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Abstract

We survey the best known lower bounds on symbols and lines in
Frege and extended Frege proofs.

We prove that in minimum length sequent calculus proofs, no
formula is generated twice or used twice on any single branch of the
proof.

We prove that the number of distinct subformulas in a minimum
length Frege proof is linearly bounded by the number of lines. Depth d
Frege proofs of m lines can be transformed into depth d proofs of
O(md+1) symbols.

We show that renaming Frege proof systems are p-equivalent to
extended Frege systems.

Some open problems in propositional proof length and in logical
flow graphs are discussed.

1 Preliminaries

This paper considers the lengths of proofs of propositional tautologies; we

measure proof length either by counting the number of lines (formulas) in the

proof or by counting the number of symbols in the proof.
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The first three sections give lower bounds on proof lengths which are quite

easy to obtain and yet represent the best currently-known lower bounds. The

contents of sections 1-3 have already appeared in prior work, but they are

fundamental and are not widely known, so we feel it is useful to exposite

them here. This author first discovered the results of sections 2 and 3

from considering the logical-flow graph [4]; however, the proofs presented

in this paper are much simpler. Other prior work with results similar to

the contents of sections 2 and 3 includes Cejtin-Čubarjan[7], Buss-et al. [6],

Kraj́ıček [11, 10], Bonet [1], Bonet-Buss [2], and Buss [5].

In section 4, we define a new version PK of the propositional sequent

calculus and pose the problem of finding a (1+ ε)n lower bound on the size of

PK -proofs. We give the currently best known lower bound of n + Ω(n1/3).

In section 5, it is shown that in minimum length tree-like PK -proofs, no

formula is introduced twice as a conclusion or used twice as a hypothesis on

any single branch in the proof.

In section 6, we discuss the open problem of whether cycles can eliminated

from the logical flow graph of a proof without a superpolynomial size penalty.

In section 7, we prove a new result showing the equivalence of constant-

depth Frege proofs with polynomially many lines and constant-depth Frege

proofs with polynomially many symbols.

In section 8, we prove that the variable renaming inference rule is

unexpectedly powerful, in that renaming Frege proof systems are p-equivalent

to extended Frege proof systems.

We work first with Frege systems, which are generalizations of the usual

textbook proof systems for propositional logic based on modus ponens. We

also work with two extensions of Frege systems, namely, extended Frege

systems and substitution Frege systems. This section briefly reviews the

definitions of these systems.

A proof consists of a directed acyclic graph with each node labeled by a

propositional formula; there is one node with outdegree zero, which is labeled

with the formula that is proved. Each formula in the proof is derived from its

immediate predecessors by one of a finite set of schematically defined rules of

inference. A schematically defined rule of inference is defined by a figure of
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the form:
A1 · · · Ak

B
where the formulas A1, . . . , Ak and B contain propositional variables

p1, . . . , pm . A substitution σ consists a mapping from propositional variables

to propositional formulas. If A is a formula, then Aσ denotes the result of

applying the substitution to A , which replaces each variable pi in A with its

image under σ . The above rule of inference allows Bσ to inferred from the

hypotheses A1σ, . . . , Akσ , for σ any substitution.

As two examples of rules of inference consider:

p1 → (p2 → p1)
and

p1 p1 → p2

p2

.

The left figure shows an inference with zero hypotheses (i.e., an axiom) and

indicates that any substitution instance of the formula p1 → (p2 → p1) is a

valid axiom. The right figure is the usual inference of modus ponens.

The definition of a Frege proof system is as follows: it uses a finite, complete

set of propositional connectives and it has a finite set of schematically defined

rules of inference; furthermore, it must be sound and complete, i.e., it must

admit modus ponens as a derived rule of inference and it must prove every

tautology.

The most commonly used Frege systems have a finite set of axiom schemes

and have modus ponens as the only additional rule of inference. However,

clearly many other choices of rules of inference are possible. The most

common choices for the propositional connectives include ¬ , ∧ , ∨ , → ;

but any complete set of connectives is permissable. Of course, the choice

of propositional connectives and rules of inference will affect the lengths of

proofs; however, it is known that these choices only change the lengths of

proofs by polynomial amounts. The most general result of this type is that

any Frege system F1 can p-simulate any other Frege system F2 , which means

that if a tautology A has an F2 -proof P of m symbols, then there is a natural

translation A′ of A into the language of F1 such that A′ has an F1 -proof

P ′ of length ≤ p(m) symbols, where p is a polynomial, and further A′ and

P ′ may be obtained by a polynomial time algorithm from P (see [15, 8]

for a detailed development of this). The polynomial p and the polynomial

algorithm depend only the proof systems F1 and F2 .
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If the Frege systems F1 and F2 have the same language, then we have a

much better simulation: there must exist a constant c such that any F2 -proof

of m lines and n symbols can be transformed into an F1 -proof of ≤ cm lines

and ≤ cn-symbols. This is easy to prove from the fact that the rules of

inference of F2 must be derived rules of inference for F1 and from the fact

that the rules of inference are schemes.

Two commonly studied extensions of Frege systems are the extended

Frege systems and the substitution Frege systems. A substitution Frege

system consists of a Frege system augmented with the substitution rule with

inferences of the form
A

Aσ

for any substitution σ . In other words, any instance of A can be inferred

from A .†

An extended Frege system consists of a Frege system augmented with the

extension rule. The extension rule allows the inference of a formula:

p ↔ A

where A is any formula and p is a variable which does not occur in A , does not

appear in any earlier extension rule, and does not occur in the final formula in

the proof (the formula being proved). The variable p is called the extension

variable. The idea of the extension rule is to allow the variable p to act as

an abbreviation for the formula A ; the purpose of using abbreviations is to

(potentially) reduce the number of symbols in proofs.

