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Abstract

We introduce new proof systems for propositional
logic, simple deduction Frege systems, general deduc-
tion Frege systems and nested deduction Frege systems,
which augment Frege systems with variants of the
deduction rule. We give upper bounds on the lengths
of proofs in these systems compared to lengths in
Frege proof systems. As an application we give a
near-linear simulation of the propositional Gentzen
sequent calculus by Frege proofs. The length of a
proof is the number of steps or lines in the proof.

A general deduction Frege proof system provides at
most quadratic speedup over Frege proof systems. A
nested deduction Frege proof system provides at most
a nearly linear speedup over Frege system where by
“nearly linear” is meant the ratio of proof lengths is
O(α(n)) where α is the inverse Ackermann function.
A nested deduction Frege system can linearly simulate
the propositional sequent calculus and hence a Frege
proof system can simulate the propositional sequent
calculus with proof lengths bounded by O(n · α(n)).

As a technical tool, we introduce the serial transitive
closure problem: given a directed graph and a list of
closure edges in the transitive closure of the graph,
the problem is to derive all the closure edges. We give
a nearly linear bound on the number of steps in such
a derivation when the graph is tree-like.

1 Introduction

A Frege proof system is an inference system for
propositional logic in which the only rule of inference
is modus ponens. Although it suffices to have modus
ponens as the single inference rule to obtain a complete
proof system, it is well-known that other modes of
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inference are also sound. A notable example of this is
the deduction rule which states that if a formula B has
a proof from an additional, extra-logical hypothesis A

(in symbols, A ` B ) then there is a proof of A ⊃ B .
This paper considers various strengthenings of this
deduction rule and establishes upper bounds on the
proof-speedups obtained with these deduction rules.

By a “speedup” of a proof, we mean the amount
that proofs can be shortened with additional inference
rules. In this paper, the length of a proof is the
number of lines in the proof; where a line consists
either a formula or a sequent (depending on the proof
system). We write k B (and A1, . . . , As k B )
to indicate that the formula B has Frege proof of
≤ k lines (from the hypotheses A1, . . . , As ). More
generally, we write “ T

k ” to mean “provable in proof
system T with ≤ k lines”. If S and T are proof
systems we say that S can linearly (respectively,
quadraticly) simulate T if, for any T -proof of k

lines, there is an S -proof of the same (or sometimes
an equivalent) formula of O(k) lines (respectively, of
O(k2) lines). We say that T provides at most linear
(respectively, quadratic speedup) over S if S can
linearly (respectively, quadraticly) simulate T .

An alternative, commonly used measure of the length
of a propositional proof is the number of symbols in
the proof. This is the approach used, for instance,
by Cook-Reckhow [3] and Statman [12]. It should be
noticed that the minimum number of lines in a Frege
proof of a formula is polynomially related to the min-
imum number of symbols in an extended Frege proof.
On the other hand, prior work on proof lengths in
first-order logic has frequently measured the number
of lines in proofs; this includes [2, 4, 6, 7, 8, 10, 11]



and others.

We begin by defining the main propositional proof
systems used in this paper. The logical connectives
of all our systems are presumed to be ¬ , ∨ , ∧ and
⊃ ; however, our results hold for any complete set of
connectives.

Definition A Frege proof system (denoted F ) is
characterized by:

(1) A finite set of axiom schemata. For example, a
possible axiom schema is (A ⊃ (B ⊃ A)); A and
B represent arbitrary formulas.

(2) The only rule of inference is Modus Ponens (MP):

A A ⊃ B

B

(3) A proof in this system is a sequence of formulas
A1, . . . , An (also called ‘lines’) where each Ai is
either a substitution instance of an axiom schema
or is inferred by Modus Ponens (MP) from some
Aj and Ak with j, k < i .

(4) The proof system must be consistent and com-
plete.

The length of an F -proof is the number of lines in
the proof; we write k A to indicate that A has
a Frege proof of length ≤ k . We further write
A1, . . . , As k B to mean that B is provable from
the hypotheses Ai with a Frege proof of ≤ k lines; in
other words, that there is a sequence of ≤ k formulas
each of which is one of the Ai ’s, is an axiom, or is
inferred by modus ponens from earlier formulas such
that B is the final formula of the proof. Although we
have not specified the axiom schemata to be used in
a Frege proof system, it is easy to see that different
choices of axiom schemata will change the lengths of
proofs only linearly.

The simplest form of the deduction theorem states
that if A ` B then ` A ⊃ B . This can be informally
phrased as a rule in the form

A ` B

A ⊃ B

which is called the 1-simple deduction rule; more
generally, the simple deduction rule is

A1, . . . An ` B

A1 ⊃ (· · · (An ⊃ B) · · ·)

We next define extensions to the Frege proof system
that incorporate the deduction theorem as a rule of
inference. For this purpose, the systems defined below
have proofs in which the lines are sequents of the
form Γ ² A ; intuitively, the sequent means that the
formulas in Γ tautologically imply A : operationally,
a sequent Γ ² A means that A has been proved using
the formulas in Γ as assumptions.

A general deduction Frege system (denoted dF ) incor-
porates a strong version of the deduction rule. Each
line in a general deduction Frege proof is a sequent of
the form Γ ² A where A is a formula and Γ is a set
of formulas. When Γ is empty, we write just ² A .
The four valid axioms and inference rules in a general
deduction Frege proof are:

² A − A an axiom

{A} ² A − Hypothesis

Γ1 ² A ⊃ B Γ2 ² A

Γ1 ∪ Γ2 ² B
− Modus Ponens

Γ ² B

Γ \ {A} ² A ⊃ B
− Deduction Rule

We write A1, . . . , An
dF
k B to indicate that

{A1, . . . , An} ² B has a general deduction Frege proof
of ≤ k lines.

Deduction Frege systems are quite general since they
allow hypotheses to be “opened” and “closed” (i.e.,
“assumed” and “discharged”) in arbitrary order. A
more restrictive system is the nested deduction Frege
proof system which requires the hypotheses to be
used in a ‘nested’ fashion. The nested deduction
Frege systems are quite natural since the correspond
to the way mathematicians actually reason while
carrying out proofs. A second reason the nested
deduction Frege system seems quite natural is that we
shall prove below that nested deduction Frege proof
systems can simulate with linear size proofs both the
propositional Gentzen sequent calculus and tree-like
general deduction Frege proofs.

