -depth 1 formulas, the procedure does not know for sure that they are
false, it is merely tentatively assuming they are false.

We can now describe the algorithm used by the proof traversal procedure.
At the beginning, the procedure is at the root of R , which is the empty
cedent. Suppose the procedure is at the lower cedent of a cut inference

Γ, ϕ Γ, ϕ

Γ

If ϕ is Σ′ -depth 0, then it can be evaluated as being either True or False.
If it is true, the procedure proceeds to the right upper cedent, otherwise,
it proceeds to the left upper cedent. Otherwise, ϕ is a disjunction by our
assumption on how the upper cedents of Cut ’s are ordered, so the algorithm
makes the (tentative) assumption that ϕ is false and proceeds to the left
upper cedent.

If the procedure is at the lower cedent of a
∧

-inference:

Γ, ψi , for i ∈ I
Γ,

∧
i∈I ψi

the algorithm acts as follows. By assumption, the procedure knows a value i0
such that the conjunct ψi0 is false. The algorithm proceeds to the upper
cedent Γ, ψi0 for this i0 .

If the procedure is at the lower cedent of a
∨

-inference:
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Γ, ψi0

Γ,
∨

i∈I ψi

the algorithm acts as follows. If ψi0 is false, it proceeds to the upper cedent.
However, if it is true, the algorithm has discovered a disjunct of ϕ =

∨
i∈I ψi

which is true, contradicting the tentative assumption that ϕ was false. The
procedure then backtracks down the path towards the root until it finds
the Cut inference where the formula ϕ was added to the cedent. It then
proceeds to the right upper cedent of the Cut, and saves the information
about which conjunct of ϕ is false.

We still need to prove that this procedure runs in polynomial time,
that is, for only only O(nO(1)) steps. The problem is that the proof
is exponentially large because the

∧
inferences have many hypotheses.

However, the procedure visits at most one hypothesis of each
∧

-inference.
The set of cedents that are visited by the procedure during its traversal of
the proof forms a tree in which each node has at most two children (e.g.,
a cedent derived by Cut inference may have two children in the traversal
tree). This tree is of height O(log n) since the proof has height O(log n). A
binary tree of O(log n) height has size at most O(nO(1)), thus the procedure
is polynomial time.

The procedure cannot terminate at any logical axiom since these always
evaluate to the value True, nor will it stop at any internal cedent. Further-
more, it does depth-first search, and when it backtracks, it always moves
rightward. Hence, it eventually reaches the cedent (5). When it reaches this,
it knows a value for y that falsifies it. This value of y satisfies A(x, y). 2

The Witnessing Theorem 4 is usually stated in a stronger form stating
that S1

2 can Σb
1 -define the function f and can prove that (∀x)A(x, f(x)).

This stronger theorem can be proved by formalizing the proof of Theorem 4
in S1

2 . To do this, first note that Theorems 2 and 3 can be proved in S1
2 :

the Σ′ -depth or Σα -depth PK-proofs of A n are not only polynomial-time
uniform but provably polynomial-time uniform in the theory S1

2 . Second,
the proof of Theorem 4 can be formalized in S1

2 in that S1
2 can prove the

correctness of the polynomial time algorithm traversing the refutation R .
We next prove the “Main Theorem” for T 1

2 . The class of Polynomial
Local Search (PLS) functions was defined by Johnson, Papadimitriou and
Yannakakis [11].

Theorem 5 (Buss-Kraj́ıček [6]) Suppose A(x, y) ∈ Σb
1 and that T 1

2 proves
(∀x ≤ t)(∃y)A(x, y). Then there is a Polynomial Local Search function
f(x) = y such that for all x ∈ N, A(x, f(x)) holds.
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Proof The proof uses exactly the same proof traversal procedure that
was used for the proof of Theorem 4. The only thing that changes is that
the procedure is no longer polynomial time since it may need to visit an
exponential number of cedents in the inference. To formulate the traversal as
a PLS procedure, we define a cost function on cedents in the refutation R .
The cost is equal to the number of cedents above the current cedent plus the
number of cedents to the right of the current cedent plus one. Clearly the
cost decreases in each step of the procedure. At the end, we reach the initial
cedent (5), which has cost 1. We add one more configuration that consists
of the value for y such that A(x, y) holds and has cost 0.

The proofs of the previous two theorems can be relativized straightfor-
wardly; this yields the following theorems for Si

2 and T i
2 with i > 1.