It is known that any two extended Frege proof systems p-simuluate each

other and that any two substitution Frege systems p-simulate each other;

furthermore, a substitution Frege system p-simulates an extended Frege

proof system [8, 15]. Also, an extended Frege proof system p-simulates a

substitution Frege proof system [9, 12]

†Our definition of substitution Frege system allows the simultaneous substitution of
multiple formulas for multiple variables of A . Other authors have allowed substitution
for only one variable at a time. It is easy to see that single variable substitition
can polynomially simulate simultaneous substitution. However, it is possible that our
simultaneous substitution provides some speedup over the single variable substitution
rule.
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We prove in section 8 that the substitution rule restricted to variable

renamings is as powerful as the full substitution rule.

More information on Frege systems and proof lengths can be found in the

original works of Cook-Reckhow [8], Reckhow [15] and Statman [16].

The author thanks M. L. Bonet, J. Kraj́ıček and T. Pitassi for helpful

discussions as this paper was being written.

2 Active Subformulas

In this section we introduce the notion of active subformulas in a proof. This

will allow us to bound the number of distinct subformulas occuring in a Frege

or extended Frege proof.

We shall henceforth assume that we have a fixed Frege proof system in

mind, with a fixed, finite set of connectives and rules of inference. For

convenience sake, we shall assume that the 0-ary connectives > and ⊥ are

included in the propositional language; these are the constants True and

False. This assumption is not essential for our results, but will simplify some

of our examples.

Recall that if A is a formula and σ is a substitution, then Aσ is a formula.

Consider a subformula C of Aσ . Obviously, the principal connective of C

either corresponds to a connective in A or was introduced by the application

of σ to A .

Now let σ be a substitution and consider an inference schematically

defined as in section 1 above. Consider the inference I

A1σ · · · Akσ

Bσ

which is the instance of the rule of inference induced by σ . Let C be an

occurence of a subformula in any one of A1σ, . . . , Akσ,Bσ . We define C to be

active with respect to the inference I if and only if the principal connective of C

was not introduced by σ (and thus the principal connective of C corresponds

to a connective that already appears in the schematic definition of the rule of

inference).

If P is a Frege proof, and C is an occurence of a subformula in a formula

in P , we say that C is active in the proof P if and only if there is at least
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one inference in P such that C is active w.r.t. that inference. Finally if C

is a formula, we say that C is active somewhere in P iff there is at least one

occurence of C as a subformula in P which is active in P . If is not the case

the C is active somewhere in P , then we say that C is not active anywhere

in P .

Lemma 1 Let P be a F -proof and C be a formula which is not active

anywhere in P . Let D be an arbitrary formula. Let P (D/C) be obtained by

replacing every occurence of C as a subformula in P with D . Then P (D/C)

is a valid F -proof.

Proof It will suffice to show that if no occurence C is active w.r.t. a given

inference I in P , then replacement of C by D preserves the validity of the

inference I . The inference I is formed by the application of some substitution

to a schematic rule of inference. Since C is not active, it must be that every

occurence of C in the inference I was introduced wholly by the substitution;

hence, uniformly replacing C with D yields another valid inference. 2

We can extend the notion of “active subformula” to extended Frege proofs.

For inferences given by schematic rules there is no change to the notion of

active. For an extension rule inference of the form p ↔ A , the formulas p and

p ↔ A are defined to be the only subformulas which are active with respect

to this inference. The above lemma holds also for extended Frege proofs,

modulo avoiding conflicts with extension variables:

Lemma 2 Let P be an eF -proof and C be a formula which is not active

anywhere in P . Let D be an arbitrary formula such that no extension variable

of P occurs in D . Let P (D/C) be obtained by replacing every occurence of C

as a subformula in P with D . Then P (D/C) is a valid eF -proof.

The proof of Lemma 2 is exactly like the previous proof, except that

it must now be noted that extension inferences remain valid since no new

occurences of extension variables are introduced.

Let ||A|| denote the number of distinct subformulas of A . We can now use

the notion of active subformulas to bound the number of distinct subformulas

occuring in a proof:
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Theorem 3 Let P be a F -proof or an eF -proof of a formula A containing

m lines. Then there is a F -proof or an eF -proof (respectively) of A in which

only O(m) + ||A|| many distinct subformulas occur.

Proof If P contains any subformulas which are not active anywhere in P

and which do not occur as a subformula of A , then replace them with an

arbitrary variable (or with > or ⊥ if preferred). By the above lemma, this

yields a valid proof of A . So we can assume w.l.o.g. that every subformula

occuring in P either is equal to a subformula of A or is active somewhere

in P . But since there are only a finite set of schematic rules of inference,

there is a maximum number c of subformula occurences which can be active

with respect to any single inference. Thus there are at most cm + ||A|| many

distinct subformulas occuring in P . 2

Theorem 4 Suppose that A has an m line Frege or extended Frege proof P .

Then there is a formula B such that ||B|| = O(m) and such that B also has

an m-line Frege or extended Frege proof and such that A is a substitution

instance of B .

Proof Replace, one at a time, the subformulas of A which are not active

anywhere in P by new distinct variables. The result is a proof of m lines of a

formula B , of which A is a substitution instance. 2

3 Lower Bounds on Proof Lengths

In this section, we survey some lower bounds on the number of symbols and

lines in Frege and extended Frege proofs. The lower bounds we obtain here

are the best bounds presently known for any propositional formulas.

The first lower bound is a lower bound on the number of lines in a Frege

or extended Frege proof. It is an immediate corollary of Theorem 4 above.