The primary feature of the nested deduction Frege
proof system is that hypotheses must be closed in
reverse order of their opening. And after a hypothesis
is closed, any formula proved inside the scope of
the hypothesis is now longer available. For example,
a nested deduction Frege proof may look like the
following:



〈A1〉²A1 Hypothesis A1 opened
...

〈A1, A2〉²A2 Hypothesis A2 opened
...

〈A1, A2〉²A3

〈A1〉²A2 ⊃ A3 Deduction Rule; A2 closed
...

〈A1, A4〉²A4 Hypothesis A4 opened
...

〈A1, A4〉²A5

〈A1〉²A4 ⊃ A5 Deduction Rule; A4 closed
...

〈A1〉²A6

〈〉²A1 ⊃ A6 Deduction Rule; A1 closed

A sequent in a nested deduction Frege (ndF ) proof
is of the form Γ ² A where now Γ is a sequence of
formulas. An ndF proof is a sequence of sequents
Γi ² Ai (i = 1, 2, . . . , n) such that Γ0 is taken to
be the empty sequence and, for each i , one of the
following holds:

(a) Γi = Γi−1 and Ai is an axiom.

(b) Γi = Γi−1 ∗ Ai . This opens an assumption, ∗
denotes concatenating a formula to the end of
the sequence.

(c) Γi−1 is Γi ∗ B and Ai is B ⊃ Ai−1 . This is the
deduction rule.

(d) Γi = Γi−1 and Ai is inferred from Aj and Ak

by Modus Ponens where each of Γj ² Aj and
Γk ² Ak are available to sequent i . We say
sequent j is available to sequent i if j < i and
for all ` , if j < ` < i then Γj is an initial
subsequence of Γ` .†

We write A1, . . . , An
ndF

k B if 〈A1, . . . , An〉 ² B has
a nested deduction Frege proof with ≤ k sequents.

Nested deduction Frege proofs can be conveniently
represented in pictorial form as a column of formulas
with vertical bars that represent the opening, closing
and availability of assumptions. This is best defined

†It is also possible, though less elegant, to define sequent j
being available to sequent i iff j < i and Γj is an initial
subsequence of Γi−1 . Our Main Theorems still apply with
this alternative definition.

by an example; the fragmentary ndF -proof given
above would be pictorially represented as:



A1

...
 A2

...
A3

A2 ⊃ A3
 A4

...
A5

A4 ⊃ A5

...
A6

A1 ⊃ A6

Nested deduction Frege proofs are conceptually simple
and natural and, in practice, seem to simplify the pro-
cess of discovering proofs. Thus, it is surprising that
a Frege proof system can simulate nested deduction
Frege proofs with near linear size proofs: this fact is
the content of our main theorems below.

2 Summary of Results

In this section we outline our primary results giving
fairly sharp bounds on how much the deduction rule
can shorten proofs. Most of our results are stated in
the form “If proof system X can prove a formula in
n lines, then the formula has a Frege proof of f(n)
lines”. Obviously f depends on the system X .

First recall the usual proof of the deduction theorem
(see e.g. Kleene [5]) which establishes the following:

Theorem 1 (Deduction Theorem) There is a con-
stant c such that if A n B then c·n A ⊃ B .

(The constant c is equal to 5 in Kleene’s system).
The bound of c · n is obtained by replacing each
formula C occurring in a proof of B from A with
the formula A ⊃ C and then “filling in the gaps” in
the resulting proof with a constant number of lines
per gap. For axioms, this is easily done since if C is
an axiom then A ⊃ C can be proved in a constant
number of lines. For modus ponens inferences, this is
done using the fact that for any formulas A , C and
D there is a Frege proof of A ⊃ D from A ⊃ C and
A ⊃ (C ⊃ D) with a constant number of lines. If



the proof of Theorem 1 is iterated for m hypotheses,
then we get the result that if A1, . . . Am n B then

cmn
A1 ⊃ (A2 ⊃ · · · ⊃ (Am ⊃ B) · · ·). However we

can substantially improve the bound cmn :

Theorem 2 (Simple Deduction Theorem) Suppose
A1, . . . Am n B . Then

O(n+m)
(A1 ⊃ (A2 ⊃ · · · ⊃ (Am ⊃ B) · · ·)).

Proof Given an n line proof P of B from assump-
tions A1, . . . , Am , we construct a Frege proof P ′ of B

from the single assumption A1 ∧A2 ∧ · · ·∧Am (where
the conjunction is to be associated from left-to-right).
For any Frege proof system, there is a constant k such
that C ∧ D k C and C ∧ D k D . Thus, P ′ can be
constructed to (1) first derive each of A1, . . . , Am in
2k(m − 1) lines and (2) then derive B in ≤ n lines
(via P ). Clearly P ′ has O(m + n) lines and by one
application of Theorem 1, there is a Frege proof of
A1 ∧ · · · ∧ Am ⊃ B with O(m + n) lines. Finally it
can be shown by induction on m that

O(m)
[A1 ∧ · · · ∧ Am ⊃ B] ⊃

[(A1 ⊃ (A2 ⊃ · · · ⊃ (Am ⊃ B) · · ·))].

By combining these last two proofs with a Modus
Ponens inference, Theorem 2 is proved. 2

We use the name simple deduction Frege proof system
for the system in which all hypotheses must be opened
at the beginning a proof and closed at the end of a
proof. Theorem 2 shows that a Frege proof system
can simulate simple deduction Frege proofs with linear
size proofs; or equivalently, that the simple deduction
Frege proof system provides only a linear speedup (i.e.,
a constant factor speedup) over Frege proof systems.

An interesting corollary to Theorem 1 is that conjunc-
tions may be arbirarily reordered and reassociated
with linear size Frege proofs:

Corollary 3 Let B be any conjunction of A1, . . . , Am

in that order but associated arbitrarily. Let i1, . . . , in
be any sequence from {1, . . . m} and let C be any
conjunction of Ai1 , . . . , Ain

again in the indicated
order and associated arbitrarily. Then

O(m+n)
B ⊃ C.