Theorem 6 Let i > 1 and A(x, y) ∈ Σb
i .

a. Suppose Si
2 ` (∀x)(∃y)A(x, y). Then, there is a function f in p

i =
FPΣp

i−1 such that A(x, f(x)) holds for all x ∈ N. Here FP is the class
of polynomial time functions, so p

i is the class of functions computable
in polynomial time relative to a Σp

i−1 -oracle (i.e., relative to a set at
the ith level of the polynomial time hierarchy).

b. Suppose T i
2 ` (∀x)(∃y)A(x, y). Then, there is a function f in PLSΣp

i−1

such that A(x, f(x)) holds for all x ∈ N.

6 A translation to lower depth PK-proofs

The following theorem has been proved by Beckmann and Buss [2], based on
earlier theorems of Kraj́ıček and Razborov. Actually, [2] proved the theorem
for Σ-depth and for Θ-depth, not Σ′ -depth, but the proofs apply also to
Σ′ -depth and Σα -depth.

Theorem 7 Let d ∈ N, and {An}n be a family of sets of cedents. Then the
following conditions (1) and (2) are equivalent:

(1) An has a Σ′ -depth d PK-refutation of sequence-size quasi-polynomial
in n, for all n.

(2) An has a Σ′ -depth (d + 1) PK-refutation of tree-size quasi-polynomial
in n, for all n.

Furthermore, the following conditions (3) and (4) are equivalent:
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(3) An has Σ′ -depth d PK-refutation of tree-size quasi-polynomial in n, for
all n.

(4) An has a Σ′ -depth (d + 1) PK-refutation which simultaneously has
tree-size quasi-polynomial in n and height poly-logarithmic in n, for
all n.

Although the paper [2] does not explicitly discuss uniformity of proofs,
its proofs of the equivalences of Theorem 7 provide strongly constructive
methods of transforming proofs that preserve the property of being polyno-
mial uniform. From this, we get the following corollary, which is based on
constructions of Kraj́ıček [14].

Theorem 8 Let d ≥ 2. Suppose A is a form restricted Σb
d formula and that

T d
2 ` A. Without loss of generality, A has the form

(∃y ≤ t(x))(∀z ≤ r(x))C(x, y, z)

where C is form restricted Σb
d−2 . Let nt = nO(1) bound |t(x)| and nr = nO(1)

bound |r(x)| for all x < 2n . Then the set An of cedents
{

y ≤ t(x) → (z ≤ r(x) ∧ ¬C(x, y, z)) n/(y 7→ i, z 7→ j) : j < 2nr

}
,

for i < 2nt , has a Σ′ -depth d − 2 PK-refutation which is polynomial time
uniform.

The intuition behind this theorem is that the cedents in An express the
negation of A n . Loosely speaking, the theorem states that if A ∈ Σb

d

is provable by T d
2 then the negations of A n have polynomial size PK-

refutations of Σ′ -depth (d − 2).

Proof Let B(x, y) = (∀z ≤ r(x))C(x, y, z). Theorem 2 implies that

(∃y ≤ t)B(x, y) n

has a Σ′ -depth d refutation of size S(n), of height O(log S(n)), with O(1)
many formulas per cedent, for some S(n) = 2nO(1)

. Adding a cut, we change
this to a refutation of

(∀y ≤ t)¬B(x, y) n. (6)

This formula is a conjunction of disjunctions, so by expanding the conjunc-
tion into multiple cedents and then expanding each disjunction by simply
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separating formulas by commas, we can derive (6), using
∨

inferences
combined with a single

∧
inference. from the 2nt many cedents

{
y ≤ t → (z ≤ r ∧ ¬C(x, y, z)) n/(y 7→ i, z 7→ j) : j < 2nr

}
.

This proof still is Σ′ -depth d and has height O(log S(n)), and is now a
refutation of a set of cedents of Σ′ -depth (d − 2) formulas. Now Theorem 8
follows from Theorem 7. 2
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J. Kraj́ıček for forcing me to write this paper.

References

[1] T. Arai, A bounded arithmetic AID for Frege systems, Annals of Pure
and Applied Logic, 103 (2000), pp. 155–199.

[2] A. Beckmann and S. R. Buss, Separation results for the size of
constant-depth propositional proofs. Typeset manuscript, 2003.

[3] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985
Princeton University Ph.D. thesis.

[4] , A conservation result concerning bounded theories and the col-
lection axiom, Proceedings of the American Mathematical Society, 100
(1987), pp. 709–716.

[5] , Bounded arithmetic, cryptography and complexity, Theoria, 63
(1997), pp. 147–167.
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