Theorem 5 If A is a tautology which is not a substitution instance of a

shorter tautology, then any Frege or extended Frege proof of A requires c · ||A||
lines, where c is a constant symbol depending only on the proof system.
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Our lower bound on the number of symbols in a Frege or extended Frege

proof of A will be expressed in terms of the total size of the subformulas

of A . We define the size of a formula to equal the number of symbols in the

formula, and we define ||A||Σ to be equal to the sum of the sizes of all distinct

subformulas of A . Note that this means that if a subformula occurs twice

in A , we still count its size only once.

Theorem 6 Suppose A is a tautology which is not a substitution instance of

a shorter tautology. Then any Frege or extended Frege proof of A contains

at least c · ||A||Σ symbols, where c is a constant depending only on the proof

system.

Proof Let P be a Frege or extended Frege proof of P . Since A is

not a substitution instance of a shorter tautology, then every non-atomic

subformula of A must be active somewhere in the proof. This is because

otherwise, any non-atomic subformula of A which is not active anywhere

could be globally replaced by a new variable, yielding a proof of a shorter

tautology.

Consider a given symbol in the proof P : this symbol may occur in zero,

one or more active subformula occurences. For example, suppose a Frege

proof contains the lines B , B → (C → B) and C → B where the second

line is introduced by an axiom and the third by modus ponens. The formula

B → (C → B) is active both w.r.t. the axiom inference and w.r.t. the

modus inference. Its subformula C → B is active w.r.t. the axiom inference

(since the axiom scheme p1 → (p2 → p1) explicitly contains its principal

connective). Thus, if α is any symbol occurence inside the occurence of C as

a subformula of the second formula or inside the second occurence of B in the

second formula, then we have α occuring inside exactly two different active

subformula occurences.

Now we claim that there is a constant d such that every symbol in P is

in at most d different active subformula occurences in P . This is because the

inference rules of the proof system are given schematically, and thus, there

is a maximum depth d so that any active subformula occurence has its root

(principal connective) occuring at depth < d in a formula occuring in the

proof. From this it follows that the number of symbols in the proof P is at

least 1
d
||A||Σ . 2
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As an application of our two lower bounds on proof length, consider the

formula >k , defined as

⊥ ∨ (⊥ ∨ (⊥ ∨ · · · (⊥ ∨>) · · ·)),

where there are k ⊥ ’s. Clearly this a tautology, but is not an instance of a

shorter tautology. Thus by Theorem 5, any Frege or extended Frege proof of

>k requires Ω(k) lines and Ω(k2) symbols. Since >k has O(k) symbols, these

are linear lower bounds on the number of lines and quadratic lower bounds on

the number of symbols.

Somewhat surprisingly, these are the best lower bounds known for Frege

and extended Frege proof systems. That is to say, that all currently known

lower bounds for Frege or extended Frege proofs, are contained in Theorems 5

and 6. Indeed, it is consistent with our current state of knowledge that

every tautology has a Frege proof containing a linear number of lines and

a quadratic number of symbols. The best known upper bounds on the size

of Frege proofs are exponential, and it is commonly conjectured that some

tautologies do require (near) exponential size proofs. Thus there is a large

gap between the upper and lower bounds.

A attractive, but dificult, open problem is to is to give even a small

improvement on the bounds of Theorems 5 and 6. Some work in this direction

has been done in the work of Bonet [1]: she considers two families of tautologies

consisting balanced formulas (i.e., have depth O(log n)) which were chosen in

the hopes that they would require long Frege proofs; nonetheless, she obtained

Frege proofs of these formulas of symbol sizes O(n log2(n)) and O(n log3 n).

Theorem 6 gives lower bounds of O(n log n) on the symbol size of their Frege

proofs; hence there is only a (poly)logarithmic factor between the upper and

lower bounds. The problem of showing Bonet’s upper bounds to be optimal

seems quite difficult.

Another example of balanced tautologies that may require Frege proofs

of more than O(n log n) symbols is the propositional pigeonhole priniciple

(PHP). The polynomial size Frege proofs of PHP given in Buss [3] are

significantly larger than n log n (here n is to be the number of symbols

in the PHP formula, so n is cubic in the number of ‘holes’ and ‘pigeons’,

see [3] for the formulation of PHP). But it seems very difficult to prove that
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PHP does not have Frege proofs of O(n log n) symbols.

Finally, we can use Theorems 5 and 6 to separate extended Frege proof

lengths from substitution Frege proof lengths. This done by noting that

the formulas >k have substitution Frege proofs of O(log n) lines and O(n)

symbols. These substitution Frege proofs proceed as follows (assume for

simplicity that k is a power of two, but the same ideas work for general k ):

Let pk denote the formula ⊥ ∨ (⊥ ∨ · · · (⊥ ∨ p) · · ·) containing k ⊥ ’s. First

derive

p → p1 i.e., p → (⊥ ∨ p)

with a constant size proof. Then assuming that p → pm has already been

derived, use the substitution rule to substitute pm for p to obtain pm → p2m .

From these two formulas, use a finite number of steps to derive p → p2m .

After log k iterations, one obtains p → pk . Clearly this proof has O(log k)

lines and O(k) symbols. Thus we have proved:

Theorem 7 (See [11] and [7]) There are tautologies which have substitution

Frege proofs of O(h) lines and O(k) symbols but which require extended Frege

proofs of Ω(2h) lines and Ω(k2) symbols.