Proof By Theorem 1 it suffices to show that
B

O(m+n)
C . The proof of B from C proceeds

as follows: (1) from the assumption B deduce each
subformula of B and, in particular, each of the
formulas A1, . . . , Am , and (2) deduce each subformula
of C from the smallest to the largest. Since there is
a constant k such that E ∧ F k E and E ∧ F k F

and E,F k E ∧ F for all formulas E and F , it is
clear that the proof contains O(m + n) lines. 2

We now consider the simulation of proof systems with
more powerful versions of the deduction rule.

Theorem 4 If dF
n B then

O(n2)
B .

Theorem 4 states that a general deduction Frege proof
system can provide no more than a quadratic speedup
over a Frege proof system; whether this quadratic
bound is optimal is an open question.

Proof For the proof, we let
m∧

i=1

Ai denote any

conjunction of the formulas Ai ordered and associated
arbitrarily (each Ai should occur exactly once as
a conjunct). To prove Theorem 4, we prove the
more general result that if {A1, . . . , Am} ² B has a

dF -proof P of n lines then (
m∧

i=1

Ai) ⊃ B has a Frege

proof P ′ of O(n2) lines. To form the proof P ′ replace
each sequent {A1, . . . , Am} ² B of P by the formula

(
m∧

i=1

Ai) ⊃ B ; it will suffice to “fill in the gaps” to

make P ′ a valid proof. First, an axiom in P becomes
w.l.o.g. an axiom of the Frege system. Second, a
hypothesis {A} ² A in P becomes the tautology
A ⊃ A which has a constant length Frege proof.

Third, the sequents in a Modus Ponens inference in P

Γ1 ² A ⊃ B Γ2 ² A

Γ1 ∪ Γ2 ² B

become the formulas
∧

Γ1 ⊃ (A ⊃ B) and
∧

Γ2 ⊃ A

and
∧

(Γ1 ∪ Γ2) ⊃ B . It will suffice to show that the
third formula can be proved from the first formulas
with a Frege proof of O(n) lines. By Corollary 3
there are Frege proofs of

∧
(Γ1 ∪ Γ2) ⊃ Γi for i =

1, 2 containing O(m) lines where Γ1 ∪ Γ2 contains
m formulas. From these latter two formulas and from∧

Γ1 ⊃ (A ⊃ B) and
∧

Γ2 ⊃ B there is a Frege proof
of

∧
(Γ1 ∪ Γ2) ⊃ B with a constant number of lines.



It is easily shown that the number of formulas in the
lefthand side of sequent in a dF -proof is bounded by
the number of lines in the proof; hence m ≤ n and for
Modus Ponens, one can “fill in the gap” in P ′ with
O(n) lines.

Fourth, the sequents in a deduction rule inference
in P

Γ1 ² B

Γ2 ² A ⊃ B

where Γ2 is Γ1 \ {A} become the formulas
∧

Γ1 ⊃ B

and
∧

Γ2 ⊃ (A ⊃ B). In this case, by Corollary 3,
there is a Frege proof of (A ∧ ∧

Γ2) ⊃ ∧
Γ1 of O(n)

lines (again since the number of formulas in the
conjunction is bounded by n). With this, there is
a Frege proof of

∧
Γ2 ⊃ (A ⊃ B) from

∧
Γ1 ⊃ B

with constantly many additional lines. Thus we have
“filled the gap” for the deduction rule inference with
O(n) lines. 2

We next state our main results that Frege systems
can simulate nested deduction Frege proof systems
with nearly linear proof size. The “near linear” size
estimates are in terms of extremely slow growing
functions such as log∗ and the inverse Ackermann
function. The log∗ function is defined so that log∗ n is
equal to the least number of iterations of the logarithm
base 2 which applied to n yield a value < 2. In other
words, log∗ n is equal to the least value of k such that

n < 22···
2

where there are k 2’s in the stack. To get
even slower growing functions, we define the log(∗i)

functions for each i ≥ 0. The log(∗0) function is just
the base 2 logarithm function and the log(∗1) is just
the log∗ function. For i > 1, the log(∗i) function is
defined to be equal to the least number of iterations
of the log(∗i−1) function which applied to n yields a
value < 2. The Ackermann function can be defined
by the equations:

A(0,m) = 2m

A(n + 1, 0) = 1

A(n + 1,m + 1) = A(n,A(n + 1,m))

It can be shown that A(i + 1, j) is equal to the
least value n such that log(∗i)(n) ≥ j , this means
that log(∗i) A(i + 1, j) = j . It is well-known that
the Ackerman function is recursive but dominates
eventually every primitive recursive function.

Definition The inverse Ackerman function α is
defined so that α(n) is equal to the least value of i

such that A(i, i) > n . Equivalently, α(n) is equal to
the least i such that log(∗i−1) n < i .

Main Theorem 5 Let i ≥ 0 . Suppose ndF
n B and

that in this ndF -proof of B assumptions are opened
m times. Then

O(n+m log(∗i) m)
B.

Main Theorem 6 If ndF
n B then

O(n·α(n))
B .

These Main Theorems are extremely close to a linear
simulation of nested deduction Frege proof systems by
Frege proof systems. Since it is immediate that m < n

it follows that if one could somehow bound the number
of hypotheses m by O(n/ log(∗i) n) for a fixed value i ,
then one would obtain a linear simulation. However,
we have no indication that m can be bounded in this
way.

The proofs of the Main Theorems are postponed to
the next two sections. First, we discuss and prove
some corollaries which give an unexpected connection
between nested deduction Frege proof systems and
tree-like dF -proofs and the propositional Gentzen
sequent calculus. A proof is treelike if no line is used
more than once in the proof.

Theorem 7 If Γ ² A has a treelike general deduction
Frege proof of n lines, then ndF

O(n)
Γseq ² A where Γseq

is any sequence containing the same elements as the
set Γ without repetition.

Corollary 8 If A has a treelike dF -proof of n lines,
then

O(n·α(n))
A .

One elementary fact to note about ndF -proofs is
that if Π is a sequence of k formulas and if the
sequent Π ² A has an ndF -proof of n lines, then the
sequent also has an ndF -proof of n lines in which
the first k lines are hypothesis inferences which open
the hypotheses in Π— of course these k hypotheses
remain open at the end of the proof. By reordering
the first k lines of the ndF -proof, it is clear that for
any permutation Π′ of Π, Π′ ² A also has an n line
ndF -proof. We earlier used the notation Π ∗ A to
denote the concatenation of a formula A to the end of
the sequence Π. For convenience, we define Γ∗A with
Γ a set of formulas to be ΠΓ ∗ A where ΠΓ is any



sequence containing all the formulas in Γ (without
repetition). This notation will be used only when the
order of the formulas in ΠΓ is not important.