It is well-known that substitution Frege and extended Frege proof systems

can p-simulate each other. The best simulations (measuring proof length

by number of lines) that we have been able to obtain are: (1) substitution

Frege proofs can quadratically simulate extended Frege proof systems (the

‘standard’ simulation of [8] is cubic, but it can be improved to quadratic using

Bonet’s theorem that Frege systems can quadratically simulate the ‘simple’

deduction theorem [1]); and (2) extended Frege proofs can cubicly simulate

substitution Frege proofs (Dowd’s original proof gave no information on the

polynomial degree, but a cubic simulation can be obtained by a very minor

modification of the proof of Kraj́ıček-Pudlák [12]).

It would be interesting to obtain superlogarithmic lower bounds on the

number of lines in subsitution Frege proofs or superlinear lower bounds on

the number of symbols in substitution Frege proofs. For this, recall that we

are allowing simultaneous substitution.
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4 A sequent calculus system

We next introduce a variant of the sequent calculus for propositional logic.

We use sequent calculus rules which are slightly different from the usual

sequent calculus formulations but have the advantage of being better suited

to precisely proof length measurements. We presume the reader has some

familiarity with the sequent calculus as contained in the first sections of [17].

Definition The sequent calculus PK allows as initial sequents any sequent

A → A . The rules of inference of PK are:

Weak Structural Rules

Exchange:left
Γ, A,B, Π→∆
Γ, B,A, Π→∆

Exchange:right
Γ→∆, A,B, Λ
Γ→∆, B,A, Λ

Contraction:left
A,A, Γ→∆

A, Γ→∆
Contraction:right

Γ→∆, A,A
Γ→∆, A

Weakening:left Γ→∆
A, Γ→∆

Weakening:right Γ→∆
Γ→∆, A

The weak structural rules are also referred to as just weak inference rules. The

rest of the rules are called strong inference rules.

The Cut Rule

Γ→ ∆, A A, Γ→ ∆
Γ→ ∆
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The Propositional Rules

¬:left
Γ→∆, A

¬A, Γ→∆
¬:right

A, Γ→∆
Γ→∆,¬A

∧:left
A,B, Γ→∆

A ∧ B, Γ→∆
∧:right

Γ→∆, A Γ→∆, B
Γ→∆, A ∧ B

∨:left
A, Γ→∆ B, Γ→∆

A ∨ B, Γ→∆
∨:right

Γ→∆, A,B
Γ→∆, A ∨ B

→:left
Γ→∆, A B, Γ→∆

A → B, Γ→∆
→:right

A, Γ→∆, B
Γ→∆, A → B

Note that we have stated the ∧:left and ∨:right differently than usual;

we feel that our definitions give a better definition of proof length (without

changing proof lengths by more than a constant factor).

Definition PK -proofs are directed acyclic graphs of sequents, in which each

node is inferred from its predecessors by a valid rule of inference. The strong

inference length of a PK proof P is denoted ||P ||dag and is equal to the

number of strong inferences in P . When we restrict attention to tree-like

proofs P , then the strong inference length of P is denoted ||P || .

Definition A formula occuring in an inference is active if and only if the

inference is a propositional inference and the formula is the principal formula

of the inference.

It is obvious that Lemmas 1 and 2 hold also for the sequent calculus PK .

Also, Theorems 3, 4 and 5 will hold for PK in place of F and eF , even if

m is the strong inference length instead of the line length. Theorem 5 can be

sharpened for PK to give:

Theorem 8 Let Γ→∆ be a valid sequent which is not a substitution instance

of a smaller valid sequent. Let m equal the number of distinct non-atomic

formulas in Γ→∆. Then any PK -proof of Γ→∆ requires at least m strong

inferences.

The idea of the proof of Theorem 8 is exactly like the idea behind

Theorem 5; that is, every subformula of Γ→∆ must be the principal formula
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of a strong inference in any proof of Γ→∆. We leave it to the reader to

check the details of this proof.

One of our main reasons for introducing PK is to state the following

challenge problem:

Problem: Find a family of valid sequents whose PK -proofs require more

than (1 + ε) ·m strong inferences with ε a constant strictly greater than zero

(where m measures the number of distinct non-atomic subformulas in the

sequents).

The best partial solutions to this challenge problem that we have been able

to obtain is that any PK -proof of the tautologies that express the pigeonhole

principle require at least m + (1 − ε)(m1/3) strong inferences, for any ε > 0

and m sufficiently large. To prove this, let P be a shortest PK -proof of

the sequents PHP n+1
n expressing the n + 1 into n pigeonhole principle.

The number of distinct non-atomic subformulas in the sequent PHP n+1
n is

m = n3 + o(n3). Let p equal the number of distinct non-atomic subformulas

which appear in P but not in its endsequent PHP n+1
n . By considerations

similar to Theorem 8, P has at least m+p strong inferences.‡ If p > (1−ε)n ,

then we are done. Otherwise, it is not difficult to see that it is possible to

find a partial truth assignment which sets < p many values of f(i) such

that all the formulas which appear in P but not PHP n+1
n have depth one

(i.e. contain only one logical connective). Note that setting f(i) = j means

choosing a restriction in which pij is set to the constant True and pi,j′ and

pi′,j are set to False for all i 6= i′ and j 6= j′ : once the restriction is chosen

then the formulas are collapsed to remove the constants True and False and

then any inferences which have been trivialized by this process are removed

from the proof. After this restriction, at least δ · n elements remain in the

domain and range of f (where δ > 0 is a constant depending on ε) and we

are left with a constant depth propositional proof of the pigeonhole principle

PHP δn+1
δn : this constant depth proof must be exponential size by [13, 14].

‡Note that, without loss of generality, every subformula appearing in the proof P must
be the same formula as the principal formula of some inference in P , since otherwise,
the number of distinct subformulas in P could be reduced by the methods used to
prove Theorem 8.
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5 Non-repetition of formulas

We now prove a normal form theorem for PK -proofs which states that in

a shortest tree-like PK -proof, there is no formula which occurs twice on a

one branch in the proof as an auxiliary formula in the antecedent (or in the

succedent) of a strong inference or twice on a branch as a principal formula of

a strong inference.