To prove Theorem 7 it will suffice to prove the
following lemma; since, from an ndF -proof of
Π ∗ (¬B) ² p ∧ ¬p the sequent Π ² ¬B ⊃ (p ∧ ¬p)
can be inferred by the deduction rule and from this
Π ² B can be inferred in a constant number of lines.
(Here p is an arbitrary propositional variable.)

Lemma 9 If {A1, . . . , Am} |= B has a tree-like
general deduction Frege proof of n lines, then

ndF
O(n) 〈A1, . . . , Am,¬B〉 |= p ∧ ¬p .

Proof We shall prove by induction on n that, if
the sequent {A1, . . . , Am} |= B has a tree-like dF -
proof P of n lines then there is an ndF -proof P ′

of 〈A1, . . . , Am,¬B〉 ² p ∧ ¬p of length ≤ c · n lines,
for some constant c . The proof splits into four cases
depending on the final inference in P .

Case 1: The last line of P is |= A , for A an axiom.
Then P ′ is just an ndF -proof of 〈¬A〉 |= p ∧ ¬p

which has a constant number of lines, say c1

lines.

Case 2: The last line of P is {A} |= A . Then P ′ is
an ndF -proof of 〈A,¬A〉 |= p ∧ ¬p which has a
constant number of lines, say c2 lines.

Case 3: The last line of P is

Γ1 |= A ⊃ B Γ2 |= A

Γ1 ∪ Γ2 |= B

Assume the proof of Γ1 |= A ⊃ B has n1 lines
and the proof of Γ2 |= A has n2 lines, so that
n = n1 + n2 + 1 since P is treelike. By the
induction hypothesis, there are ndF -proofs P1

and P2 of the sequents Γ1 ∗(¬(A ⊃ B)) |= p ∧ ¬p

and Γ2 ∗ (¬A) |= p ∧ ¬p of lengths ≤ c · n1 and
≤ c · n2 lines, respectively. The proof P ′ of

Γ1 ∪ Γ2 ∗ (¬B) |= p ∧ ¬p is:


Γ1 ∪ Γ2


¬B
 ¬(A ⊃ B)

...
p ∧ ¬p


 from P1

¬(A ⊃ B) ⊃ (p ∧ ¬p)
...

A ⊃ B
 ¬A

...
p ∧ ¬p


 from P2

¬A ⊃ p ∧ ¬p
...

A
B by modus ponens

This proof has ≤ c · n1 + c · n2 + d lines where d

is a constant. Taking c ≥ d , the proof has ≤ c ·n
lines.

Case 4: The last line of P is:

Γ |= C

Γ \ {A} |= A ⊃ C

By the induction hypothesis, there is a ndF -proof
P1 with c(n − 1) lines of

Γ ∗ ¬C |= p ∧ ¬p.

The proof of (Γ \ {A}) ∗ ¬(A ⊃ C) |= p ∧ ¬p is:


Γ \ {A}


¬(A ⊃ C)
...

A
¬C
...

p ∧ ¬p

}
from P1

This proof has size ≤ c(n − 1) + d′ where d′ is
a constant. So taking c ≥ d′ , the proof has size
≤ c · n .

Lemma 9 follows from cases 1-4, by taking
c ≥ c1, c2, d, d′ and Theorem 7 is proved. 2

The next theorem gives a linear simulation of the
propositional Gentzen sequent calculus by the nested



deduction Frege system. For this theorem, it is cru-
cial that Gentzen sequent calculus proofs are always
treelike. For the definition of the Gentzen sequent
calculus, see Takeuti [13]; we are concerned with only
the propositional fragment of the sequent calculus.
The following theorems also hold for many variations
of the sequent calculus, for instance with the mix
rule, or with a rule that allows arbitrary reordering of
cedents, or with either the multiplicative or additive
versions of rules. (But the treelike property is crucial
for our proofs.)

Theorem 10 Suppose the sequent Γ→∆ has a
Gentzen sequent calulus proof of length n lines. Then

ndF
O(n)

∧
Γ ⊃ ∨

∆ .

Corollary 11 If →A has a Gentzen sequent calcu-
lus proof of length n lines, then

O(n·α(n))
A .

Theorem 10 is proved by showing by induc-
tion on n that, if A1, . . . , Ak→B1, . . . , B` has a
Gentzen sequent calculus proof of n lines, then

ndF
O(n) 〈A1, . . . , Ak,¬B1, . . .¬B`〉 ² p ∨ ¬p . Because of

space constraints, the proof of Theorem 10 is omitted
from this extended abstract.

Corollary 11 improves a theorem of Orevkov [10] which
states that if →A has a proof in a sequent calculus
KGI of n lines and height h , then

O(n log h)
A .

The proof system KGI is a reformulation of the
usual sequent calculus [9]; although KGI proofs need
not be tree-like, Gentzen proofs must be tree-like in
order to be linearly translated in KGI. Orevkov, like
us, does not need to count structural inferences.

3 Proof of the Main Theorems

In this section we reduce the main theorems to a serial
transitive closure problem which will be considered in
the next section.

Suppose that we have a natural deduction Frege
proof P of a sequent ² B such that P contains n lines
and uses the hypothesis rule m times. To prove Main
Theorem 5 for a fixed value of i , we will translate P

into a Frege proof of B containing O(n+m log(∗i) m)
lines. Likewise, for Main Theorem 6, P is translated
into a Frege proof of B of O(n · α(n)) lines.

Each line in the proof P is of the form Γ ² B

where Γ is a sequence of formulas 〈A1, . . . , Ak〉 .
¿From the sequent Γ ² B we form the logically

equivalent formula (
∧

Γ) ⊃ B where conjunction
is associated from left to right; thus

∧
Γ is the

formula ((· · · (A1 ∧ A2) ∧ · · · ∧ Ak−1) ∧ Ak). When Γ
is empty,

∧
Γ is a fixed tautology. This translation of

sequents into equivalent formulas gives us a sequence
of formulas P ′ ; unfortunately, P ′ is not a valid Frege
proof and so it remains to show how P ′ can be made
into a valid Frege proof with only a relatively small
increase in the number of lines.