In this section, we will always assume that P denotes a tree-like PK -proof

of minimum strong inference length; this means that there is no P ′ with the

same endsequent as P such that ||P ′|| < ||P || .
Definition A branch in P is a path through the proof P viewed as a directed

acyclic graph starting with an initial sequent and ending with the endsequent.

Definition An occurrence of a formula in P is called a strong auxiliary

formula if it is an auxiliary formula of a strong inference. Likewise, a strong

principal formula is an occurrence of a formula as the principal formula of a

strong inference.

A succedent formula (respectively, antecedent formula) is an occurrence of

a formula in a succedent (respectively, antecedent).

Theorem 9 Let P be a tree-like PK -proof of minimum strong inference

length and π be a branch of P . Then there is no formula A which occurs twice

as a strong auxiliary antecedent formula on the branch π . Likewise, there is

no formula A which occurs twice as a strong auxiliary succedent formula on

the branch π .

A corollary of Theorem 9 is that no formula is used twice as a cut formula

on any branch in a proof P of minimum strong inference length.

Proof Suppose, for sake a contradiction, that the branch π contains two uses

of A as a strong auxiliary succedent formula. Let I1 and I2 be the two strong

inferences which involve the two uses of A as a strong auxiliary succedent

formula. Let S1 be the lower sequent of I1 , and S2 be the upper sequent

of I2 . Let B be the principal formula of I1 . Thus, S1 is a sequent of the form

S1 = Γ→∆, B or S1 = B, Γ→∆
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where B may be missing if I1 is a cut infererence.

Now modify the proof P as follows: First, for every sequent Π→Λ which

lies on π between S1 and S2 , inclusively; replace Π→Λ with Π−→A, Λ− ,

where Π− and Λ− are obtained by removing the descendent (if any) of B

from Π or Λ. Second, every sequent Π→Λ on π below S2 , is replaced with

Π−→Λ− . This, of course, will cause P to be no longer be a valid proof;

however, it is easy to further modify P to be a valid proof by adding only

weak inferences. This includes replacing the strong inference I1 with weak

inferences and, if I1 has two upper sequents, removing one them from the

proof. Also, some other strong inferences between I1 and I2 may need to

be replaced in the same way with weak inferences. In addition, the upper

sequent of I2 will now contain two occurrences of A , these are contracted

with weak inferences before being used as a hypothesis to I2 ; and therefore,

it is permissable for A to not appear in the lower sequent of I2 . Finally, some

new weakening inferences may be needed at the end of the proof. We have

thus constructed a valid proof with fewer strong inferences than P , which

contradicts the choice of P .

The case where the strong auxiliary formula A occurs in the antecedent is

similar. 2

Theorem 9 also holds for the usual formulation of the sequent calculus

(recall that the usual formulation has different ∨:right and ∧:left inferences).

The same proof still works without modification.

Theorem 10 Let P be a tree-like PK -proof of minimum strong inference

length. Then there is no formula A which occurs twice as a strong principal

antecedent formula on a branch π . Likewise, there is no formula A which

occurs twice as a strong principal succedent formula on a branch π .

Proof This is an immediate consequence of Corollary 9 because of the

definition of the the rules of inference of PK . To see this, suppose that a

branch π contains two strong inferences I1 and I2 with the same principal

formula A . By examination of the rules of PK , I1 and I2 have the same

auxiliary formulas. Now taking a branch π′ containing I1 , I2 and (one of)

the upper sequents of the upper strong inference, we have the same formula
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used twice on π′ as a strong auxiliary formula so as to violate the condition

of Theorem 9. 2

Theorem 10 apparently does not hold for the usual formulation of the sequent

calculus, which has different ∨:right and ∧:left inference rules than PK . For

example, with the usual ∨:right rules, a proof could contain

Γ→ ∆, A
Γ→ ∆, A ∨ B

...
Π→ Λ, A ∨ B,B
Π→ Λ, A ∨ B,A ∨ B
Π→ Λ, A ∨ B

Theorem 11 In a tree-like PK -proof of minimum strong inference length,

there is no branch π on which a formula has an occurrence as a strong aux-

iliary antecedent formula above an occurence as a strong principal antecedent

formula.

The same holds for “succedent” replacing “antecedent”.

The proof of Theorem 11 is essentially identical to the proof of Theorem 9.

We omit the proof and leave it to the reader to supply one. (The primary

difference is to now take S2 to be the lower sequent of I2 .)

Theorem 11 also holds for the usual formulation of the propositional

sequent calculus in place of PK .

Theorem 12 In a tree-like PK -proof of minimum strong inference length,

no formula appears twice as a strong principal formula on a single branch.

Note that the difference between Theorem 10 and Theorem 12 is that we

are no longer considering strong principal formulas which both occur in the

antecedent or both occur in the succedent.

Proof Suppose, for a contradiction, that P is a PK -proof of minimum

strong inference length with a branch π that contains two strong inferences

I1 and I2 which have the same principal formula A . Let I1 be above I2 .
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Without loss of generality, assume that I1 ’s principal formula occurs in the

antecedent and hence, by Theorem 10, I2 ’s principal formula occurs in the

succedent. Let I1 and I2 have lower sequents S1 and S2 of the forms

S1 = A, Γ1→∆1 and S2 = Γ2→∆2, A.