To make P ′ into a valid Frege proof we shall add
additional lines. There are four rules of inference for
ndF : Axiom, Hypothesis, Deduction Rule and Modus
Ponens. For each rule of inference, we explain what
lines need to be added to P ′ ; we save Modus Ponens
for last since it is by far the most difficult case.

First consider an axiom inference in P which is
of the form Γ ² B where B is an axiom, so P ′

contains
∧

Γ ⊃ B as the corresponding formula.
Since a Frege proof system is axiomatized with axiom
schemata, there is a proof of B ⊃ (X ⊃ B) with a
constant number of lines (independent of the formulas
B and X ). Thus there is a constant length Frege
proof of the formula

∧
Γ ⊃ B ; namely, take the

axiom B , derive B ⊃ (
∧

Γ ⊃ B) and then use modus
ponens. This constant length Frege proof is inserted
into the sequence P ′ .

Second, consider a hypothesis inference where
P contains a sequent Γ ∗ B ² B and P ′ contains
((∧Γ) ∧ B) ⊃ B . It is easy to derive (X ∧ B) ⊃ B

in a Frege proof in a constant number of lines where
the constant is independent of the formulas B and
X , so this sequent in P ′ can be derived in a constant
number of lines.

Third, consider a deduction rule inference in P ; here
P contains a sequent Γ ∗A ² B followed immediately
by Γ ² A ⊃ B and P ′ contains the corresponding
formulas ((∧Γ) ∧ A) ⊃ B and (∧Γ) ⊃ (A ⊃ B).
Again there is a constant length Frege proof of the
latter formula in P ′ from the former one; this constant
length proof is to be inserted into P ′ .

Fourth and hardest, we consider a line in P ′ that
corresponds to a sequent of P obtained by Modus
Ponens. Suppose that in P there are lines Γ1 ² A

and Γ2 ² A ⊃ B from which Γ ² B is inferred by
Modus Ponens. Since P is a nested deduction Frege
proof, Γ1 and Γ2 are initial subsequences of Γ. In P ′

the formulas (
∧

Γ1) ⊃ A and (
∧

Γ2) ⊃ (A ⊃ B)
appear and from them we wish to derive the formula



(
∧

Γ) ⊃ B in a small number of lines. Note that there
is a constant size Frege proof of X ⊃ B from the
hypotheses X1 ⊃ A and X2 ⊃ (A ⊃ B) and X ⊃ X1

and X ⊃ X2 where the constant is independent of the
formulas X , X1 , X2 , A and B . Thus we will modify
P ′ by adding the formulas (

∧
Γ) ⊃ (

∧
Γi) at the

beginning and inserting a Frege proof of (
∧

Γ) ⊃ B

from these new formulas and from the other two
formulas.

It remains now to give short Frege proofs of the
formulas (

∧
Γ) ⊃ (

∧
Γ′) which have been added to

beginning of P ′ . By examining the fourth case above
we see that there are < 2n such formulas and they
always have Γ′ an initial subsequence of Γ and thus
they are tautologies of the form

((· · · (A1∧A2)∧· · ·)∧Ak) ⊃ ((· · · (A1∧A2)∧· · ·)∧A`)

where without loss of generality ` < k ≤ m . To
prove one such tautology requires O(k − `) lines.
Unfortunately, if we used O(k − `) lines for each
tautology, the total number of lines would only be
bounded by O(m · n) instead of the desired bound of
O(n + m log(∗i) m) or O(n · α(n)). To get this lower
bound on the number of lines we must exploit the
fact that there are many tautologies to be proved. In
other words, we can achieve significant reduction in
the number of proof lines by proving the 2n many
tautologies simultaneously rather than separately.

To give the short Frege proofs, we shall rephrase
the problem as a transitive closure problem. We shall
work now only with tautologies of the form

∧
Γ ⊃ ∧

Π
where Π is a proper initial subsequence of Γ and may
be the empty sequence. Since there were m uses of
the hypothesis rule in P , there are m + 1 distinct∧

Γ’s; we think of them forming a directed graph G

with an edge from
∧

Γ to
∧

Π iff Γ extends Π by
one element. There are also ≤ 2n distinct “target”
tautologies which we need to prove. The Frege proof
of these target tautologies will proceed as follows:
First prove in O(m) lines the tautologies

∧
Γ ⊃ ∧

Π
where Γ extends Π by a single element (this generally
includes non-target tautologies). Next we prove all the
target tautologies in O(n+m log(∗i) m) or O(n ·α(n))
lines. The procedure for this latter step is to prove
many intermediate formulas

∧
Γ ⊃ ∧

Π from the
transitive closure of the directed graph of

∧
Γ’s. The

details are sketched in the next section.

As an example, for the nested deduction proof pic-

tured in section 1, the directed graph of tautologies
is:

∧〈A1, A2〉∧〈〉 ∧〈A1〉 ∧〈A1, A4〉

4 Serial Transitive Closure Problem

The serial transitive closure problem is the problem
of deriving a set of “closure edges” in the transitive
closure of a directed graph. If X and Y are nodes
in a directed graph we write X → Y to indicate the
presence of an edge from X to Y . Of course, any edge
in the transitive closure of a graph can be obtained
by a series of closure steps which are inferences of the
form

A → B B → C

A → C

Identifying → and ⊃ it is obvious that a closure step
can be simulated with a constant number of inferences
in a Frege proof.

Serial Transitive Closure of Graphs:

An instance consists of (1) a directed graph G with
m edges and (2) a list of n closure edges Xi → Yi

(i = 1, . . . , n) in the transitive closure of G .

A solution is a sequence of edges Ui → Vi (i =
1, . . . , s) containing all n closure edges such that
each Ui → Vi is inferred by a single closure step
from earlier edges and/or edges in G . We call s

the number of steps of the solution.

Note that the number of steps in a solution counts
only closure steps and does not count edges that are
already in G . A directed graph is a tree if it is a tree
in the usual sense, with root at the top and with all
edges downwards (or all edges upwards).

Theorem 12 Let i ≥ 0 . If the directed graph G is
a tree then the serial transitive closure problem has a
solution with O(n + m log(∗i) m) steps.