Modify the proof P as follows. First, replace the sequent S1 with the sequent

S′
1 = A, Γ1→A, ∆1 . Note that S ′

1 can be proved with zero strong inferences;

thus, we also replace the entire subproof of P ending at the strong inference I1 ,

with a new subproof of S ′
1 which has no strong inferences. Second, replace

each sequent Π→Λ below S1 and above S2 with the sequent Π→A, Λ.

Finally, the sequent S2 is replaced by the weak inferences

Γ2→ A, ∆2, A

Γ2→ ∆2, A

This construction gives a proof with fewer strong inferences than P and with

the same endsequent as P which contradicts the minimality of P . 2

All of the theorems of this section also hold for the extension of PK to first-

order logic. The proofs still work essentially without modification; the main

new thing to check is that the constructions given above for removing strong

inferences still yield valid proofs, and in particular, that the eigenvariable

conditions are not violated. However, this is easily accomplished by assuming

that the proofs are in free variable normal form, and this can be assumed

without loss of generality since we are considering only tree-like proofs.

6 Cycles in the Logical Flow Graph

The logical flow graph of a proof P is a directed graph on occurences of

subformulas in P indicating the ‘implicational flow’ of the formulas in the

proof. The logical flow graph is defined in [4] and we do not repeat the

definition here. (The reader who has never seen the definition of the logical

flow graph might be able to figure out the definition from the two examples

given below.)

Although [4] proves several nice properties of the logical flow graph, there

are still many open problems about how complicated logical flow graphs need
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be. The first observation is that in a cut-free proof, the directed paths in

the logical flow graph are very well behaved; namely, (1) for each positively

occuring subformula A in the proof, there is a unique directed path leading

from A to a subformula in the endsequent, and (2) for each negatively occuring

formula B in the proof, there is a unique path leading from a subformula in

the endsequent to B , and (3) every directed path consists of upward edges

followed by downward edges (with a lateral edge at an initial sequent at the

transition from upward edges to downward edges). To prove these three

assertions, just note that since there are no cuts, a directed path can never

have downward edges leading to a lateral edge followed by upward edges.

However, in the setting of general proofs with cuts, the situation is much

more complicated; even in the simple case of propositional logic proofs. The

general problem is to find ‘normal form’ properties of logical flow graphs that

can be assumed to holds of logical flow graphs without superpolynomial proof

size penalty. That is, to find nice properties R such that for any PK proof P ,

there is another PK -proof P ′ of the same endsequent such that the logical

flow graph of P ′ enjoys property R .

Of course the purpose of finding such properties R is (at least) twofold;

namely, to give better methods on proving lower bounds on proof size and to

give better heuristic algorithms for proof search.

One candidate for such a property R is the property of the logical

flow graph being acyclic. Unfortunately this problem is open, even for

propositional logic and even when allowing polynomial increase in proof size:

Question: If Γ→∆ has a PK -proof of strong inference length m , must

it also have a PK -proof polynomial size (i.e., with mO(1) strong inferences)

which has acyclic logical flow graph?

By an observation of Kraj́ıček, it is enough to restrict one’s attention to

tree-like PK -proofs in answering this question, since every dag-like proof can

be converted into a polynomial size tree-like proof.

Since it is somewhat surprising and counter-intuitive that tree-like PK -

proof can have cycles, we give two examples below of tree-like proofs which are

not acyclic. In both cases, the proofs are easily converted into much shorter

proofs without cycles; but the point is that we asking whether every proof can
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be converted into a polynomial size proof with acyclic logical flow graph.

Example 1: In this example, the notations Ai indicate distinguished

occurrences of the formula A . The logical flow graph contains an edge from

Ai to Ai+1 for all i except i = 24.§ It also contains an edge from A24 to A9

and an edge from A16 to A25 . Note that the nodes A9, A10, A11, · · · , A24, A9

form a cycle in the logical flow graph.

A6→ A7

¬A,A5→ A8, A

A21→ A22

→ A23,¬A20

¬A,A→ A24,¬A19

¬A,A4→ A9, A ∧ ¬A18

¬A28→¬A27

¬A29, A→¬A26, A ∧ ¬A

¬A30, A3→ A10 ∧ ¬A25, A ∧ ¬A17

¬A31, A2→ A11 ∧ ¬A16

. . .
... . . .

A13,¬A14→
A12 ∧ ¬A15→

¬A32, A1→
Example 2: The logical flow graph for the proof shown below contains

directed edges from each occurrence Bi to Bi+1 (there is no occurrence B27 ).

In addition, the logical flow graph contains a directed edge from B26 to B9

and a directed edge from B12 to B28 . The nodes B9, B10, B11, . . . , B26, B9

form a cycle in the logical flow graph.

. . .
... . . .

→¬B21, B22

¬B→¬B20, B23

¬B33→¬B32

¬B34→¬B,¬B31

¬B35→¬B19, B24 ∧ ¬B30

¬B36, B→ B25 ∧ ¬B29,¬B18

B5→ B6 ¬B16→¬B15

¬B17, B4→ B7 ∧ ¬B14

¬B37, B3→ B26 ∧ ¬B28, B8 ∧ ¬B13

¬B38, B2→ B9 ∧ ¬B12

. . .
... . . .

B10 ∧ ¬B11→
¬B39, B1→

§Since we have omitted some of the inferences from the proof figure, as indicated with
double lines, some of the directed edges from Ai to Ai+1 are not strictly speaking edges
in the logical flow graph, but are only in the transitive closure of the logical flow graph.
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7 Constant-depth Frege proofs

A recent important result on propositional proofs lengths is the theorem

independently obtained by [14] and [13] which states that any constant depth

Frege proof of the propositional pigeonhole principle requires exponentially

many symbols (the constants in their exponential bounds depend on the depth

of the Frege proof). Both [14] and [13] use the number of symbols in the Frege

proofs only as a lower bound on the number of distinct subformulas of formulas

in the proof. Since Theorem 4 above states that, w.l.o.g., the number of

distinct subformulas in a Frege proof of the propositional pigeonhole principle

is proportional to the number of lines in the proof, it follows immediately that

there are exponential lower bounds on the number of lines in constant depth

Frege proofs of the propositional pigeonhole principle.

In this section, we shall apply the notion of “active subformulas” to prove

any family of constant depth Frege proofs with polynomially many lines can

be translated into a family of constant depth Frege proofs of polynomially

many symbols. Namely, we shall prove (see below for the definitions):

Theorem 13 Suppose A is a tautology which is not an instance of a shorter

tautology and that A has a depth d Frege proof of ≤ m lines. Also suppose

that A contains at most ≤ m distinct literals. Then A also has a depth d

Frege proof of ≤ 3 · md+1 symbols.

We now define the syntax of formulas of proofs for constant depth

Frege proofs. The logical connectives will be the unary negation (¬) and

an unbounded fanin OR (
∨∨

). Formulas and their sizes and depths are

inductively defined by:

(1) Any variable p is a formula of size 1 and depth 0. These are called atomic

formulas.

(2) If A is a formula, then ¬A is a formula. The size and depth of ¬A are

equal to the size and depth of A .

(3) If X = {A1, . . . , Ak} is a finite set of formulas, then
∨∨

X is a formula.

The depth of
∨∨

X is one plus the maximum depth of the Ai ’s. Its size

is the sum of the sizes of the Ai ’s.
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Note the the depth of a formula is equal to the depth of nesting of
∨∨

’s, but

that negations do not contribute to the depth. Also note that the size of the

a formula is equal to the number of occurences of variables in the formula.

For A and B formulas, we write A ∨ B as an abbreviation for
∨∨{A,B} . A

literal is defined to be a formula of depth zero.

There are five rules of inference (including one axiom) for constant-depth

Frege proofs which are given below. The first three rules are schematic rules

where A , B and C maybe any variables; however, in the last three rules,

X and Y represent arbitrary sets of formulas.

Axiom:
A ∨ ¬A

Weakening:
A

A ∨ B

Cut:
A ∨ B (¬A) ∨ B

B ∨ C

Merging:

∨∨
X ∨ ∨∨

Y∨∨
(X ∪ Y )

Unmerging:

∨∨
(X ∪ Y )∨∨
X ∨ ∨∨

Y

Although the last two rules of inference are not quite schematic in the

sense defined in section 2, we can still meaningfully define the notion of

“active subformula”. The guiding principle is that a subformula occurence

is active with respect to a given inference iff its principal connective is

explicitly mentioned in the definition of the inference rule. Thus any axiom

makes two subformula occurences active, any weakening inference makes one

subformula occurence active, and any cut, merge or unmerge inference makes

four subformula occurences active. It is easy to see that Lemma 1 also applies

to our constant-depth Frege proofs. In particular, we also have:

Theorem 14 Suppose A has an m line, constant depth Frege proof. Then

there is a formula B such that ||B|| = O(m) and such that B also has an
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m-line constant depth Frege proof and such that A is a substitution instance

of B . Furthermore, at most c ·m distinct nonatomic subformulas occur in the

proof of B , for c a constant. (In fact, c = 3 suffices.)

Proof The proof is as before: each nonatomic subformula of A which is not

active anywhere in the constant-depth proof may be replaced everywhere by

a new variable. The result is still a valid proof.

It is not difficult to see that the number of active subformulas at most

3m− 4 if m > 1: this is because each inference introduces at most three new

active subformulas, and because there are at least two axioms, which each

introduce only one active subformula. 2

We are now ready to prove Theorem 13. First, Theorem 14 tells us

that A has a depth d proof P with at most 3m − 4 distinct nonatomic

subformulas. For i ≥ 0 let αi be the number of distinct subformulas of

depth i in P . Clearly α1 + α2 + · · · + αd ≤ 3m − 4, and, by hypothesis,

α0 ≤ m . Let β0 = 1 and, for k > 0, βk = α0
∏k−1

i=1 (αi + 1). We claim that

(i) The size of any depth k ≥ 1 formula in P is no greater than βk .

(ii) The sum of the sizes of all distinct formulas of depth < k occuring in P

is no greater than βk .

We prove this claim by induction on k . First note that any depth zero formula

has size equal to 1. Now let’s establish the claim for k ≥ 1. Since a depth k

formula consists of zero or more negations applied to
∨∨

X with X a set of

formulas of depth < k , part (ii) of the claim implies part (i). Obviously, the

sum of the sizes of all distinct depth k− 1 formulas is bounded by αk−1 times

the maximum size, βk−1 , of a depth k − 1 formula. This plus the induction

hypothesis giving an upper bound βk−1 on the total size of all depth < k

formulas yields the bound αk−1βk−1 + βk−1 = βk as desired.

From Claim (ii), Theorem 13 follows immediately; since the product
∏d

i=1(αi + 1) is bounded by
(

3m−4
d

+ 1
)d

which is always bounded by 3 · md .
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8 The Renaming Rule

The renaming rule is a weak form of the substitution rule, which allows only

variables to be substituted. We prove in this section that for Frege systems,

the renaming rule is as powerful as the full substitution rule. (This theorem

was first presented as a homework problem in [6].)

Definition A substitution σ is a renaming substitution if its range is

contained in the set of propositional variables. A renaming inference is a

substitution inference in which the substitution is a renaming substitution.