Theorem 13 If the directed graph G is a tree then
the serial transitive closure problem has a solution with
O((n + m) · α(m)) steps.

Theorems 12 and 13 are precisely what is needed to
complete the proof of the Main Theorems. This is
because in section 3 the proof of the Main Theorems



was reduced to the problem of proving ≤ 2n ‘target’
tautologies. Let G be the graph with m edges defined
at the end of section 3 and let the target tautologies
be the closure edges; then any solution of the serial
transitive closure problem leads to a Frege proof of
the target tautologies of length O(s).

For the proofs of the two theorems we may assume
without loss of generality that G is a rooted tree with
edges pointing away from the root. We always picture
trees with the root at the top, except in the special
case of one-trees, which have fanout 1, the root is to
the left and edges point to the right. The concepts of
child, father, ancestor and descendent are defined as
usual. The size of a tree is defined to be the number of
edges in the tree (not the number of nodes). If a tree
has e edges, then it has exactly e+1 nodes. A subtree
of a tree is a connected subset of the tree. A subtree
is unscarred if it is a subtree in the usual sense, i.e.,
consists of all the edges below a given node in the tree.
A subtree S may also be obtained by first removing
some set of subtrees and then letting S consist of
all the remaining edges below some given remaining
node: S is said to have a scar at any of its leaf
nodes which are roots of earlier removed (nontrivial)
subtrees. Two subtrees are said to be disjoint if they
have no edges in common; disjoint subtrees may share
a single node since the root of one may be a scar of
the other. If X is a node in T , then TX denotes the
subtree of T rooted at X . The immediate subtrees of
a tree T are the maximal proper subtrees of T , i.e.,
the trees TX for X a child of the root of T . The
following lemma is well-known: see, e.g., Brent [1].

Lemma 14 Let N ≥ 0 and T be a tree with ≥ N

edges. Then there is a subtree of T which has size
≥ N edges such that each of its immediate subtrees
has < N edges.

Lemma 14 is easily proved by taking a minimal subtree
with ≥ N edges. The next theorem restates the case
i = 0 of Theorem 12 with fairly tight bounds on the
constants. The log function is base two.

Theorem 15 If the directed graph G is a tree then
the serial transitive closure problem has a solution with
n + m · log m closure steps.

Proof We will first derive ≤ m log m edges, called
auxiliary edges; each auxiliary edge will be obtained

with a single closure step. The choice of auxiliary
edges is independent of the closure edges; however,
from the edges in G and the auxiliary edges each
closure edge can be obtained with (at most) one
additional closure step.

For illustration purposes, we first prove the theorem
for G a one-tree and then do the general case.
Although the general case includes the linear case,
the proof of the linear case presents the main ideas
more clearly.

Linear Case: Assume G is a one-tree; that is, each
node except the leaf has a single child. In this case
we may assume the nodes of G are named X0 ,. . . ,
Xm and that the edges of G are just Xi → Xi+1

for 0 ≤ i < m . The auxiliary edges will be derived
in rounds, the first round will in essence split G into
two subtrees of m/2 edges, the second round splits
G into four subtress of m/4 edges, etc., for a total of
dlog me − 1 rounds. The process is illustrated for the
case m = 8 in Figure 1; the upper edges of Figure 1
are derived in the first round and the lower edges in
the second round.

Round 1: Xbm/2c is the midpoint of the one-tree G .
The auxiliary edges added in round 1 are the
edges of the form Xj → Xbm/2c for 0 ≤ j <

bm/2c and the edges of the form Xbm/2c → Xk

for m/2 < k ≤ m . There are exactly m such
edges and they can derived with m closure steps if
we derive them in the right order; namely, letting
j range from bm/2c − 1 down to 0 and letting k

range from bm/2c + 1 up to m . (Actually only
m − 2 closure steps are needed since two of the
auxiliary edges are already in G .)

Round 2: Round 1 split G into two halves; the
midpoints of these two halves are Xbm/4c and
Xb3m/4c . In round two, auxiliary edges to and
from these midpoints are derived. Namely, (1) the
edges Xj → Xbm/4c with j < bm/4c , and (2) the
edges Xbm/4c → Xj with bm/4c < j ≤ bm/2c ,
and (3) the edges Xj → Xb3m/4c with
bm/2c ≤ j < b3m/4c , and (4) the edges
Xb3m/4c → Xj with b3m/4c < j ≤ m . There are
m such edges and by deriving them in the right
order each can be obtained with a single closure
step. (Again, taking into account duplicate
edges, fewer than m closure steps are needed
for round 2.)
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Round ` : For round number ` we add auxiliary
edges incident on the nodes Xbk·m/2`c for odd val-
ues of k . Specifically, for each odd value k < 2`

the following auxiliary edges are derived: (1) the
edges Xj → Xbk·m/2`c for

⌊
(k − 1)m/2`

⌋ ≤ j <⌊
k · m/2`

⌋
and (2) the edges Xbk·m/2`c → Xj

for
⌊
k · m/2`

⌋
< j ≤ ⌊

(k + 1)m/2`
⌋
. Again,

there are exactly m such edges (some of them
duplicates of edges from G and edges from
earlier rounds); this is seen by using the obvious
one-to-one correspondence with the edges of G .
And by deriving them in the right order, each
auxiliary edge is obtained with a single closure
step.

Since there are no more than log m rounds and fewer
than m closure steps are needed in each round, it is
clear that there are ≤ m log m auxiliary edges and
that the number of closure steps so far is bounded by
m log m .

Now we claim that each of the n closure edges can be
obtained with at most a single closure step from the
m log m auxiliary edges (of course some of the closure
edges may also be auxiliary edges). To prove this,
suppose Xi → Xj is a closure edge; of course, i+1 < j

without loss of generality. Find the least value of `

such that for some odd k , i ≤ ⌊
k · m/2`

⌋ ≤ j . If
either of the inequalities are actually equalities, then
Xi → Xj is an auxiliary edge added in round ` and no
additional closure step is needed. If both inequalities
are strict, then Xi → Xbk·m/2`c and Xbk·m/2`c → Xj

are both auxiliary edges and from these the closure
edge Xi → Xj can be derived with one closure step.

It follows that all the closure and auxiliary edges are
derived with fewer than n+m log m closure steps and
Theorem 15 is proved for G a one-tree.

General Case: The proof of Theorem 15 for G a tree
uses a construction similar to the proof of the linear
case. For the general case, we shall use Lemma 14 to
split G into multiple subtrees of size less than half the
size of G (one of these is scarred); then we similarily
split these subtrees into subtrees of size less than one
quarter the size of G , etc. As in the linear case,
we derive auxiliary edges of G as we split G into
subtrees; this process will be done in ≤ log m rounds.

Round 1: By Lemma 14 there is a node X in G such
that GX has ≥ m/2 edges, but the immediate
subtrees of GX have size < m/2 edges. Let
G1, . . . , Gk be the immediate subtrees of GX .
Let G0 be the tree obtained by removing GX

from G ; i.e., G0 is the scarred subtree with root
at the root of G and with a single scar at X .

During round 1, the following auxiliary edges
are derived: (1) for each ancestor Y of X the
edge Y → X is an auxiliary edge, and (2) for
each descendent Y of X the edge X → Y is an
auxiliary edge. By deriving auxiliary edges in the
correct order (namely, shorter edges first), only
one closure step is needed for each auxiliary edge.
There are at most m auxiliary edges and thus
fewer than m closure steps are needed in round
1.

Round 2: Round 1 split G into subtrees G0, . . . , Gk

of size ≤ m/2 edges. In round 2 we consider
each subtree Gi separately and process it in the
manner of round 1. Specifically, suppose Gi has
mi edges; then by Lemma 14, there is a node
X in Gi such that (Gi)X has ≥ mi/2 edges
and each of its immediate subtrees (in Gi ) have
size < mi/2. Now auxiliary edges are added
from each ancestor of X in Gi to X and from
X to each of its descendents in Gi ; there are



≤ mi such auxiliary edges and each can be added
with at most one closure step. Gi has been split
into the following subtrees of size at most mi/2:
the immediate subtrees of (Gi)X and the subtree
obtained by removing (Gi)X from Gi . These
subtrees will be treated in the next round.

The total number of closure steps used to derive
auxiliary edges in round 2 is less than m =

∑
mi .

Round ` : The previous round ` − 1 resulted in G

being split into multiple, disjoint subtrees of size
≤ m/2`−1 . For each such subtree H of size
mH ≥ 2, Lemma 14 gives a node X in H

such that HX has size ≥ mH/2 and each of
HX ’s immediate subtrees have size < mH/2. As
before, auxiliary edges from each ancestor of X in
H to X and from X to each descendent of X in
H are added in fewer than mH closure steps.
And the immediate subtrees of HX and the
subtree H with HX removed have size ≤ mH/2
and will be treated in next round.

Since the total size of all the disjoint subtrees is
equal to m edges, fewer than m closure steps are
used in this round.

The process of adding auxiliary edges ends when all
the subtrees being considered have size < 2; namely
after no more than blog mc rounds. Thus at most
m log m closure steps are needed for deriving auxiliary
edges.

As in the linear case, each of the n closure edges can
be obtained with at most a single closure step from
the m log m auxiliary edges. To prove this, suppose
Y and Z are nodes in G and Y → Z is a closure
edge; of course, Y is an ancestor of Z . Find the
greatest value of ` , such that Y and Z are in the
same subtree H considered during round ` . Unless
Y → Z is already an edge in G , the nodes Y and
Z are in different subtrees in the next round. Hence
the node X chosen to split subtree H in round `

has Y as an ancestor and Z as a descendent. Thus
the edges Y → X and X → Z are auxiliary edges
derived during round ` and the closure edge can be
added with a single further closure step.

Thus the total number of inference steps needed for a
solution of the serial transitive closure problem is less
than n + m log m and Theorem 15 is proved. 2

The rest of proof of Theorem 12 proceeds by proving
the following theorem by induction on i :

Theorem 16 Let i ≥ 0 . If the directed graph G is
a tree then the serial transitive closure problem has a
solution with (1 + 2i)(n + m log(∗i) m) steps.

Proof When i = 0, the theorem is just a restatement
of Theorem 15. So fix i ≥ 1 and assume the theorem
holds for i−1. We shall prove the theorem by splitting
G into subtrees of size log(∗i−1) m , adding auxiliary
edges and using the auxiliary edges to derive some
of the closure edges; we shall iterate this process
log(∗i) m many times after which the subtrees all
have size ≤ 1. The derivation of the closure edges
from the auxiliary edges will depend on the induction
hypothesis.

X
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T2

Figure 2

Node X is the root of T2 and a scar of T1 . Dotted
edges are the auxiliary edges derived in Step 1.
The edges of the second kind are the two dotted
edges with head X; one of these is also of the first kind.

Let us begin by describing the reduction process which
will be used iteratively. The input to the reduction
process is a subtree T of G ; we assume T has M > 1
edges. The output of the reduction process will
consist of a set of node-disjoint subtrees of T and
the derivation of the closure edges whose endpoints
are in T but are in different subtrees output by T .
The reduction process has three steps:

Step 1: In the first step, T is partitioned into subtrees
and auxiliary edges are derived:



By iteratively applying Lemma 14, T can be split into
a finite set of subtrees T0, . . . , Tk so that (1) the edges
of the Ti ’s partition the edges of T , and (2) for each
i > 0, Ti has size ≥ log(∗i−1) M edges and (3) for all
i ≥ 0, each immediate subtree of Ti has < log(∗i−1) M

edges, and (4) T0 has root at at the root of T and the
rest of the Ti ’s have a root which is a scar of another
subtree in the partition. Clearly there will be at most⌈
M/ log(∗i−1) M

⌉
many subtrees in the partition.