Note that a renaming inference allows distinct variables to be identified since

a renaming substitution is not required to be injective. A renaming Frege

system consists of a Frege system augmented to allow renaming inferences.

A >/⊥-substitution is a substitution with range contained in {>,⊥} . (We

assume w.l.o.g. that the nullary constants > and ⊥ are in the propositional

language.) A >/⊥-substitution Frege proof system consists of a Frege system

augmented with substitution inferences for >/⊥ substitutions.

Theorem 15 Renaming Frege systems p-simulate substitution Frege systems.

Corollary 16 Renaming Frege systems p-simulate extended Frege systems.

Before proving the above theorem, we first prove the following lemma:

Lemma 17 >/⊥ Frege systems p-simulate substitution Frege systems.

Proof (of lemma). It will suffice to show that a substitution inference

that replaces occurrences of a variable p with a formula B can be succinctly

simulated in a >/⊥-substitution Frege proof. That is to say, from the

hypothesis A(p), we wish to infer A(B) with a >/⊥-substitution Frege

proof.

To do this, first infer A(>) and A(⊥) using two >/⊥-substition in-

ferences. Then derive, with no substitution inferences, the tautologies

B ∧ A(>) → A(B) and ¬B ∧ A(⊥) → A(B); these two deriviations have

number of lines linearly bounded by the number of connectives in A(p) and

with number of symbols quadratically bounded by the number of symbols in

A(p). From these four formulas, A(B) follows tautologically in a constant

number of inferences. 2
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Proof (of Theorem 15). By Lemma 17 it will suffice to prove a renaming

Frege proof system can p-simulate a >/⊥-substitution Frege proof. As usual,

we can assume that both proof systems are based on the same underlying

Frege proof system F . We assume there is a >/⊥-substitution Frege proof P

of a formula A(p1, . . . , pn) and we must show that there is a renaming Frege

proof of the same formula with size polynomially bounded by the size of P .

(The size of a proof is defined to equal the number of symbols in the proof.)

The renaming proof of A(~p) proceeds as follows. We first give a Frege

proof P0 of A(>, . . . ,>) which has size quadratically bounded by the size

of A . This is possible since A(>, . . . ,>) is a variable-free tautology; the

Frege proof merely proves the true subformulas of A(>, . . . ,>) and disproves

its false subformulas. Similarly, we give a polynomial-size Frege proof P1 of

A(⊥, . . . ,⊥).

Let p1, . . . , pm be the variables which occur in the proof P . Let Z be the

formula

(p1 ∨ p2 ∨ · · · ∨ pm) ∧ ¬(p1 ∧ p2 ∧ · · · ∧ pm)

which asserts that p1, . . . pm are not all true and are not all false. We shall

prove there is a polynomial-size renaming Frege proof P2 of the formula

Z → A(~p). To form P2 , begin by forming the sequence P ′ of formulas

obtained by replacing each line B(~p) in P with the formula Z → B(~p).

P ′ will not be a valid proof, but it can be patched up to be a valid proof as

follows. First, if B(~p) is inferred by a Frege inference in P , then Z → B(~p)

can be inferred by a constant number of Frege inferences from earlier lines

in P ′ . Finally, consider a >/⊥-substitution inference in P , say

B(pi)

B(>)

where we have suppressed the occurrences of the other variables in B . In P ′ ,
the hypothesis and conclusion of the inference become Z → B(pi) and

Z → B(>). To simulate this inference, first use m − 1 renaming inferences

to infer the formulas

Z(pi/pj) → B(pj)

for all j 6= i , from the hypothesis Z → B(pi); here Z(pi/pj) denotes the

result of replacing pi in Z with pj . Then give proofs for the m − 1 formulas
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pj ∧B(pj) → B(>), each of which has size quadratically bounded by the size

of B . From these 2n − 2 formulas, the formula Z−i → B(>) can easily be

proved with O(m2) many inferences, where Z−i is the formula

(p1 ∨ · · · ∨ pi−1 ∨ pi+1 ∨ · · · ∨ pm) ∧ ¬(p1 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pm).

(Note that each Z(pi/pj) with i 6= j is equivalent to Z−i .) Now the only

way that Z could be true and Z−i false is for the variables p1, . . . , pm to have

all the pj ’s with j 6= i assigned the same truth value and for pi to have the

opposite truth value. Thus, since B(>) is a tautology, an argument similar

to the one used to show the existence of the proofs P0 and P1 shows that

Z ∧ ¬Z−i → B(>)

has a polynomial-size Frege proof. From this and Z−i → B(>), the formula

Z → B(>) is derivable in a constant number of inferences.

A similar argument shows that the renaming rule can succinctly simulate

inferences of the form
Z → B(pi)

Z → B(⊥)
.

In this way, P ′ is patched up to be a valid renaming Frege proof P2 of

Z → A(~p).

Now it is easy to also see that

(p1 ∧ p2 ∧ · · · ∧ pm) ∧ A(>, . . . ,>) → A(~p)

and

¬(p1 ∨ p2 ∨ · · · ∨ pm) ∧ A(⊥, . . . ,⊥) → A(~p)

have proofs with are polynomially bounded by the size of P . From these and

from the proofs P0 , P1 and P2 we obtain a renaming Frege proof of A(~p)

with only a constant number of further Frege inferences. 2

It is interesting to note that the proof of Theorem 15 required the fact

that A(p) was a tautology in order to justify the existence of the proofs P0

and P1 of A(>, . . . ,>) and A(⊥, . . . ,⊥). Likewise, it also used the fact that

any conclusion of a substitution rule is a tautology. Therefore, our proof does

not apply to Frege systems enlarged with non-logical axioms; that is to say,

with axioms which are not tautologies or with rules of inference that do not

preserve validity.
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