The following auxiliary edges are derived in Step 1:
(1) for each Ti with root X , the edges X → Z for
all other nodes Z of Ti are auxiliary edges of the
first kind; and (2) for each i and j such that the
root Y of Tj is a scar of Ti , the edges X → Y

for all ancestors X of Y in Ti are auxiliary edges
of the second kind. Figure 2 illustrates the choice of
auxiliary edges. It is easy to see that by deriving
shorter edges first, each auxiliary edge can be derived
by single closure step. Further, we claim that there
are ≤ 2M auxiliary edges. It is easy to see that there
≤ M auxiliary edges of the first kind, since each node
in T is at the head of at most one such auxiliary edge.
To bound the edges of the second kind, note that if
Ti has the root Y of Tj as a scar then the ancestors
of Y in Ti consist of the root of Ti and some of the
nodes in one of the immediate subtrees of Ti . The
edge from the root of Ti to Y is also an edge of the
first kind and has already been derived. Hence there
are < log(∗i−1) M auxiliary edges from nodes inside
Ti to Y . Also, the root of Tj can not be the root of
T (i.e., j 6= 0) so there are at most M/ log(∗i−1) M

different trees Tj to consider. Taking the product of
the number of subtrees and the number of edges, we
have that there are less than M auxiliary edges of the
second kind.

Step 2: In this step we merely describe the output of
the reduction process. The output trees are precisely
the set of immediate subtrees of T0, . . . , Tk . Note
that the output trees are disjoint and partition the
non-root nodes of T but do not contain all the edges
of T . Each output tree has < log(∗i−1) M edges.

Step 3: In the third step we derive every closure edge
X → Y with X and Y in T but in different output
trees. Let N be the number of such closure edges.
We derive these closure edges by setting up a new
instance of the serial transitive closure problem and
applying the induction hypothesis. The new instance
will consist of a directed graph G′ which has as nodes

the roots of the trees T0, . . . , Tk and has as edges
the auxiliary edges from Step 1 which connect these
roots. The closure edges of the new instance are the
edges X ′ → Y ′ which are obtained by the following
method: for each closure edge X → Y (of the original
problem) such that X is a node in Ti and Y is a
node in Tj with i 6= j , let Y ′ be the root of Tj and
let X ′ be the (scarred) leaf of Ti such that Y is a
descendent of X ′ . It will be important that X → X ′

and Y ′ → Y are auxiliary edges (of the second and
first kind respectively).

Clearly the new instance of the serial transitive closure
problem has < M/ log(∗i−1) M edges in G′ and ≤ N

closure edges. By the induction hypthesis, it has a
solution of size less than or equal to

(1+2(i−1))
[
N+

M

log(∗i−1) M
log(∗i−1)

(
M

log(∗i−1) M

)]

which is trivially bounded by

(1 + 2(i − 1)) · [N + M ] .

Given a solution to the new serial transitive closure
problem, for all X , X ′ , Y and Y ′ as above, we can
derive the closure edge X → Y in two closure steps
from the auxiliary edges X → X ′ and Y ′ → Y and
the closure edge X ′ → Y ′ of the new problem.

To conclude the description of the reduction process,
we note that the total number of closure steps needed
in the reduction process is bounded by

2M + (1 + 2(i − 1))(N + M) + 2N,

which is more suggestively written as

(1 + 2i)(N + M).

The overall procedure for proving Theorem 16 can
now be very simply explained in terms of iterating the
above reduction process:

Round 1: Apply the reduction process to the whole
tree G . This derives n1 closure edges (n1 is the value
of N from the reduction process) and outputs a set
of subtrees of G which partition the non-root nodes
of G and are each of size < log(∗i−1) m edges. The
total number of closure steps in round 1 is bounded
by

(1 + 2i)(n1 + m).



Round ` : The previous round generated a set of
node-disjoint subtrees each of size less than

log(∗i−1)(log(∗i−1)(· · · (log(∗i−1)︸ ︷︷ ︸
`−1 times

(m)) · · ·)).

Apply the reduction process (steps 1-3) to all of these
subtrees which contain more than one edge; the overall
result is that some number n` of closure edges are
derived and that a set of node-disjoint output trees
each of size less than

log(∗i−1)(log(∗i−1)(· · · (log(∗i−1)︸ ︷︷ ︸
` times

(m)) · · ·))

is generated. The total number of closure steps in
round ` is less than

(1 + 2i)(n` + m).

The rounds are iterated until all the subtrees have
size ≤ 1; namely, in no more than log(∗i) m rounds.
At the end every closure edge has been derived. The
total number of closure steps used is bounded by

log(∗i) m∑
`=1

(1 + 2i)(n` + m)

and since
∑

n` ≤ n , the total number of closure edges
is bounded by

(1 + 2i)(n + m log(∗i) m).

That completes the proofs of Theorems 16, 12 and 5.
2

It remains to prove Theorem 13. To do this we first
note the following simple corollary of Theorem 16:

Lemma 17 If the directed graph G is a tree, then the
serial transitive closure problem has a solution of size
O(n · α(m) + m · (α(m))2) .

Proof The tree G has m edges. Let i = α(m); this
means that log(∗i) m ≤ i (in fact, log(∗i−1) m ≤ i).
By Theorem 16, the serial transitive closure problem
for G has a solution of size bounded by

(1 + 2α(m)) · (n + m · α(m)). 2

As slow-growing functions go, (α(m))2 is not so
different from α(m); nonetheless we show how to
replace the α(m)2 factor in Lemma 17 by α(m). For
this, we shall apply the reduction process used in
the proof of Theorem 16. As in step 1 before, G is
split into disjoint subtrees; now each contains at least
α(m) edges and each one has all immediate subtrees
of size less than α(m). Auxiliary edges are derived
exactly as in step 1 before. As in step 3, the closure
edges which span two different subtrees are derived;
by Lemma 17 and the type of counting used in step 3,
this takes at most

2·m+c

[
Nα

(
m

α(m)

)
+

m

α(m)

(
α

(
m

α(m)

))2
]
+2·N

closure steps where N is the number of closure edges
derived in step 3 and c is the constant from Lemma 17.
Since α

(
m

α(m)

)
< α(m), the number of closure steps

is bounded by

2 · m + c · (N · α(m) + m · α(m)) + 2 · N.

Instead of iterating the reduction process, we instead
just directly derive the rest of the closure edges. If
there are remaining N ′ closure edges then a total of
N ′ · α(m) closure steps suffice; this is because each
remaining closure edge connects two nodes inside a
subtree of size < α(m).

Since n = N+N ′ , the serial transitive closure problem
has a solution of size bounded by

(c + 2)(n + m) · α(m).

Q.E.D. Theorems 13 and 6.

We do not know if the theorems above provide
the best possible asymptotic bounds for the serial
transitive closure problem or on the size of Frege proof
simulations of nested deduction Frege proof systems.
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